Emerging Anti-Insomnia Drugs: Tackling Sleeplessness and the Quality of Wake Time
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
By ANDREA PETERSEN Getty Images for Those Who Have Trouble
By ANDREA PETERSEN Getty Images For those who have trouble sleeping, there may soon be new ways to summon the sandman. Several pharmaceutical companies are working on new approaches to treat insomnia. The compounds are meant to work differently than current leading sleep aids such as Ambien and Lunesta, which, while generally safe, can have troubling side effects because they act on many areas of the brain. By contrast, many of the drugs being developed target particular systems responsible for sleep and wakefulness. The hope is that they will have fewer side effects and less potential for addiction and cognition problems the next day. New drugs are in the works to treat insomnia, which affects 10% to 30% of Americans (and more women than men). Andrea Peterson explains. About 30% of American adults have insomnia symptoms each year, scientific studies estimate. Some 10% of the population has chronic insomnia, which is generally defined as having difficulty sleeping at least three times a week for a month or more. Chronic insomnia sufferers also feel tired, cranky or foggy-headed during the day. Insomnia comes in various forms. Some people have a tough time falling asleep and others wake in the middle of the night and have trouble getting back to sleep. Some people rise for the day too early. Insomnia can increase the risk for other conditions, including heart disease, diabetes and depression. Merck & Co. is investigating a compound that inhibits the action of orexin receptors, which in turn interferes with the activity of orexin, a chemical in the brain that produces alertness. -
BMC Pharmacology Biomed Central
CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector BMC Pharmacology BioMed Central Research article Open Access Pharmacological Properties of DOV 315,090, an ocinaplon metabolite Dmytro Berezhnoy†1, Maria C Gravielle†1, Scott Downing1, Emmanuel Kostakis1, Anthony S Basile2, Phil Skolnick2, Terrell T Gibbs1 and David H Farb*1 Address: 1Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA and 2DOV Pharmaceutical, Inc, 150 Pierce St., Somerset, NJ 08873-4185, USA Email: Dmytro Berezhnoy - [email protected]; Maria C Gravielle - [email protected]; Scott Downing - [email protected]; Emmanuel Kostakis - [email protected]; Anthony S Basile - [email protected]; Phil Skolnick - [email protected]; Terrell T Gibbs - [email protected]; David H Farb* - [email protected] * Corresponding author †Equal contributors Published: 13 June 2008 Received: 20 December 2007 Accepted: 13 June 2008 BMC Pharmacology 2008, 8:11 doi:10.1186/1471-2210-8-11 This article is available from: http://www.biomedcentral.com/1471-2210/8/11 © 2008 Berezhnoy et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Compounds targeting the benzodiazepine binding site of the GABAA-R are widely prescribed for the treatment of anxiety disorders, epilepsy, and insomnia as well as for pre- anesthetic sedation and muscle relaxation. It has been hypothesized that these various pharmacological effects are mediated by different GABAA-R subtypes. -
R Graphics Output
Dexamethasone sodium phosphate ( 0.339 ) Melengestrol acetate ( 0.282 ) 17beta−Trenbolone ( 0.252 ) 17alpha−Estradiol ( 0.24 ) 17alpha−Hydroxyprogesterone ( 0.238 ) Triamcinolone ( 0.233 ) Zearalenone ( 0.216 ) CP−634384 ( 0.21 ) 17alpha−Ethinylestradiol ( 0.203 ) Raloxifene hydrochloride ( 0.203 ) Volinanserin ( 0.2 ) Tiratricol ( 0.197 ) trans−Retinoic acid ( 0.192 ) Chlorpromazine hydrochloride ( 0.191 ) PharmaGSID_47315 ( 0.185 ) Apigenin ( 0.183 ) Diethylstilbestrol ( 0.178 ) 4−Dodecylphenol ( 0.161 ) 2,2',6,6'−Tetrachlorobisphenol A ( 0.156 ) o,p'−DDD ( 0.155 ) Progesterone ( 0.152 ) 4−Hydroxytamoxifen ( 0.151 ) SSR150106 ( 0.149 ) Equilin ( 0.3 ) 3,5,3'−Triiodothyronine ( 0.256 ) 17−Methyltestosterone ( 0.242 ) 17beta−Estradiol ( 0.24 ) 5alpha−Dihydrotestosterone ( 0.235 ) Mifepristone ( 0.218 ) Norethindrone ( 0.214 ) Spironolactone ( 0.204 ) Farglitazar ( 0.203 ) Testosterone propionate ( 0.202 ) meso−Hexestrol ( 0.199 ) Mestranol ( 0.196 ) Estriol ( 0.191 ) 2,2',4,4'−Tetrahydroxybenzophenone ( 0.185 ) 3,3,5,5−Tetraiodothyroacetic acid ( 0.183 ) Norgestrel ( 0.181 ) Cyproterone acetate ( 0.164 ) GSK232420A ( 0.161 ) N−Dodecanoyl−N−methylglycine ( 0.155 ) Pentachloroanisole ( 0.154 ) HPTE ( 0.151 ) Biochanin A ( 0.15 ) Dehydroepiandrosterone ( 0.149 ) PharmaCode_333941 ( 0.148 ) Prednisone ( 0.146 ) Nordihydroguaiaretic acid ( 0.145 ) p,p'−DDD ( 0.144 ) Diphenhydramine hydrochloride ( 0.142 ) Forskolin ( 0.141 ) Perfluorooctanoic acid ( 0.14 ) Oleyl sarcosine ( 0.139 ) Cyclohexylphenylketone ( 0.138 ) Pirinixic acid ( 0.137 ) -
Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix
United States International Trade Commission Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix USITC Publication 4208 December 2010 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix Publication 4208 December 2010 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 15, 2010, set forth at the end of this publication, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the United States International Trade Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement changes to the Pharmaceutical Appendix, effective on January 1, 2011. Table 1 International Nonproprietary Name (INN) products proposed for addition to the Pharmaceutical Appendix to the Harmonized Tariff Schedule INN CAS Number Abagovomab 792921-10-9 Aclidinium Bromide 320345-99-1 Aderbasib 791828-58-5 Adipiplon 840486-93-3 Adoprazine 222551-17-9 Afimoxifene 68392-35-8 Aflibercept 862111-32-8 Agatolimod -
204569Orig1s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 204569Orig1s000 MEDICAL REVIEW(S) Cross Discipline Team Leader Review 3. CMC/Device Dr. Khairuzzaman found the drug product portion of the NDA to be acceptable, and without need for phase 4 commitments. Dr. Sapru’s review stated that with the exception of a pending issue concerning the control of potential genotoxic impurity (b) (4) the NDA was approvable in terms of drug substance. Dr. Suarez found that the NDA was acceptable from a biopharmaceutics perspective. The Office of Compliance issuance of an acceptable recommendation for drug substance manufacturing and testing facilities was pending at the time of this review. 4. Nonclinical Pharmacology/Toxicology Dr. Richard Siarey completed the primary nonclinical review, and Dr. Lois Freed completed a supervisory memo. Dr. Siarey’s overall conclusion was that from a nonclinical perspective, approval of the suvorexant NDA was recommended. However, he found evidence that catapelxy was observed in dogs exposed to MK-4305 (suvorexant) near Tmax, although he concluded that additional information could have been gained by studying the drug in an experimental model that has been used for diagnosing cataplexy in dogs. Dr. Siarey suggested that since cataplexy occurred in dogs near Tmax, a time at which if used for insomnia patients would ordinarily be in bed, safety concern for humans was reduced. Dr. Siarey also found that the neurobehavioral assessment in the pre- and post-natal developmental study was not complete, as the passive avoidance tests was performed too early in development, while learning/acquisition tests and retention/memory tests were not conducted. -
(12) United States Patent (10) Patent No.: US 8.598,119 B2 Mates Et Al
US008598119B2 (12) United States Patent (10) Patent No.: US 8.598,119 B2 Mates et al. (45) Date of Patent: Dec. 3, 2013 (54) METHODS AND COMPOSITIONS FOR AOIN 43/00 (2006.01) SLEEP DSORDERS AND OTHER AOIN 43/46 (2006.01) DSORDERS AOIN 43/62 (2006.01) AOIN 43/58 (2006.01) (75) Inventors: Sharon Mates, New York, NY (US); AOIN 43/60 (2006.01) Allen Fienberg, New York, NY (US); (52) U.S. Cl. Lawrence Wennogle, New York, NY USPC .......... 514/114: 514/171; 514/217: 514/220; (US) 514/229.5: 514/250 (58) Field of Classification Search (73) Assignee: Intra-Cellular Therapies, Inc. NY (US) None See application file for complete search history. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (56) References Cited U.S.C. 154(b) by 215 days. U.S. PATENT DOCUMENTS (21) Appl. No.: 12/994,560 6,552,017 B1 4/2003 Robichaud et al. 2007/0203120 A1 8, 2007 McDevitt et al. (22) PCT Filed: May 27, 2009 FOREIGN PATENT DOCUMENTS (86). PCT No.: PCT/US2O09/OO3261 S371 (c)(1), WO WOOOf77OO2 * 6, 2000 (2), (4) Date: Nov. 24, 2010 OTHER PUBLICATIONS (87) PCT Pub. No.: WO2009/145900 Rye (Sleep Disorders and Parkinson's Disease, 2000, accessed online http://www.waparkinsons.org/edu research/articles/Sleep PCT Pub. Date: Dec. 3, 2009 Disorders.html), 2 pages.* Alvir et al. Clozapine-Induced Agranulocytosis. The New England (65) Prior Publication Data Journal of Medicine, 1993, vol. 329, No. 3, pp. 162-167.* US 2011/0071080 A1 Mar. -
PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. -
WO 2015/072852 Al 21 May 2015 (21.05.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/072852 Al 21 May 2015 (21.05.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 36/84 (2006.01) A61K 31/5513 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/045 (2006.01) A61P 31/22 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/522 (2006.01) A61K 45/06 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/NL20 14/050780 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 13 November 2014 (13.1 1.2014) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/903,430 13 November 2013 (13. 11.2013) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: RJG DEVELOPMENTS B.V. -
TE INI (19 ) United States (12 ) Patent Application Publication ( 10) Pub
US 20200187851A1TE INI (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No .: US 2020/0187851 A1 Offenbacher et al. (43 ) Pub . Date : Jun . 18 , 2020 ( 54 ) PERIODONTAL DISEASE STRATIFICATION (52 ) U.S. CI. AND USES THEREOF CPC A61B 5/4552 (2013.01 ) ; G16H 20/10 ( 71) Applicant: The University of North Carolina at ( 2018.01) ; A61B 5/7275 ( 2013.01) ; A61B Chapel Hill , Chapel Hill , NC (US ) 5/7264 ( 2013.01 ) ( 72 ) Inventors: Steven Offenbacher, Chapel Hill , NC (US ) ; Thiago Morelli , Durham , NC ( 57 ) ABSTRACT (US ) ; Kevin Lee Moss, Graham , NC ( US ) ; James Douglas Beck , Chapel Described herein are methods of classifying periodontal Hill , NC (US ) patients and individual teeth . For example , disclosed is a method of diagnosing periodontal disease and / or risk of ( 21) Appl. No .: 16 /713,874 tooth loss in a subject that involves classifying teeth into one of 7 classes of periodontal disease. The method can include ( 22 ) Filed : Dec. 13 , 2019 the step of performing a dental examination on a patient and Related U.S. Application Data determining a periodontal profile class ( PPC ) . The method can further include the step of determining for each tooth a ( 60 ) Provisional application No.62 / 780,675 , filed on Dec. Tooth Profile Class ( TPC ) . The PPC and TPC can be used 17 , 2018 together to generate a composite risk score for an individual, which is referred to herein as the Index of Periodontal Risk Publication Classification ( IPR ) . In some embodiments , each stage of the disclosed (51 ) Int. Cl. PPC system is characterized by unique single nucleotide A61B 5/00 ( 2006.01 ) polymorphisms (SNPs ) associated with unique pathways , G16H 20/10 ( 2006.01 ) identifying unique druggable targets for each stage . -
Novel Cyclodextrin Derivatives Presented at the 3Rd European Conference on Cyclodextrins
VOLUME 27. No. 11. NOVEMBER 2013 ISSN 0951-256X October 2-4, 2013, Antalya, Turkey Novel cyclodextrin derivatives presented at the 3rd European Conference on Cyclodextrins This year’s European Conference on Cyclodextrins organized by Prof. Erem Bilensoy, Hacettepe University, Ankara brought 50 oral presentations and 65 posters. Most of the presented works covered the main theme of the congress: ”multifunctional excipient potential of cyclodextrins in pharmaceutical, cosmetic and biomedical industries”. The large number of the presented works dealing with novel cyclodextrin derivatives clearly shows that recently there has been a renewed interest in functionalization of cyclodextrins in order to extend the utilization of these derivatives as tools in catalysis, drug delivery, formulation and stabilization of active molecules and cosmetic ingredients. This short paper gives a brief review of the presented novel cyclodextrin derivatives, summarizes their synthetic methodologies and the field of their applications. Extended abstracts will be published in the Journal of Inclusion Phenomena and Macrocyclic Chemistry after peer review. The references given here are the papers of the cited authors on similar topics presented at the conference. NOVEL CYCLODEXTRIN POLYMERS AND NANOSPONGES Phosphorus-containing cyclodextrin polymers presented by Prof. Catherine Amiel A very attractive new cyclodextrin (CD) based polymeric system presented by Prof. Amiel combines the advantages of cyclodextrin polymers (formation of inclusion complexes with apolar guests) and phosphorus-containing polymers (biocompatibility, calcium affinity). These VOLUME 27. No 11. polymeric systems are promising candidates to be used in biomedical applications that jointly require calcium delivery and transport of lipophilic bioactive molecules. A non-toxic cyclic sodium trimetaphosphate (STMP) was used as a cross-linking agent under basic conditions. -
Journal of Psychopharmacology
Journal of Psychopharmacology http://jop.sagepub.com/ British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders SJ Wilson, DJ Nutt, C Alford, SV Argyropoulos, DS Baldwin, AN Bateson, TC Britton, C Crowe, D-J Dijk, CA Espie, P Gringras, G Hajak, C Idzikowski, AD Krystal, JR Nash, H Selsick, AL Sharpley and AG Wade J Psychopharmacol 2010 24: 1577 originally published online 2 September 2010 DOI: 10.1177/0269881110379307 The online version of this article can be found at: http://jop.sagepub.com/content/24/11/1577 Published by: http://www.sagepublications.com On behalf of: British Association for Psychopharmacology Additional services and information for Journal of Psychopharmacology can be found at: Email Alerts: http://jop.sagepub.com/cgi/alerts Subscriptions: http://jop.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav Citations: http://jop.sagepub.com/content/24/11/1577.refs.html Downloaded from jop.sagepub.com at University of Otago Library on March 11, 2011 Original Paper British Association for Psychopharmacology consensus statement on evidence-based Journal of Psychopharmacology treatment of insomnia, parasomnias and 24(11) 1577–1600 ! The Author(s) 2010 circadian rhythm disorders Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0269881110379307 jop.sagepub.com SJ Wilson1, DJ Nutt2, C Alford3, SV Argyropoulos4, DS Baldwin5, AN Bateson6, TC Britton7, C Crowe8, D-J Dijk9, CA Espie10, P Gringras11, G Hajak12, C Idzikowski13, AD Krystal14, JR Nash15, H Selsick16, AL Sharpley17 and AG Wade18 Abstract Sleep disorders are common in the general population and even more so in clinical practice, yet are relatively poorly understood by doctors and other health care practitioners. -
Datasheet Inhibitors / Agonists / Screening Libraries a DRUG SCREENING EXPERT
Datasheet Inhibitors / Agonists / Screening Libraries A DRUG SCREENING EXPERT Product Name : Volinanserin Catalog Number : T5389 CAS Number : 139290-65-6 Molecular Formula : C22H28FNO3 Molecular Weight : 373.46 Description: Volinanserin (MDL 100907) is a potent and selective antagonist of the serotonin receptor 5-HT2 (Ki: 0.36 nM) and shows 300-fold selectivity for 5-HT2 receptor over 5-HT1c, alpha-1 adrenergic and sigma receptors. Storage: 2 years -80°C in solvent; 3 years -20°C powder; DMSO 100 mg/mL (267.8 mM) Solubility Ethanol 18 mg/mL (48.2 mM) ( < 1 mg/ml refers to the product slightly soluble or insoluble ) Receptor (IC50) 5-HT2 receptor 0.36 nM (Ki) In vitro Activity MDL 100,907 demonstrated low nanomolar or subnanomolar binding in vitro at the 5-HT2A receptor and showed a > 100-fold separation from all other receptors measured. MDL 100,907 had subnanomolar potency as a 5-HT2A antagonist in vitro in reversing 5-HT-stimulated inositol phosphate accumulation in NIH 3T3 cells transfected with the rat 5-HT2A receptor [2]. In vivo Activity In mice, MDL 100,907 blocked amphetamine-stimulated locomotion at doses that did not significantly affect apomorphine- stimulated climbing behavior. When administered chronically, MDL 100,907 selectively reduced the number of spontaneously active A10 neurons [1]. In vivo, MDL 100,907 potently inhibited 5-methoxy-N, N-dimethyltryptamine-induced head twitches in mice or 5-hydroxytryptophan-induced head twitches in rats. In vivo, functional tests in mice revealed a > 500-fold separation between doses that produced 5-HT2A antagonism and doses that produced alpha 1-adrenergic or striatal D2 antagonism [2].