Swineburne Transfer Class Swineburne Class Merrimack College Class Merrimack Department Code Unit Title Course Title Credits Biology TBD

Total Page:16

File Type:pdf, Size:1020Kb

Swineburne Transfer Class Swineburne Class Merrimack College Class Merrimack Department Code Unit Title Course Title Credits Biology TBD Swineburne Transfer Class Swineburne Class Merrimack College Class Merrimack Department Code Unit Title Course Title Credits Biology TBD Chemistry HES1510 Chemistry I CHM1110 & CHM1120 HES1525 Chemistry 2 CHM1120 HES2510 Investigate Chemistry Prac 1 CHM1120 HES2621 Intoduction to Biochemistry BIO3037 HES2540 Forensic and Analytical Science CHM3410 HES2520 Chemistry 3 CHM2210 HES2515 Investigate Chemistry Prac 2 CHM2210 HES4XXX Civil Engineering HES2155 Geomechanics CEN3020 Geotechnical Engineering HES2120 Structural Mechanics CEN3010 Structures HES2136 Road Engineering CEN3030 Transportation Engineering HES3112 Urban Water Resources CEN3050 Enviromental Engineering Computer Science HIT1091 Web Development CSC Free Elective 4 HIT1301 Algorithmic Problem Solving Math/Science Dist. 4 HIT1312 Computer and Logic Essentials Math/Science Dist. 4 HIT1402 Database Analysis & Design CSC3810 for IT Majors 4 HIT2080 Introduction to Programming CSC1610 4 HIT2316 Usability* CSC3500 4 HIT2422 Database Systems* CSC3810for IT Majors 4 Introduction to Arificial HIT3002 Intelligence* CSC3335 for CSC majors 4 Artificial Intelligence for HIT3046 Games* CSC Major Elective 4 HIT3138 Intelligent Systems* CSC3335 4 HIT3083 Digital Graphics* CSC Major Elective Languages in Software HIT3315 Development* CSC3120 4 Introduction to HIT4327 Supercomputing CSC4205 4 HIT4326 Data Visualisation* CSC Major Elective 4 HET306 Unix for Telecommunications* CSC3875 for IT Majors 4 Network Security and HET317 Resilience* CSC4055 HET412 Networking and Online Games* CSC Major Elective 4 Other courses may be approved on an ad hoc basis. * Check with Advisor Electrical Engineering HET202 Digital Electronics Design EEN1200 Digital Fundamentals 4 HET286 Circuit Systems EEN2130 Circuit Theory I 4 Health Sciences HES2631 Intodutory to Biochemistry BIO3037 HES2631 The Microbial World HSC3303 Clincial Microbiology Mathematics HMS101 Foundation Mathematics MS Distribution HMS102 Introcuction to Statistics MTH1111 HMS111 Engineering Mathematics MS Distribution HMS111 P Engineering Mathematics 1P=MS Distribution HMS112 Engineering Mathematics 2 MS Distribution HMS112 P Engineering Mathematics 2P=MS Distribution HMS211 Engineering Mathematics 3A Math Major HMS212 Engineering Mathematics 4A Math Major HMS213 Engineering Mathematics 3B Math Major HMS214 Engineering Mathematics 4B Math Major HMS215 Engineering Mathematics 3C Math Major HMS411 Engineering Mathematics 5A Math Major HMS412 Differential Equations MTH2220 HMS413 Stochastic Modeling Math Major Elective HMS770 Statistical Practice 1 MTH1111 HMS7711 Statistical Practice 2 MS Distribution Modern Physics (commencing Physics HET126 semester 2, 2012 13 PHY2212(Physics II) 4 HET321 Physics of Games 13 2000 Level Physics Elective* 4 HET240 Cellular Biophysics 13 3000 Level Physics Elective* HET128 Physics 2 13 PHY2241 Modern Physics 4 CSE2407 Energy and Motion 19 PHY2211 Physics 1 6* UHT124 Energy and Motion 13 PHY2211 Physics 1 4 Biomedial Imaging and HET408 Emerging Technologies 13 3000+ level physics elective 4 HET507 Spectroscopy & Non Linear 13 4000+ level physics elective 4 HET504 Quantum Mechanics A 13 PHY4412 Quantum Mechanics I 4* 3000+ level physics elective & possibly HET425 Nucleonics and Spectroscopy 13 PHY4451 4 HIT2502 From Stars to Black Holes 13 3000+ level physics elective 4 HET419 Physiological Modeling 13 3000+ level physics elective 4 Quantum and Optical Physics HET221 (Commencing Sem 2, 2012) 13 PHY2241 Modern Physics 4 HET124A Energy and Motion for Aviation 13 2000 Level STEM inst. Req* 4 HET124 Energy and Motion 13 PHY2211(Physics I) 4 Astrophysical Supercomputing HIT3505 2 13 4000 Level physics elective 4 HET503 Lasers Photonics and Fibre 13 3000-4000 level physics elective* 4* HET417 Optics 13 3000+level physics elective 4 .
Recommended publications
  • Bachelor of Engineering Program in Robotics Engineering and Automation System
    Bachelor of Engineering Program in Robotics Engineering and Automation System Production Engineering Department, Faculty of Engineering King Mongkut's University of Technology North Bangkok 1518 Pracharad 1 Rd., Wongsawang, Bangsue, Bangkok 10800 Thailand Tel. 02-555-2000 ext 8208 Fax 02-587-0029 Brief History Since founded in 1984, Production Engineering Department has offered only one undergraduate curriculum. With ample available resources, the department identifies the next step as a new curriculum responding to industrial needs. PE Students become so skillful that they have won many prizes in various robot competitions. Curriculum Objectives Produce graduates in Robotics Engineering and Automation System for industry and ASEAN. Produce students with skills and knowledge to proudly represent KMUTNB uniqueness. Support innovative creation according to KMUTNB philosophy Program of Study for Robotics Engineering & Automation System ( . 2556) Total = 143 Credits Semester 1 Semester 2 Semester 3 Semester 4 Semester 5 Semester 6 Summer Semester 7 Semester 8 = 18 Credits = 20 Credits = 22 Credits = 21 Credits = 18 Credits = 19 Credits = 240 hours = 11 Credits = 14 Credits 040203111 3(3-0-6) 040203112 3(3-0-6) 040203211 3(3-0-6) 010243102 3(3-0-6) 010243xxx 3(x-x-x) 010243xxx 3(x-x-x) 010243210 1(0-2-1) 010243211 3(0-6-3) Engineering Engineering Engineering Mechanics of Technical Elective Technical Elective p RE Project I RE Project II Course I Course II ) Mathematics I Mathematics II Mathematics III i Materials 0 - h 0 s 4 n 2 r - 0 e
    [Show full text]
  • Nanosicence & Nanoengineering
    Why Study at Sakarya University? Nanosicence & Sakarya is one of the most central states in Turkey. The city hosts a number of industrial companies such as Toyata Motor Manufac- Nanoengineering turing Turkey, Hyundai EURotem Train Factory and Otokar. It is Graduate Studies surrounded by beautiful landscapes and historical places, and an economical city for students. Istanbul is about one and half hour from the campus by car or bus. The capital city, Ankara, is nearly 300 km’s away. The campus is fully equipped with modern buildings and overlooks the very famous Sapanca Lake. Sakarya University has more than 60,000 students enrolled in higher-education, undergraduate and graduate studies in such areas as Engineering, Natural Sciences, Medicine, Law and Management. Each year hundreds of international students also pursue their studies individually or through some programs such as ERASMUS Student Exchange. Sakarya University is constantly seeking for improvements in CONTACT US educational processes and is the first university in Turkey to start quality development and evaluation and to receive the National Tel : +90 264 295 50 42 Quality Reward. Fax: +90 264 295 50 31 E-mail: [email protected] Address: Sakarya University Esentepe Campus TR - 54187 Sakarya / TURKIYE www.sakarya.edu.tr/en www.sakarya.edu.tr/en Nanoscience and Nanoengineering Graduation Requirements & Courses** Why Master’s or Ph.D. Degree in Graduate Program* Nanoscience and Nanoengineering? The graduate program in Nanosci- Eight courses with a total of 60 ECTS Current research in nanoscience ence and Nanoengineering is an course credits, both Master’s and and nanotechnology requires an inter-disciplinary study and aims to Ph.D.
    [Show full text]
  • Mathematics and Engineering in Computer Science
    NBSIR 75-780 Mathematics and Engineering in Computer Science Christopher J. Van Wyk Institute for Computer Sciences and Technology National Bureau of Standards Washington, D. C. 20234 August, 1975 Final Report U S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS NBSIR 75-780 MATHEMATICS AND ENGINEERING IN COMPUTER SCIENCE Christopher J. Van Wyk Institute for Computer Sciences and Technology National Bureau of Standards Washington, D. C. 20234 August, 1975 Final Report U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary James A. Baker, III, Under Secretary Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director I I. Introduction The objective of the research which culminated in this document 'was to identify and characterize areas of mathematics and engineering v/hich are relevant to computer science. The descriptions of technical fields were to be comprehensible to laymen, yet accurate enough to satisfy technically knowledgeable personnel, and informative for all readers. The division of the fields, shown in the table of contents, is somewhat arbitrary, but it is also quite convenient. A short expla- nation might be helpful. The mathematical fields can be grouped by noting the importance of a field to computer science, and, to a lesser extent, the existence of the field independent of computer science. For example. Boolean algebra and information theory could (and did) exist without computers being available. On the other hand, most problems in artificial intelligence or optimization, once they reach even moderate complexity, must be solved with a computer, since hand solution would take too much time.
    [Show full text]
  • Robotics and Early-Years STEM Education: the Botstem Framework and Activities
    European Journal of STEM Education, 2020, 5(1), 01 ISSN: 2468-4368 Robotics and Early-years STEM Education: The botSTEM Framework and Activities Ileana M. Greca Dufranc 1, Eva M. García Terceño 1, Marie Fridberg 2, Björn Cronquist 2, Andreas Redfors 2* 1 Universidad de Burgos, SPAIN 2 Kristianstad University, SWEDEN *Corresponding Author: [email protected] Citation: Greca Dufranc, I. M., García Terceño, E. M., Fridberg, M., Cronquist, B. and Redfors, A. (2020). Robotics and Early-years STEM Education: The botSTEM Framework and Activities. European Journal of STEM Education, 5(1), 01. https://doi.org/10.20897/ejsteme/7948 Published: April 17, 2020 ABSTRACT botSTEM is an ERASMUS+ project aiming to raise the utilisation of inquiry-based collaborative learning and robots-enhanced education. The project outputs are specifically aimed to provide in- and pre-service teachers in Childhood and Primary Education and children four-eight years old, with research-based materials and practices that use integrated Science Technology Engineering Mathematics (STEM) and robot-based approaches, including code-learning, for enhancing scientific literacy in young children. This article presents the outputs from the botSTEM project; the didactical framework underpinning the teaching material, addressing pedagogy and content. It is a gender inclusive pedagogy that makes use of inquiry, engineering design methodology, collaborative work and robotics. The article starts with a presentation of the botSTEM toolkit with assorted teaching practices and finishes with examples of preliminary results from a qualitative analysis of implemented activities during science teaching in preschools. It turns out that despite perceived obstacles that teachers initially expressed, the analysis of the implementations indicates that the proposed STEM integrated framework, including inquiry teaching and engineering design methodologies, can be used with children as young as four years old.
    [Show full text]
  • Use of Robotics in First-Year Engineering Math Laboratory
    Session F1C Use of Robotics in First-Year Engineering Math Laboratory Rod Foist and Grace Ni Dept. of Electrical & Computer Engineering, California Baptist University 8432 Magnolia Avenue, Riverside, CA, 92504 [email protected], gni@ calbaptist.edu Abstract - According to National Science Foundation was to increase student retention, motivation, and success in (NSF) research, engineering mathematics courses with a engineering. The WSU model focuses on a novel first-year laboratory (“hands-on”) component are more effective engineering math course, taught by engineering faculty, in helping students grasp concepts, than lecture-only which includes lecture, lab, and recitation. The course uses approaches. Beginning in 2008, California Baptist an application-oriented, hands-on approach—and only University (CBU) received NSF funding through Wright covers the math topics that students actually use in their State University to develop a first-year Engineering core engineering courses. Klingbeil et al reported in 2013, Math course (EGR 182) with laboratory projects. Our based on careful assessments, that the results have been new College of Engineering currently offers nine degrees encouraging [2]. They also point out that a student’s and all freshmen must take this course. The lab projects success in engineering is strongly linked to his/her success aim to illustrate key mathematic concepts via hands-on in math “and perhaps more importantly, on the ability to experiments representing each discipline. Two new connect the math to the engineering”. That is, to see the projects were introduced during the 2013-2014 school relevance of math to engineering. year. This paper reports on a trigonometry-with- Beginning in 2008, California Baptist University robotics lab.
    [Show full text]
  • Engineering Ontologies
    Int . J . Human – Computer Studies (1997) 46 , 365 – 406 Engineering ontologies P IM B ORST † AND H ANS A KKERMANS ‡ Uniy ersity of Twente , Information Systems Department INF / IS , P .O . Box 2 1 7 , NL - 7 5 0 0 AE Enschede , The Netherlands . email : borst / akkerman ê cs .utwente .nl J AN T OP Agro - Technological Research Organization ATO - DLO , P .O . Box 1 7 , NL - 6 7 0 0 AA Wageningen , The Netherlands . email : j .l .top ê ato .dlo .nl We analyse the construction as well as the role of ontologies in knowledge sharing and reuse for complex industrial applications . In this article , the practical use of ontologies in large-scale applications not restricted to knowledge-based systems is demonstrated , for the domain of engineering systems modelling , simulation and design . A general and formal ontology , called P HYS S YS , for dynamic physical systems is presented and its structuring principles are discussed . We show how the P HYS S YS ontology provides the foundation for the conceptual database schema of a library of reusable engineering model components , covering a variety of disciplines such as mechatronics and thermodynamics , and we describe a full-scale numerical simulation experiment on this basis pertaining to an existing large hospital heating installation . From the application scenario , several general guidelines and ex- periences emerge . It is possible to identify various y iewpoints that are seen as natural within a large domain : broad and stable conceptual distinctions that give rise to a categorization of concepts and properties . This provides a first mechanism to break up ontologies into smaller pieces with strong internal coherence but relatively loose coupling , thus reducing ontological commitments .
    [Show full text]
  • An Interdisciplinary Research Group's Collaboration to Understand First
    Paper ID #25422 An Interdisciplinary Research Group’s Collaboration to Understand First- Year Engineering Retention Mrs. Teresa Lee Tinnell, University of Louisville Terri Tinnell is a Curriculum and Instruction PhD student and Graduate Research Assistant at the Univer- sity of Louisville. Her research interests include interdisciplinary faculty development, STEM identity, retention of engineering students, the use of makerspaces in engineering education. Ms. Campbell R. Bego, University of Louisville Campbell Rightmyer Bego is currently pursuing a doctoral degree in Cognitive Science at the University of Louisville. She researches STEM learning with a focus on math learning and spatial representations. Ms. Bego is also assisting the Engineering Fundamentals Department in the Speed School in performing student retention research. She is particularly interested in interventions and teaching methods that allevi- ate working memory constraints and increase both learning retention and student retention in engineering. Ms. Bego is also a registered professional mechanical engineer in New York State. Dr. Patricia A. Ralston, University of Louisville Dr. Patricia A. S. Ralston is Professor and Chair of the Department of Engineering Fundamentals at the University of Louisville. She received her B.S., MEng, and PhD degrees in chemical engineering from the University of Louisville. Dr. Ralston teaches undergraduate engineering mathematics and is currently involved in educational research on the effective use of technology in engineering education, the incorpo- ration of critical thinking in undergraduate engineering education, and retention of engineering students. She leads a research group whose goal is to foster active interdisciplinary research which investigates learning and motivation and whose findings will inform the development of evidence-based interventions to promote retention and student success in engineering.
    [Show full text]
  • Ontologies for Supporting Engineering Design Optimization Paul Witherell National Institute of Standards and Technology, [email protected]
    Center for e-Design Publications Center for e-Design 6-2007 Ontologies for Supporting Engineering Design Optimization Paul Witherell National Institute of Standards and Technology, [email protected] Sundar Krishnamurty University of Massachusetts Amherst, [email protected] Ian R. Grosse University of Massachusetts Amherst, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/edesign_pubs Part of the Computer-Aided Engineering and Design Commons, and the Industrial Engineering Commons Recommended Citation Witherell, Paul; Krishnamurty, Sundar; and Grosse, Ian R., "Ontologies for Supporting Engineering Design Optimization" (2007). Center for e-Design Publications. 18. http://lib.dr.iastate.edu/edesign_pubs/18 This Article is brought to you for free and open access by the Center for e-Design at Iowa State University Digital Repository. It has been accepted for inclusion in Center for e-Design Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Ontologies for Supporting Engineering Design Optimization Abstract This paper presents an optimization ontology and its implementation into a prototype computational knowledge-based tool dubbed ONTOP (ontology for optimization). Salient feature of ONTOP include a knowledge base that incorporates both standardized optimization terminology, formal method definitions, and often unrecorded optimization details, such as any idealizations and assumptions that may be made when creating an optimization model, as well as the model developer’s rationale and justification behind these idealizations and assumptions. ONTOP was developed using Protégé, a Java-based, free open-source ontology development environment created by Stanford University. Two engineering design optimization case studies are presented.
    [Show full text]
  • Roles of Ontologies of Engineering Artifacts for Design Knowledge Modeling
    In Proc. of the 5th International Seminar and Workshop Engineering Design in Integrated Product Development (EDIProD 2006), 21-23 September 2006, Gronów, Poland, pp. 59-69, 2006. ROLES OF ONTOLOGIES OF ENGINEERING ARTIFACTS FOR DESIGN KNOWLEDGE MODELING YOSHINOBU KITAMURA The Institute of Scientific and Industrial Research, Osaka University e-mail: [email protected] Keywords: Product Knowledge Modeling, Ontology Abstract: Capturing design knowledge and its modeling are crucial issues for design support systems and design knowledge management. It is important that knowledge models are systematic, consistent, reusable and interoperable. This survey article discusses the roles of ontologies of engineering artifacts for contributing to such design knowledge modeling from a viewpoint of computer science. An ontology of artifacts, in general, consists of systematic and computational definitions of fundamental concepts and relationship which exist in the physical world related to target artifacts, and shows how to capture the artifacts. This article, firstly, discusses needs, types, levels and some examples of ontologies of engineering artifacts. Then, we discuss roles of the ontologies for design knowledge modeling such as modeling specification for consistent modeling, capturing implicit knowledge and basis of knowledge systematization. 1. INTRODUCTION exchange and integration. In fact, one of the pioneering ontology research efforts in early 90’s Designing is a creative activity using several kinds aims at product data exchange among engineering of knowledge. The quality of design relies heavily tools [11]. Practical product data exchange has been on knowledge applied in the design processes. This explored mainly for CAD data models in the is why capturing necessary knowledge and its projects such as STEP and CIM-OSA.
    [Show full text]
  • Ontomathp RO Ontology: a Linked Data Hub for Mathematics
    OntoMathPRO Ontology: A Linked Data Hub for Mathematics Olga Nevzorova1,2, Nikita Zhiltsov1, Alexander Kirillovich1, and Evgeny Lipachev1 1 Kazan Federal University, Russia {onevzoro,nikita.zhiltsov,alik.kirillovich,elipachev}@gmail.com 2 Research Institute of Applied Semiotics of Tatarstan Academy of Sciences, Kazan, Russia Abstract. In this paper, we present an ontology of mathematical knowl- edge concepts that covers a wide range of the fields of mathematics and introduces a balanced representation between comprehensive and sensi- ble models. We demonstrate the applications of this representation in information extraction, semantic search, and education. We argue that the ontology can be a core of future integration of math-aware data sets in the Web of Data and, therefore, provide mappings onto relevant datasets, such as DBpedia and ScienceWISE. Keywords: Ontology engineering, mathematical knowledge, Linked Open Data. 1 Introduction Recent advances in computer mathematics [4] have made it possible to formalize particular mathematical areas including the proofs of some remarkable results (e.g. Four Color Theorem or Kepler’s Conjecture). Nevertheless, the creation of computer mathematics models is a slow process, requiring the excellent skills both in mathematics and programming. In this paper, we follow a different paradigm to mathematical knowledge representation that is based on ontology engineering and the Linked Data principles [6]. OntoMathPRO ontology1 intro- duces a reasonable trade-off between plain vocabularies and highly formalized models, aiming at computable proof-checking. OntoMathPRO was first briefly presented as a part of our previous work [22]. Since then, we have elaborated the ontology structure, improved interlinking with external resources and developed new applications to support the utility of the ontology in various use cases.
    [Show full text]
  • Enhancing Interdisciplinarity for the Engineer of 2020
    AC 2011-994: WORKING AS A TEAM: ENHANCING INTERDISCIPLINAR- ITY FOR THE ENGINEER OF 2020 Lisa R. Lattuca, Pennsylvania State University, University Park Lois Calian Trautvetter, Northwestern University Lois Calian Trautvetter Assistant Professor of Education and Director, Higher Education Administration and Policy Program, Northwestern University, [email protected] Dr. Trautvetter studies faculty development and productivity issues, including those that enhance teaching and research, motivation, and new and junior faculty development. She also studies gender issues in the STEM disciplines. David B Knight, Pennsylvania State University, University Park David Knight is a PhD candidate in the Higher Education Program at Pennsylvania State University and is a graduate research assistant on two NSF-funded engineering education projects. His research interests include STEM education, interdisciplinary teaching and research, organizational issues in higher education, and leadership and administration in higher education. Email: [email protected] Carla M. Cortes, Northwestern University Carla Cortes serves as an instructor and research associate in the Higher Education Administration & Policy program at Northwestern University. She also conducts analysis and manages projects for DePaul University’s Division of Enrollment Management and Marketing. c American Society for Engineering Education, 2011 Promoting Interdisciplinary Competence in the Engineers of 2020 Introduction A review of recent policy documents from the federal government reveals a consistent call for greater investments in interdisciplinary education at both the undergraduate and graduate levels (National Academy of Sciences, 20041; National Institutes of Health, 20062; Ramaley, 20013). These calls for greater interdisciplinarity in postsecondary and graduate education are based on the belief that interdisciplinary educational approaches are needed to foster innovation and may be more effective in doing so than discipline-based educational programs (National Academy of Engineering, 20044; U.S.
    [Show full text]
  • Advanced Engineering Mathematics AR-101 Rota Duration Semester SWS Credit Points Workload Annually WS 1 Semester 1St (Semester) 5 SWS 7 210 H 1 Modul Structure
    Advanced Engineering Mathematics AR-101 Rota Duration Semester SWS Credit Points Workload annually WS 1 Semester 1st (Semester) 5 SWS 7 210 h 1 Modul structure Course (Abbreviation) Type/ SWS Presence Self study Credits a) Advanced Engineering Lecture/ 3 SWS 45 h 90 h 4 Mathematics (AEM) b) Advanced Engineering Tutorial/ 2 SWS 30 h 45 h 3 Mathematics (AEM) 2 Language English 3 Content 1. Linear Algebra: Vector spaces, matrices and equation systems, linear maps, Jordan-, LU-, QR-, and singular value decomposition, numerical aspects. 2. Differential Equation: Linear systems, differential equations with constant coefficients. 3. Laplace-Transform: Definition, convolution and application to differential equations. 4. Differential Calculus with several variables: Derivatives, inverse and implicit functions, Taylor expansion and extreme values. 5. Stability of Differential Equations: Theorems of Ljapunov and Poincaré-Ljapunov. 6. Variational Calculus Literature: ñ Bajpai, Avinash C. , Mathematics for engineers and scientists ñ Meyer, R.M., Essential mathematics for applied fields ñ Lancaster, P., Tismenetsky, M., The theory of matrices ñ Lang, S., Linear algebra ñ Slides 4 Goals The course gives an introduction to fundamental mathematical techniques used in almost every course. Attention is given to the underlying mathematical structure. 5 Examination Requirements The final exam will be a written (2 hours) exam. 6 Formality of Examination T Module Finals § Accumulated Grade 7 Module Requirements (Prerequisites) 8 Allocation to Curriculum: Mandatory
    [Show full text]