Australian Beekeeping Guide © 2014 Rural Industries Research and Development Corporation

Total Page:16

File Type:pdf, Size:1020Kb

Australian Beekeeping Guide © 2014 Rural Industries Research and Development Corporation Australian Beekeeping Guide © 2014 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-715-2 ISSN 1440-6845 Australian Beekeeping Guide Publication No. 14/098 Project No. PRJ-007664 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. However, wide dissemination is encouraged. Requests and inquiries concerning reproduction and rights should be addressed to RIRDC Communications on phone 02 6271 4100. Project Manager and Lead Author Russell Goodman Department of Economic Development, Jobs, Transport and Resources (Victoria). Private Bag 15 Ferntree Gully Delivery Centre VIC 3156 Phone: 03 9210 9324 Fax: 03 9210 3521 Email: [email protected] The advice provided in this publication is intended as a source of information only. Always read the label before using any of the products mentioned. RIRDC Contact Details Rural Industries Research and Development Corporation Level 2, 15 National Circuit Barton ACT 2600 PO Box 4776 Kingston ACT 2604 Phone: 02 6271 4100 Fax: 02 6271 4199 Email: [email protected] Web: http://www.rirdc.gov.au Electronically published by RIRDC in January 2015 Print-on-demand by Union Offset Printing, Canberra at www.rirdc.gov.au or phone 1300 634 313 Contents Foreword v Preface vi 1. Introduction to the honey bee 1 Members of the honey bee colony 2 Caste differentiation 4 Life-cycle of bee 4 Workers 5 Worker bee anatomy 6 Pheromones 8 Seasonal size of colonies 8 2. The hive and its components 9 The hive 9 Boxes 9 Bottom boards 10 Hive covers 11 Hive mat 11 Protecting hive components 12 Branding hive components 12 Entrance closures 12 Frames 12 Wiring frames 14 Comb foundation 15 Embedding wire 15 Plastic frames and foundation 16 Queen excluder 16 Hive fastener 17 3. Handling bees and beekeeping safety 18 Bee stings 18 Personal protective equipment 18 Equipment 20 The smoker and safe operation 20 How to handle frames and combs 22 Examining the hive 23 Ideal conditions for examining the hive 24 Safety and beekeeping operations 25 4. How to get bees and increase numbers of colonies 26 Established bee colonies 26 Nucleus colonies 26 Package bees 27 Catching honey bee swarms 27 Increasing the number of colonies 29 Secondhand hive components and empty hives 30 5. Apiary sites and flora 31 Winter site 31 Summer site 32 Private land sites 32 Public land apiary sites 32 Nectar and pollen flora 33 Nectar fermentation 34 Pests that affect flora 34 Hive stocking rates 35 Drifting bees and placement of hives 35 Fire Precautions 35 Identification of apiaries 36 6. Spring management 37 Stores and feeding bees 37 Queens 39 Drone layer queen 40 Laying workers 40 Robber bees 40 Comb replacement 41 Adding a super to a single box hive 41 Swarming 41 Signs of swarming 42 Causes of swarming 42 Reducing the impulse to swarm 43 Division of colonies or artificial swarming 44 Uniting colonies and splits 45 7. Summer operations 47 Preparing hives for transport 47 Transport of hives 47 Moving bees with open entrances 48 Loading bees 49 Moving bees short distances 50 Water for bees 50 Bees hanging out 52 Preparing bees for extreme heat 53 Adding a super for honey production 54 Harvesting honey 54 Removal of bees from honey combs 55 Comb Honey 56 8. Extracting honey 57 Uncapping the comb 57 Honey extractors 59 Processing the honey crop 61 Containers for honey 61 Legal obligations when selling honey 62 Separating cappings and honey 62 Further notes for sideline beekeepers 63 ii Australian Beekeeping Guide 9. Winter management 66 Locality 66 Stores 66 Pollen 67 Winter cluster and space adjustment 67 Hive mats, entrances and moisture 68 Other winter tasks 69 10. Honey 70 How bees make honey 70 Composition of honey 71 Viscosity of honey 71 Granulation of honey 71 Creamed honey 71 Effect of heat on honey 71 Filtration 71 Packaging 72 Honey standard 72 11. Beeswax 73 Properties of beeswax 73 Sources of beeswax 73 Wax moth and small hive beetle 74 Refining wax other than brood combs 74 Solar beeswax melter 75 Uses of beeswax 75 12. Requeening colonies and rearing queen bees 76 Requeening colonies 76 Finding a queen 77 Introducing queens in mailing cages 78 Introducing a queen by uniting colonies 79 Queen rearing 79 Raising queens 80 13. Brood diseases of bees 82 American foulbrood (AFB) 82 European foulbrood disease (EFB) 88 Sacbrood 90 Chalkbrood 91 Stonebrood 92 14. Diseases of adult bees 94 Nosema disease 94 Other adult bee diseases 96 Diagnosis of adult bee disease 97 15. Pests and enemies of bees 98 Wax moth 98 Damage caused by wax moths 99 Control of wax moth 100 Small hive beetle 100 Ants 103 Australian Beekeeping Guide iii Other insects and hive visitors 104 Birds 104 Mice 105 European Wasp 105 16. Parasites of honey bees 107 Varroa mite 107 Braula fly 110 Honey bee tracheal mite 110 Tropilaelaps mite 111 Mellitiphis mite 111 Comparative diagnosis 112 17. Quick problem solving table 113 18. Honey bee pollination 118 Colony stocking rates 119 Preparation of colonies for pollination 120 Pollination contracts 121 19. Legal 124 Registration as a beekeeper 124 Branding hives 124 Disposal of hives 124 Moveable frame hives 124 Notification of bee diseases and pests 125 Exposure of bees to infected hives and equipment 125 Access of bees to honey 125 Interstate movement of bees and used equipment 125 Chemical use and records 125 Codes of practice 126 Packing and selling honey 126 Honey levy 126 Water for bees 126 Smokers and fire 126 Horticultural areas and local laws 126 20. Additional information 127 Beekeeper associations and clubs 127 Australian Honey Bee Industry Council (AHBIC) 127 State and Territory Departments of Primary Industries (or agriculture) 127 Beekeeping journals 127 Books 128 Online publications 128 Glossary 129 Acknowledgements 131 Index 132 iv Australian Beekeeping Guide Foreword Australia’s honey bee and pollination industries make a fundamental contribution to the Australian economy and way of life. Healthy honey bee colonies are necessary for the pollination and economic viability of honey bee dependant horticultural and seed crops. In addition to commercial and sideline beekeeping enterprises, thousands of hobby beekeepers throughout Australia gain considerable recreational pleasure by keeping honey bee colonies. The Rural Industries Research and Development Corporation invests in research and development that is adopted and assists rural industries to be productive, profitable and sustainable. The Corporation seeks to increase knowledge that fosters sustainable, productive new and established rural industries and furthers understanding of national rural issues through research and development in government-industry partnership. The Rural Industries Research and Development Corporation’s Honey Bee and Pollination R&D Program aims to support research, development and extension that will secure a productive, sustainable and more profitable Australian beekeeping industry and secure the pollination of Australian horticultural and agricultural crops. The Australian honey bee and pollination industries face a number of significant and economic challenges, including several biosecurity threats. These include exotic honey bee parasitic mites that occur in neighbouring countries. Their establishment in Australia could put at risk the supply of bee colonies for pollination of crops. This book brings together available basic information about the craft of keeping bees and honey bee biosecurity. It will provide a strong platform for beginner beekeepers to grow their hobby and provide a useful foundation for beekeepers contemplating beekeeping as a sideline or full-time commercial enterprise. RIRDC funding for the production of this book was provided from industry revenue which is matched by funds provided by the Australian Government. Funds were also provided by the Victorian Department of Economic Development, Jobs, Transport and Resources. This book is an addition to RIRDC’s diverse range of over 2000 research publications and forms part of our Honeybee R&D program, which aims to improve the productivity and profitability of the Australian beekeeping industry. Most of RIRDC’s publications are available for viewing, free downloading or purchasing online at www.rirdc.gov.au. Purchases can also be made by phoning 1300 634 313. Craig Burns Managing Director Rural Industries Research and Development Corporation Australian Beekeeping Guide v Preface The first successful introduction of European honey bees (Apis mellifera) into Australia occurred in Sydney in 1822. From that small beginning, there are now over 10,790 registered beekeepers and approximately 563,700 hives kept throughout Australia. Honey bees are kept for the production of honey and beeswax, but most importantly for pollination of honey bee dependant horticultural and seed crops.
Recommended publications
  • Minimizing Honey Bee Exposure to Pesticides1 J
    ENY-162 Minimizing Honey Bee Exposure to Pesticides1 J. D. Ellis, J. Klopchin, E. Buss, L. Diepenbrock, F. M. Fishel, W. H. Kern, C. Mannion, E. McAvoy, L. S. Osborne, M. Rogers, M. Sanford, H. Smith, B. S. Stanford, P. Stansly, L. Stelinski, S. Webb, and A. Vu2 Introduction state, and international partners to identify ways to reduce pesticide exposure to beneficial pollinators, while including Growers and pesticide applicators have a number of options appropriate label restrictions to safeguard pollinators, the when faced with a pest problem: do nothing, or apply environment, and humans. More information can be found some type of cultural, chemical, biological, or physical here: epa.gov/pollinator-protection. The bottom line is that method to mitigate the damage. The action to be taken the label is the law—it must be followed. should be chosen after weighing the risks and benefits of all available options. There are many situations where pest control is necessary and chemical controls must be Pollinator Importance used. Certain chemistries of insecticides, fungicides, and The western honey bee (Apis mellifera, Figure 1) is conceiv- herbicides are known to have negative and long-term ably the most important pollinator in Florida and American impacts on bees, other pollinators, and other beneficial agricultural landscapes (Calderone 2012). Over 50 major arthropods. Fortunately, there are pesticides that have crops in the United States and at least 13 in Florida either minimal impacts on pollinators and beneficial organisms. depend on honey bees for pollination or produce more The pollinator-protection language that is required to be yield when honey bees are plentiful (Delaplane and on US pesticide labels outlines how best to minimize these Mayer 2000).
    [Show full text]
  • Save the Bees Save the Bees
    Unit for week 5 save the bees Save the bees Stresses on the Honey bee Several factors may create stress in the hive, which can cause a decrease in population. Below are some of those possible contributors. All of these effects on the colony can be observed, some more easily than others, in the Observation Hive. VARROA MITES: The Varroa mite is a parasitic, invasive species that was introduced to the United States in the 1980’s . It BEYOND THE originated in Asia and the western honey bee has no resistance. The mated adult female Varroa mites enter the brood cells right before HIVE the bees cap the pupae and feed on the growing bee. The bee will hatch with deformities such as misshapen wings that result in an inability to fly. SMALL HIVE BEETLES: Hive beetles are pests to honey bees. Ask the Audience They entered the United States in the late 90’s. Most strong hives will not be severely affected by the beetle; however, if the hive • Do you know what it feels like beetle becomes too overbearing, the colony will desert the hive. The to be stressed? beetle tunnels in the comb and creates destruction in the storage of honey and pollen. Ways to identify a beetle problem is a smell of • Do you have any pests in your fermented honey, a slimy covering of the comb, and the presence life? of beetle maggots. • Do you have a vegetable DISEASE: although bees keep their hive very clean and try to garden or any flowers in your maintain sanitation as best as possible, there are many pathogens, yard? disease causing microorganisms, which can infect the bees.
    [Show full text]
  • Estimating the Density of Honey Bee (Apis Mellifera) Colonies Using
    Apidologie Original article * INRA, DIB and Springer-Verlag France SAS, part of Springer Nature, 2019 DOI: 10.1007/s13592-019-00671-2 Estimating the density of honey bee (Apis mellifera ) colonies using trapped drones: area sampled and drone mating flight distance Patsavee UTAIPANON , Michael J. HOLMES, Nadine C. CHAPMAN, Benjamin P. OLDROYD Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, University of Sydney, Macleay Building A12, Sydney, NSW 2006, Australia Received 12 December 2018 – Revised 20 April 2019 – Accepted 24 June 2019 Abstract – Reliable information on Western honey bee colony density can be important in a variety of contexts including biosecurity responses, determining the sufficiency of pollinators in an agroecosystem and in determining the impacts of feral honey bees on ecosystems. Indirect methods for estimating colony density based on genetic analysis of sampled males are more feasible and cost efficient than direct observation in the field. Microsatellite genotypes of drones caught using Williams drone trap are used to identify the number of colonies (queens) that contributed drones to a mating lek. From the number of colonies, the density of colonies can be estimated based on assumptions about the area from which drones are drawn. This requires reliable estimates of drone flight distance. We estimated average minimum flight distance of drones from feral colonies along two 7-km transects in Southern NSW, Australia. We found that drones from feral colonies flew at least 3.5 km to drone traps. We then determined that the maximum distance that drones flew from a focal colony to a trap was 3.75 km.
    [Show full text]
  • Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State Adam G
    Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2016 Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State Adam G. Dolezal Iowa State University Jimena Carrillo-Tripp Iowa State University W. Allen Miller Iowa State University, [email protected] Bryony C. Bonning Iowa State University, [email protected] Amy L. Toth IFoowlalo Swta tthie Usn iaverndsit ay,dd amityiontoth@ial wasorktates.e adut: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Agricultural Science Commons, Ecology and Evolutionary Biology Commons, and the Entomology Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/266. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State Abstract As key pollinators, honey bees are crucial to many natural and agricultural ecosystems. An important factor in the health of honey bees is the availability of diverse floral resources. However, in many parts of the world, high-intensity agriculture could result in a reduction in honey bee forage. Previous studies have investigated how the landscape surrounding honey bee hives affects some aspects of honey bee health, but to our knowledge there have been no investigations of the effects of intensively cultivated landscapes on indicators of individual bee health such as nutritional physiology and pathogen loads.
    [Show full text]
  • Honey Bees: a Guide for Veterinarians
    the veterinarian’s role in honey bee health HONEY BEES: A GUIDE FOR VETERINARIANS 01.01.17 TABLE OF CONTENTS Introduction Honey bees and veterinarians Honey bee basics and terminology Beekeeping equipment and terminology Honey bee hive inspection Signs of honey bee health Honey bee diseases Bacterial diseases American foulbrood (AFB) European foulbrood (EFB) Diseases that look like AFB and EFB Idiopathic Brood Disease (IBD) Parasitic Mite Syndrome (PMS) Viruses Paralytic viruses Sacbrood Microsporidial diseases Nosema Fungal diseases Chalkbrood Parasitic diseases Parasitic Mite Syndrome (PMS) Tracheal mites Small hive beetles Tropilaelaps species Other disease conditions Malnutrition Pesticide toxicity Diploid drone syndrome Overly hygienic hive Drone-laying queen Laying Worker Colony Collapse Disorder Submission of samples for laboratory testing Honeybee Flowchart (used with permission from One Health Veterinary Consulting, Inc.) Additional Resources Acknowledgements © American Veterinary Medical Association 2017. This information has not been approved by the AVMA Board of Directors or the House of Delegates, and it is not to be construed as AVMA policy nor as a definitive statement on the subject, but rather to serve as a resource providing practical information for veterinarians. INTRODUCTION Honey bees weren’t on veterinarians’ radars until the U.S. Food and Drug Administration issued a final Veterinary Feed Directive (VFD) rule, effective January 1, 2017, that classifies honey bees as livestock and places them under the provisions of the VFD. As a result of that rule and changes in the FDA’s policy on medically important antimicrobials, honey bees now fall into the veterinarians’ purview, and veterinarians need to know about their care.
    [Show full text]
  • An Economic Approach to Assess the Annual Stock in Beekeeping Farms: the Honey Bee Colony Inventory Tool
    sustainability Article An Economic Approach to Assess the Annual Stock in Beekeeping Farms: The Honey Bee Colony Inventory Tool Monica Vercelli 1 , Luca Croce 2 and Teresina Mancuso 1,* 1 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Turin, Italy; [email protected] 2 Independent Researcher, Borgata Baratta 27, 10040 Villardora, Turin, Italy; [email protected] * Correspondence: [email protected] Received: 7 October 2020; Accepted: 5 November 2020; Published: 7 November 2020 Abstract: For beekeepers, the beehive stock represents a fundamental means of ensuring the continuity of their activity, whether they are professionals or hobbyists. The evaluation of this asset for economic purposes requires knowledge of the rhythms and adaptations of honey bee colonies during the annual seasons. As in any breeding activity, it is necessary to establish the numerical and economic size of the species bred. Beekeepers are interested in this evaluation to monitor beehive stock. For keeping economic accounts of stock, a specific tool has been developed and proposed, here called the “Honey Bee Colony Inventory (HBCI)”. The HBCI can be used as either a final or preventive scheme to assess the numbers of honey bee colonies and nuclei, and the mortality rate, in order to calculate the monetary value. This tool allows the strength of honey bee colony stocks to be monitored, including fluctuations throughout the year, and will prove useful for determining solutions to maintain or increase how long stocks last. Data can be registered in countries such as Italy where the veterinary authorities request data on the stock owned and its variations.
    [Show full text]
  • Nsw Apiarists' Association Inc
    NSW APIARISTS’ ASSOCIATION INC. Bees and beekeepers are essential for Australia Submission to the Australian Senate Inquiry into: The future of the beekeeping and pollination service industries in Australia To the Senate Standing Committee Please find here the submission from the New South Wales Apiarists’ Association (NSWAA) to the Senate Inquiry: Future of the beekeeping and pollination service industries in Australia. NSWAA is the state peak body for commercial beekeepers, and the Association represents its members to all levels of government. There are currently around 3,000 registered beekeepers in NSW, which represents about 45 per cent of Australia’s beekeeping industry. NSW commercial beekeepers manage over 140,000 hives, but these numbers are declining at an alarming rate – 30% since 2006 – and this is reflected nationally. While the beekeeping industry is a relatively small one, it plays a highly significant role within the agricultural sector of NSW, and more broadly across Australia. Beekeeping is essential not just for honey and other hive products, but also for pollination of the food crops that feed us and our livestock. Most importantly, our industry stands between Australia and a looming food security crisis. However, Australian commercial beekeepers can’t stave off this crisis without assistance. There are three significant threats to our industry, which endanger the vital pollination services provided by beekeepers. These are access to floral resources, pests and diseases, and increasing pressures on the industry’s economic viability. We address these issues in detail below. We would like to thank the Senate Standing Committees on Rural and Regional Affairs and Transport for making available this opportunity to provide you with this submission on the importance of beekeeping and pollination services in Australia.
    [Show full text]
  • Honey Bees Identification, Biology, and Lifecycle Speaker: Donald Joslin  Hive Consists of Three Types of Bees ◦ Queen, Drone and Worker
    Honey Bees Identification, Biology, and Lifecycle Speaker: Donald Joslin Hive consists of three types of bees ◦ Queen, Drone and Worker For Year Color: Ending In: White 1 or 6 Yellow 2 or 7 Red 3 or 8 Green 4 or 9 Blue 5 or 0 Queen Marking Colors Queen Only Fertile female in the Hive Can lay 2000 eggs each day She can live 5 years, 3-years average One per colony usually Mates in flight with 7-150 drones Queen Her thorax is slightly larger No pollen baskets or wax glands Stinger is smoother and curved (and reusable) The Honey Bee Colony Queen Pheromones ◦ The “social glue” of the hive ◦ Gives the colony its identity and temperament ◦ Sends signals to the workers Mates once, in flight, with 7 to 150 drones Lays both fertilized and unfertilized eggs Fertilized eggs become workers or Queens Unfertilized eggs become drones How does an egg become a queen instead of a worker? ◦ Royal Jelly is fed to the larvae for a much longer period of time ◦ Royal Jelly is secreted from the hypopharynx of worker bees Royal Jelly Supercedure Cell (Never cut these unless you have a replacement queen ready) Basic Anatomy Worker ◦ Sterile female ◦ Does the work of the hive ◦ Have specialized body structures Brood food glands – royal jelly Scent glands (pheromones) Wax glands Pollen baskets Barbed stingers – Ouch! The Honey Bee Colony Worker Bees Perform Roles ◦ Nurse ◦ Guard ◦ Forager Castes Worker bees progress through very defined growth stages ◦ When first hatched they become Nurse Bees Clean cells, keeps brood warm, feed larvae Receive
    [Show full text]
  • Effect of Wood Preservative Treatment of Beehives on Honey Bees Ad Hive Products
    1176 J. Agric. Food Chem. 1984. 32, 1176-1180 Effect of Wood Preservative Treatment of Beehives on Honey Bees and Hive Products Martins A. Kalnins* and Benjamin F. Detroy Effects of wood preservatives on the microenvironment in treated beehives were assessed by measuring performance of honey bee (Apis mellifera L.) colonies and levels of preservative residues in bees, honey, and beeswax. Five hives were used for each preservative treatment: copper naphthenate, copper 8-quinolinolate, pentachlorophenol (PCP), chromated copper arsenate (CCA), acid copper chromate (ACC), tributyltin oxide (TBTO), Forest Products Laboratory water repellent, and no treatment (control). Honey, beeswax, and honey bees were sampled periodically during two successive summers. Elevated levels of PCP and tin were found in bees and beeswax from hives treated with those preservatives. A detectable rise in copper content of honey was found in samples from hives treated with copper na- phthenate. CCA treatment resulted in an increased arsenic content of bees from those hives. CCA, TBTO, and PCP treatments of beehives were associated with winter losses of colonies. Each year in the United States, about 4.1 million colo- honey. Harmful effect of arsenic compounds on bees was nies of honey bees (Apis mellifera L.) produce approxi- linked to orchard sprays and emissions from smelters in mately 225 million pounds of honey and 3.4 million pounds a Utah study by Knowlton et al. (1947). An average of of beeswax. This represents an annual income of about approximately 0.1 µg of arsenic trioxide/dead bee was $140 million; the agricultural economy receives an addi- reported.
    [Show full text]
  • Bee Health: the Role of Pesticides
    Bee Health: The Role of Pesticides Renée Johnson Specialist in Agricultural Policy M. Lynne Corn Specialist in Natural Resources Policy February 17, 2015 Congressional Research Service 7-5700 www.crs.gov R43900 Bee Health: The Role of Pesticides Summary Over the past few decades there has been heightened concern about the plight of honey bees as well as other bee species. Given the importance of honey bees and other bee species to food production, many have expressed concern about whether a “pollinator crisis” has been occurring in recent decades. Although honey bee colony losses due to bee pests, parasites, pathogens, and disease are not uncommon, there is the perception that bee health has been declining more rapidly than in prior years, both in the United States and globally. This situation gained increased attention in 2006 as some commercial beekeepers began reporting sharp declines in their honey bee colonies. Because of the severity and unusual circumstances of these colony declines, scientists named this phenomenon colony collapse disorder (CCD). Since then, honey bee colonies have continued to dwindle each year, for reasons not solely attributable to CCD. The U.S. Department of Agriculture (USDA) reports that CCD may not be the only or even the major cause of bee colony losses in recent years. In the United States, USDA estimates of overwinter colony losses from all causes have averaged nearly 30% annually since 2006. The precise reasons for honey bee losses are not yet known. USDA and most scientists working on the subject seem to agree that no research conclusively points to one single cause for the large number of honey bee deaths.
    [Show full text]
  • Massachusetts Beekeepers Association's
    MASSACHUSETTS BEEKEEPERS ASSOCIATION BEST MANAGEMENT PRACTICES Disclaimer This document is intended solely as guidance. This document does not confer, and is not intended to create legal rights or impose legal duties or obligations. The general descriptions provided here reflect the Massachusetts Beekeepers Association’s current views regarding reasonable considerations for safe and healthy management of honeybees in Massachusetts and may not apply to particular situations based on the circumstances. This document may be revised periodically. Introduction It has often been observed that if you ask ten beekeepers the same question, you will get at least ten different answers. This adage reflects, in part, the great diversity of practice that has grown up around beekeeping. For every beginning beekeeper, there is inevitably another beekeeper, whose enthusiasm to share his or her personal observations and techniques provides the spark for the new beekeeper’s own venture into beekeeping. Diversity of ideas and practices among beekeepers is essential to the continued success of honeybees and beekeeping. Yet, it must also be recognized that beekeepers do not exist separately and apart from the communities in which they live, and as beekeeping becomes more popular, particularly in suburban and urban areas, the potential for misunderstandings with neighbors and local officials also grows. Thus, responsible management of one’s hives within the community in which they are located is also essential. For this reason, the Massachusetts Beekeepers Association has developed these Best Management Practices to provide a framework for determining appropriate, site- specific management practices to promote healthy bees and avoid potential conflicts between beekeepers and others.
    [Show full text]
  • BEEKEEPING: General Information by R
    BEEKEEPING: General Information by R. A. Morse and E. J. Dyce A Cornell Cooperative Extension Publication Information Bulletin 90 The New York State College of Agriculture and Life Sciences is a statutory college of the State University, at Cornell University, Ithaca, N.Y. 2 BEEKEEPING: This bulletin provides general informa­ Honey Bee as a Pollinator tion about beekeeping that is not usually General Information included in current publications. Informa­ The pollination of agricultural crops is by R. A. Morse and E. J. Dyce tion on specific beekeeping problems can the most important contribution of honey be obtained by writing to the Office of bees to our national economy. Although Apiculture, Department of Entomology, the value of honey bees for pollination Contents Cornell University, Ithaca, NY 14853. cannot be estimated , it is many times the 2 Extent of Beekeeping Industry total value of both the honey and bees­ wax that they produce . Without cross­ 2 Honey Bee as a Pollinator Extent of Beekeeping Industry pollination many crops would not set seed 3 Who Keeps Bees? or produce fruit. Many insects other than In New York State about 8,500 people the honey bee can carry pollen from one 3 Where Bees Can Be Kept keep at least 125,000 colonies of honey plant to another; but in areas where agri­ 4 A Skilled Occupation bees. The annual production is about 8 culture has been intensified, such as the million pounds of honey and 120,000 fruit areas in New York State, the number 4 How to Acquire a Knowledge of pounds of beeswax.
    [Show full text]