Philosophy 47 Existential and Universal Quantifiers Unit 13 UNIT

Total Page:16

File Type:pdf, Size:1020Kb

Philosophy 47 Existential and Universal Quantifiers Unit 13 UNIT Existential and Universal Quantifiers Unit 13 UNIT: 13 EXISTENTIAL AND UNIVERSAL QUANTIFIERS Unit Structure 13.1Learning objectives 13.2Introduction 13.2Predicate logic 13.3Symbols used in predicate logic 13.4Quantifiers and types of Quantifiers 13.5Difference between universal quantifier and existential quantifier. 13.6Symbolisation of categorical statements with quantifiers 13.7.Scope of quantifier 13.8Symbolisation 13.9Let us sum up 13.10Further Reading 13.11Answers to check your progress 13.12Model question 13.1 LEARNING OBJECTIVES After going through this unit, you will be able to: l define predicate logic, l explain the symbols used in predicate logic, l describe the distinction between universal quantifier and existential quantifier, l discuss the statements symbolised in predicate logic. 13.2 INTRODUCTION The three distinct branches of symbolic logic are propositional logic, predicate logic and logic of classes. Predicate logic deals with the internal structure of both the simple and compound propositions. It is the logic of predicates or properties, and things or objects to which the predicates may be ascribed. Now question arises, how many of the individuals have the property in question? In predicate logic, the expressions which state that, how many of the individuals have the property in question are known as Philosophy 47 PDF created with pdfFactory Pro trial version www.pdffactory.com Unit 13 Existential and Universal Quantifiers quantifiers. This logic uses only two kinds of quantifier symbols: Universal quantifier and Existential quantifier. Universal quantifier stands for "for all x" or "for any x" . The symbol used for universal quantifier is -(x). The existential quantifier stands for 'there is at least one x' and it has existential commitment. The symbol used for existential quantifier is -( $ x). These quantifiers give us the way to symbolise quantity terms such as 'all', 'some', 'every', 'none' which occur in statements about predications and thereby bring out the formal structure of general proposition. 13.3 PREDICATE LOGIC Predicate logic is that branch of symbolic logic which deals with the internal structure of both the simple and compound propositions. It is concerned with predicates or properties, and things or objects to which the predicates may be ascribed. Predicate logic on the other hand deals with the sub-structures of both simple and compound propositions. In more formal terms, it is also known Quantification Theory or the Predicate calculus. Predicate logic contains the entire propositional logic. In predicate logic, a distinction between singular proposition and general proposition is made. A singular proposition is one which states that a particular individual possesses or does not possess a particular property or attribute. 'Kalidasa is a poet'. On the other hand a general proposition asserts that some individuals or all individuals possess or do not possess a certain property. For example: 'All men are wise', 'some flowers are red', etc. 13.4 SYMBOLS USED IN PREDICATE LOGIC Symbols play a pivotal role in predicate logic. A symbol is an ideogram which represents logical concepts. Predicate logic contains entire propositional logic. So, it uses same symbols adopted in propositional logic. For example, logical constants and propositional variable are used both in propositional logic and predicate logic. In addition to it predicate logic uses a kind of symbol to signify the quantity term occur in statements that is called quantifier. Now, it is necessary to deal with the symbols used in propositional logic. Propositional logic uses two types of symbols namely, (1) logical constant or logical operator and (2) propositional variable. Logical constants: Logical constants are those words which are used to connect simple propositions to produce compound propositions and which express the form or structure of the compound propositions. They connect statements. Hence, they are also called the connectives. Propositional logic 48 Philosophy PDF created with pdfFactory Pro trial version www.pdffactory.com Existential and Universal Quantifiers Unit 13 uses five basic logical constants or connectives. They are- not, and, either- or, if-then, if and only if. These logical constants are represented by their respective symbols. The logical constants and their respective symbols are the following: Symbol Name Meaning ~ (Tilde) Not, It is not the case that . (Dot) and Ú (Wedge) or É (Horseshoe) if-then º (triple bar) if and only if Propositional variables: The lower case letters of the English alphabet p, q, r, s, t etc. which stand for simple propositions are known as propositional variables. For example: If p then q This argument can be symbolically represented in the following way: P É q P \ q Here, p and q are variables because they can be replaced by any simple proposition within a definite range. In addition to these symbols, predicate logic uses a kind of symbol to signify the quantity term occurring in statements what is called quantifier. Predicate logic uses only two kinds of quantifiers: Universal quantifier and Existential quantifier. 13.5 QUANTIFIERS AND TYPES OF QUANTIFIERS Quantifiers are expressions that state how many of the individuals or objects have the property in question. They do not state which one of the individuals have the property. Prof. Chhanda Chakraborti states that a quantifier consists of: l A left parenthesis or '(' l A quantifier symbol l One of the individual variable symbol Philosophy 49 PDF created with pdfFactory Pro trial version www.pdffactory.com Unit 13 Existential and Universal Quantifiers l A right parenthesis or ')' In predicate logic, we have two quantifier symbols: l The inverted 'A' or V l And the inverted 'E' or ' $ ' The quantifiers provide us a way to symbolise quantity terms such as 'all', 'some', 'every', 'none' which occur in the propositions. Predicate logic uses two types of quantifiers: Universal Quantifier and Existential Quantifier. Universal quantifier: The expression "given any x", or "for all x" or "for any x" or "for every x" is known as universal quantifier. Universal quantifier is used to assert that all entities have a certain property or properties. Thus it yields a universal proposition when prefixed to a propositional function. (We have already discussed about propositional function in the chapter: 11) The symbol used for universal quantifier is: '(Vx)'. The symbol '(Vx)' consists of all the components of a quantifier. First it is enclosed within a pair of parentheses. Secondly, it is expressed with an individual variable 'x'. Thirdly, it stands for 'for all x', or 'for any x', or 'for every x', or 'given any x'. But conventionally the symbols '(x)', '(y)', '(z)' are used for this purpose. Hence, universal quantifier is used to symbolise the statements containing the words 'all', 'every', 'each', 'any', and their equivalent expressions. Let us symbolise the proposition 'Everything is movable' in predicate logic step by step. The proposition can be paraphrased as: In the first step, we express it as: For all x, x has the property of being temporary or for all x, x is temporary or 'given any x, x is temporary'. In the second step, we use a predicate symbol to symbolise the property 'being movable'. Here, we can use 'Mx' to symbolise the property 'being movable'. In the third step, the expression 'for all x', which is called universal quantifier is expressed by the quantifier symbol '(x)'. Thus the general proposition 'everything is movable' can be symbolically expressed in predicate logic as follows: (x) Mx Existential quantifier: The expression "there is at least one x" is known as existential quantifier. It is used to assert that some entities or at least one 50 Philosophy PDF created with pdfFactory Pro trial version www.pdffactory.com Existential and Universal Quantifiers Unit 13 entity have a given property. Thus it yields an existential proposition when prefixed to a propositional function. The symbol '?' stands for particular quantity terms such as 'some', 'a few', etc. and their equivalent terms in English. As a quantifier, it is used as '(?x). The symbol '(?x)' stands for the expression "there is at least one x" which is known as the existential quantifier. Let us symbolise the proposition 'Something is solid' by as using the existential quantifier. The proposition may be paraphrased as -There is at least one x such that x is solid. Using the same process as shown above we may symbolise the statement as follows: ( $ x) Sx Similarly, 'Some things are not solid' may be rephrased as 'There is at least one x such that x is not temporary. We put negation sign (~) in the predication part and symbolise the proposition as follows: ( $ x) ~ Sx We have already discussed in the preceding chapter (11.15) that general propositions are different from singular propositions because general propositions contain words signifying quantity. So quantifiers are used to bring out the formal structure of general proposition. CHECK YOUR PROGRESS Q 1: What is quantifier? .................................................................................................................... .................................................................................................................... Q 2: What are the types of quantifier? ....................................................................................................................................................................................................................................
Recommended publications
  • The Family of Lodato Proximities Compatible with a Given Topological Space
    Can. J. Math., Vol. XXVI, No. 2, 1974, pp. 388-404 THE FAMILY OF LODATO PROXIMITIES COMPATIBLE WITH A GIVEN TOPOLOGICAL SPACE W. J. THRON AND R. H. WARREN Compendium. Let (X, $~) be a topological space. By 99?i we denote the family of all Lodato proximities on X which induced". We show that 99? i is a complete distributive lattice under set inclusion as ordering. Greatest lower bound and least upper bound are characterized. A number of techniques for constructing elements of SDîi are developed. By means of one of these construc­ tions, all covers of any member of 99? i can be obtained. Several examples are given which relate 9D?i to the lattice 99? of all compatible proximities of Cech and the family 99?2 of all compatible proximities of Efremovic. The paper concludes with a chart which summarizes many of the structural properties of a», a»! and a»2. 1. Preliminaries and notation. M. W. Lodato in [51 and [6] has studied a symmetric generalized proximity structure (see Definition 1.2). Naimpally and Warrack [8] have called such a structure a Lodato proximity. We shall also use this name. The closure operator induced by a Lodato proximity satisfies the four Kuratowski closure conditions. This paper is primarily concerned with a study of the order structure of the family 99?i of all Lodato proximities which induce the same closure operator on a given set. Lodato characterized the least element in 99?i and those topo­ logical spaces for which 99?i ^ 0. Sharma and Naimpally [9] described the greatest member of 99? 1 and have given two methods for constructing members of 2»i.
    [Show full text]
  • The Default OLP Configuration File Open-Logic-Config.Sty
    The Default OLP Configuration File open-logic-config.sty Open Logic Project 2021-08-12 524d89a Description This file contains all commands and environments that are meant to be configured, changed, or adapted by a user generating their own text based on OLP text. Do not edit this file to customize your OLP-derived text! A file myversion.tex adapted from open-logic-complete.tex (or from any of the contributed example master files) will include myversion-config.sty if it exists. It will do so after it loads this file, so your myversion-config.sty will redefine the defaults. This means you won’t have to include everything, e.g., you can just change some tags and nothing else. You may copy and paste definitions you want to change into that file, or copy thi file, rename it myversion-config.sty and delete anything you’d like to leave as the default. Symbols Formula metavariabes Use the exclamation point symbol ! immediately in front of an uppercase letter in math mode for formula metavariables. By default, !A, !B, . are typeset as ϕ, ψ, χ, . if you use the command \olgreekformulas. If this is not desired, and you’d like A, B, C, . instead, use \ollatinformulas. If you issue \olalphagreekformulas, you’ll get α, β, γ,.... Greek symbols: prefer varphi and varepsilon Logical symbols The following commands are used in the OLP texts for logical symbols. Their definitions can be customized to produce different output. Truth Values • \True defaults to T and \False to F. 1 Other truth values Propositional Constants and Connectives • Falsity is \lfalse and defaults to ⊥.
    [Show full text]
  • Mathematical Symbols
    List of mathematical symbols This is a list of symbols used in all branches ofmathematics to express a formula or to represent aconstant . A mathematical concept is independent of the symbol chosen to represent it. For many of the symbols below, the symbol is usually synonymous with the corresponding concept (ultimately an arbitrary choice made as a result of the cumulative history of mathematics), but in some situations, a different convention may be used. For example, depending on context, the triple bar "≡" may represent congruence or a definition. However, in mathematical logic, numerical equality is sometimes represented by "≡" instead of "=", with the latter representing equality of well-formed formulas. In short, convention dictates the meaning. Each symbol is shown both inHTML , whose display depends on the browser's access to an appropriate font installed on the particular device, and typeset as an image usingTeX . Contents Guide Basic symbols Symbols based on equality Symbols that point left or right Brackets Other non-letter symbols Letter-based symbols Letter modifiers Symbols based on Latin letters Symbols based on Hebrew or Greek letters Variations See also References External links Guide This list is organized by symbol type and is intended to facilitate finding an unfamiliar symbol by its visual appearance. For a related list organized by mathematical topic, see List of mathematical symbols by subject. That list also includes LaTeX and HTML markup, and Unicode code points for each symbol (note that this article doesn't
    [Show full text]
  • Form and Content: an Introduction to Formal Logic
    Connecticut College Digital Commons @ Connecticut College Open Educational Resources 2020 Form and Content: An Introduction to Formal Logic Derek D. Turner Connecticut College, [email protected] Follow this and additional works at: https://digitalcommons.conncoll.edu/oer Recommended Citation Turner, Derek D., "Form and Content: An Introduction to Formal Logic" (2020). Open Educational Resources. 1. https://digitalcommons.conncoll.edu/oer/1 This Book is brought to you for free and open access by Digital Commons @ Connecticut College. It has been accepted for inclusion in Open Educational Resources by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. Form & Content Form and Content An Introduction to Formal Logic Derek Turner Connecticut College 2020 Susanne K. Langer. This bust is in Shain Library at Connecticut College, New London, CT. Photo by the author. 1 Form & Content ©2020 Derek D. Turner This work is published in 2020 under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License. You may share this text in any format or medium. You may not use it for commercial purposes. If you share it, you must give appropriate credit. If you remix, transform, add to, or modify the text in any way, you may not then redistribute the modified text. 2 Form & Content A Note to Students For many years, I had relied on one of the standard popular logic textbooks for my introductory formal logic course at Connecticut College. It is a perfectly good book, used in countless logic classes across the country.
    [Show full text]
  • PART III – Sentential Logic
    Logic: A Brief Introduction Ronald L. Hall, Stetson University PART III – Sentential Logic Chapter 7 – Truth Functional Sentences 7.1 Introduction What has been made abundantly clear in the previous discussion of categorical logic is that there are often trying challenges and sometimes even insurmountable difficulties in translating arguments in ordinary language into standard-form categorical syllogisms. Yet in order to apply the techniques of assessment available in categorical logic, such translations are absolutely necessary. These challenges and difficulties of translation must certainly be reckoned as limitations of this system of logical analysis. At the same time, the development of categorical logic made great advances in the study of argumentation insofar as it brought with it a realization that good (valid) reasoning is a matter of form and not content. This reduction of good (valid) reasoning to formal considerations made the assessment of arguments much more manageable than it was when each and every particular argument had to be assessed. Indeed, in categorical logic this reduction to form yielded, from all of the thousands of possible syllogisms, just fifteen valid syllogistic forms. Taking its cue from this advancement, modern symbolic logic tried to accomplish such a reduction without being hampered with the strict requirements of categorical form. To do this, modern logicians developed what is called sentential logic. As with categorical logic, modern sentential logic reduces the kinds of sentences to a small and thus manageable number. In fact, on the sentential reduction, there are only two basic sentential forms: simple sentences and compound sentences. (Wittgenstein called simple sentences “elementary sentences.”) But it would be too easy to think that this is all there is to it.
    [Show full text]
  • Baronett, Logic (4Th Ed.) Chapter Guide Chapter 7: Propositional Logic the Basic Components of Propositional Logic Are Statement
    Baronett, Logic (4th ed.) Chapter Guide Chapter 7: Propositional Logic The basic components of propositional logic are statements. A. Logical Operators and Translations There are two types of statement: simple and complex, or compound. A simple statement is one that does not contain another statement as a component. These statements are represented by capital letters A to Z. A compound statement contains at least one simple statement as a component, along with a logical operator, or connective. There are five compound types represented by logical operators: Compound Type Negation Conjunction Disjunction Conditional Biconditional Operator ~ • v Operator Name Tilde Dot Wedge Horseshoe Triple Bar B. Compound Statements Here are four rules to help organize your thinking about translating complex statements: 1. Remember that every operator except the negation is always placed in between statements. 2. Tilde is always placed to the left of whatever is to be negated. 3. Tilde never goes by itself in between two statements. 4. Parentheses, brackets, and braces are required to eliminate ambiguity in a complex statement. Following these rules assures that a compound statement is a well-formed formula. There is always only one main operator in any statement, and that operator is either one of the four that appear in between statements or the tilde that appears in front of the statement that is negated. C. Truth Functions Every simple statement has a truth value: it is either true or false. The truth value of a compound statement is uniquely determined by the meaning of the five operators and the truth values of its component propositions.
    [Show full text]
  • First Lecture on Truth Functional Logic
    !1 First Lecture on Truth Functional Logic —Logic: the study of the proper forms of reasoning. “Analysis and appraisal of arguments.” —Premises vs. conclusion: the premises purport to show that the conclusion is true. —Inductive vs deductive: Inductive arguments attempt to show that the premises make it probable that the conclusion is true. Deductive arguments attempt to show that the truth of the premises guarantees the truth of the conclusion. We will be concerned with deductive arguments in this course. —Validity: The name we give to “successful” deductive arguments. In a valid argument, it is logically impossible for the conclusion to be false if the premises are all true. That is, to assert the joint truth of all the premises and the falsity of the conclusion would be to assert a logical contradiction, something of the form “P and not-P.” —Soundness: A valid argument with all true premises is known as a “sound” argument. But truth or falsity (in this case, of the premises of an argument) is not a matter of logic (unless the premises are either contradictions or tautologies), and so “soundness” is not our main concern in a logic course. (It is up to domains other than logic to determine the truth or falsity of factual propositions.) In logic, we are concerned with the strength of the reasoning, i.e., with whether or not the truth of the premises do indeed establish the truth of the conclusion. It is the role of science (observation and/or common sense) to tell us whether or not the premises are actually true.
    [Show full text]
  • Chapter 6 Test a Except for the Truth Table Questions
    Test 6A Logic Name:______________________________ Chapter 6 Test A Except for the truth table questions (which are double credit), each question is worth 2 points. Write your answer on the form provided. Erasure marks may cause the grading machine to mark your answer wrong. Select the correct translation for the following problems. 1. Either Breitling has a diamond model and Rado advertises a calendar watch or Tissot has luminous hands. a. B ∨ (R • T) b. (B ∨ R) • T c. (B • R) ∨ T d. B • R ∨ T e. B • (R ∨ T) 2. If Movado offers a blue dial, then neither Fossil is water resistant nor Nautica promotes a titanium case. a. M ⊃ (∼F ∨ ∼N) b. M ≡ ∼(F ∨ N) c. M ⊃ (∼F • ∼N) d. M ⊃ ∼(F ∨ N) e. M ⊃ ∼F • ∼N 3. Piaget has a gold watch only if both Seiko has leather bands and Breitling has a diamond model. a. P ⊃ (S • B) b. (S • B) ∨ P c. (S • B) ⊃ P d. (S • B) ≡ P e. S • (B ⊃ P) 4. Gucci features stainless steel; also, Fossil is water resistant given that Cartier offers a stop watch. a. G ∨ (C ⊃ F) b. (G • C) ⊃ F c. G • (F ⊃ C) d. C ⊃ (G • F) e. G • (C ⊃ F) 1 Test 6A 5. Movado and Nautica offer a black dial if and only if Piaget has a gold watch. a. (M ∨ N) ≡ P b. (M • N) ≡ P c. (M • N) ⊃ P d. P ⊃ (N • N) e. (P ⊃ M) • (P ⊃ N) 6. If Tissot has luminous hands, then if either Rado advertises a calendar model or Fossil is water resistant, then Gucci features stainless steel.
    [Show full text]
  • Logical Operators
    Unit Three: Propositional Logic Welcome to Unit Three! In Unit One, we learned how to determine the validity of arguments by analyzing the relationships between the TERMS in the argument (the subject and predicate terms within the statements; e.g., major term, minor term, middle term). In this unit, we will learn how to determine the validity of arguments by analyzing the relationships between the STATEMENTS or PROPOSITIONS in the argument. This sort of logic is called “propositional logic”. Let’s get started. 6.1 Symbols and Translation In unit 1, we learned what a “statement” is. Recall that a statement is just a proposition that asserts something that is either true or false. For instance, these are propositions: “All kittens are cute.” ; “I like pizza.” ; “The sky is blue.” ; “Triangles have three sides.” These are “simple statements”. But, statements can be a lot more complicated than this. Define a “compound statement” as any proposition which contains either: (a) two or more simple statements, or (b) at least one negated simple statement. For instance: “Peggy is taking Logic and Sue is taking Ethics.” “Chad saw a squirrel today or he saw a deer.” “If it snows today, then we will build a snowman.” “The cookies will turn out right if and only if we bake them at 350 degrees.” “It is not the case that the sun is shining today.” Notice that (with the exception of the last sentence about the sun shining) all of the propositions above include TWO statements. The two statements are connected by what is called an “operator” (in order, they are: “and”, “or”, “if … then”, and “if and only if”).
    [Show full text]
  • Koszul Duality of the Category of Trees and Bar Construction for Operads Muriel Livernet
    Koszul duality of the category of trees and bar construction for operads Muriel Livernet To cite this version: Muriel Livernet. Koszul duality of the category of trees and bar construction for operads. 2011. hal-00566707 HAL Id: hal-00566707 https://hal.archives-ouvertes.fr/hal-00566707 Preprint submitted on 16 Feb 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. KOSZUL DUALITY OF THE CATEGORY OF TREES AND BAR CONSTRUCTION FOR OPERADS MURIEL LIVERNET Abstract. In this paper we study a category of trees TI and prove that it is a Koszul category. Consequences are the interpretation of the reduced bar construction of operads of Ginzburg and Kapranov as the Koszul complex of this category, and the interpretation of operads up to homotopy as a functor from the minimal resolution of TI to the category of graded vector spaces. We compare also three different bar constructions of operads. Two of them have already been compared by Shnider-Von Osdol and Fresse. Introduction The bar construction is an old machinery that applies to different objects, as algebras, monads [11] or categories [13]. Ginzburg and Kapranov built a bar construction BGK for operads in [8], as an analogue of the bar construction for algebras.
    [Show full text]
  • Truth Table Evaluation of Statement Forms
    Truth Table Evaluation of Statement Forms The truth conditions for truth functional statements or statement forms can be evaluated by means of truth tables. A truth table gives an exhaustive list of all possible combinations of truth values for a given statement form. Each row of the table represents one set of possible combinations of truth values. The number of rows in a table is 2n where n= the number of variables in the statement form or number of constants in the statement. Thus a statement form with one variable will have two rows, a statement form with two variables will have four rows, a statement with three variables will have eight rows, etc. The column for the first variable will have the first half T's and the second half F's. The column for the second variable will have the first quarter T's, the second quarter F's, the third quarter T's, and the forth quarter F's. If there are three variables, then the third column will be divided into eighths. This pattern is followed so the column under the last variable alternates T's and F's. The variable columns for a three variable statement form are as follows. p q r T T T T T F T F T T F F F T T F T F F F T F F F In addition to the columns for the variables, there will be columns for each truth functional operator in the statement form. These columns are calculated from the columns for the variables, beginning with the least complex component forms and working toward the more complex forms.
    [Show full text]
  • An Introduction to Logic: from Everyday Life to Formal Systems Albert Mosley Smith College, [email protected]
    Smith ScholarWorks Open Educational Resources: Textbooks Open Educational Resources 2019 An Introduction to Logic: From Everyday Life to Formal Systems Albert Mosley Smith College, [email protected] Eulalio Baltazar Follow this and additional works at: https://scholarworks.smith.edu/textbooks Part of the Logic and Foundations of Mathematics Commons Recommended Citation Mosley, Albert and Baltazar, Eulalio, "An Introduction to Logic: From Everyday Life to Formal Systems" (2019). Open Educational Resources: Textbooks, Smith College, Northampton, MA. https://scholarworks.smith.edu/textbooks/1 This Book has been accepted for inclusion in Open Educational Resources: Textbooks by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] AN INTRODUCTION TO LOGIC FROM EVERYDAY LIFE TO FORMAL SYSTEMS Dr. Albert Mosley Dr. Eulalio Baltazar 2019 Northampton, Massachusetts AN INTRODUCTION TO LOGIC FROM EVERYDAY LIFE TO FORMAL SYSTEMS Dr. Albert Mosley Dr. Eulalio Baltazar © Copyright 2019 Dr. Albert Mosley This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. For more information, visit https://creativecommons.org/licenses/by-nc- sa/4.0/ TABLE OF CONTENTS INTRODUCTION: LANGUAGE AND RATIONALITY i-v CHAPTER 1: THE STRUCTURE OF ARGUMENTS A. Distinguishing Arguments from Non-arguments 1 B. Logic in Everyday Life 13 C. Classical Logic: Categorical …………………………………… ……… ……….....17 D. Refutations 23 E. Validity and Soundness……………………………………………………………… 29 F. Modern Logic: Truth-Functional…… ……………………………………………… 32 G. Refutations 38 H. Validity and Soundness……………………………………….……………………... 44 CHAPTER 2: CLASSICAL LOGIC A. Categorical Propositions…………………………………………………… 47 B. Definitions…………………………………………………………… ………………….53 C. Definition by Genus and Difference…………………………………. ……………..63 D. Translation From Ordinary Language to Formal Logic………………………………… 67 CHAPTER 3: CATEGORICAL INFERENCES A.
    [Show full text]