Urinary Expression of Long Non‑Coding RNA TUG1 in Non‑Diabetic Patients with Glomerulonephritides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nuclear and Mitochondrial Genome Defects in Autisms
UC Irvine UC Irvine Previously Published Works Title Nuclear and mitochondrial genome defects in autisms. Permalink https://escholarship.org/uc/item/8vq3278q Journal Annals of the New York Academy of Sciences, 1151(1) ISSN 0077-8923 Authors Smith, Moyra Spence, M Anne Flodman, Pamela Publication Date 2009 DOI 10.1111/j.1749-6632.2008.03571.x License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California THE YEAR IN HUMAN AND MEDICAL GENETICS 2009 Nuclear and Mitochondrial Genome Defects in Autisms Moyra Smith, M. Anne Spence, and Pamela Flodman Department of Pediatrics, University of California, Irvine, California In this review we will evaluate evidence that altered gene dosage and structure im- pacts neurodevelopment and neural connectivity through deleterious effects on synap- tic structure and function, and evidence that the latter are key contributors to the risk for autism. We will review information on alterations of structure of mitochondrial DNA and abnormal mitochondrial function in autism and indications that interactions of the nuclear and mitochondrial genomes may play a role in autism pathogenesis. In a final section we will present data derived using Affymetrixtm SNP 6.0 microar- ray analysis of DNA of a number of subjects and parents recruited to our autism spectrum disorders project. We include data on two sets of monozygotic twins. Col- lectively these data provide additional evidence of nuclear and mitochondrial genome imbalance in autism and evidence of specific candidate genes in autism. We present data on dosage changes in genes that map on the X chromosomes and the Y chro- mosome. -
Analysis of Gene Expression Data for Gene Ontology
ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins. -
Genotyping of Breech Flystrike Resource – Update
Project No: ON-00515 Contract No: PO4500010753 AWI Project Manager: Bridget Peachey Contractor Name: CSIRO Agriculture and Food Prepared by: Dr Sonja Dominik Publication Date: July 2019 Genotyping of breech flystrike resource – update Published by Australian Wool Innovation Limited, Level 6, 68 Harrington Street, THE ROCKS, NSW, 2000 This publication should only be used as a general aid and is not a substitute for specific advice. To the extent permitted by law, we exclude all liability for loss or damage arising from the use of the information in this publication. AWI invests in research, development, innovation and marketing activities along the global supply chain for Australian wool. AWI is grateful for its funding, which is primarily provided by Australian woolgrowers through a wool levy and by the Australian Government which provides a matching contribution for eligible R&D activities © 2019 Australian Wool Innovation Ltd. All rights reserved. Contents Executive Summary .................................................................................................................... 3 1 Introduction/Hypothesis .................................................................................................... 5 2 Literature Review ............................................................................................................... 6 3 Project Objectives .............................................................................................................. 8 4 Success in Achieving Objectives ........................................................................................ -
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d. -
Evaluation of Variability in Human Kidney Organoids
ARTICLES https://doi.org/10.1038/s41592-018-0253-2 Evaluation of variability in human kidney organoids Belinda Phipson 1, Pei X. Er1, Alexander N. Combes1,2, Thomas A. Forbes1,3,4, Sara E. Howden1,2, Luke Zappia1,5, Hsan-Jan Yen1, Kynan T. Lawlor1, Lorna J. Hale1,4, Jane Sun6, Ernst Wolvetang6, Minoru Takasato1,7, Alicia Oshlack1,5 and Melissa H. Little 1,2,4* The utility of human pluripotent stem cell–derived kidney organoids relies implicitly on the robustness and transferability of the protocol. Here we analyze the sources of transcriptional variation in a specific kidney organoid protocol. Although individ- ual organoids within a differentiation batch showed strong transcriptional correlation, we noted significant variation between experimental batches, particularly in genes associated with temporal maturation. Single-cell profiling revealed shifts in neph- ron patterning and proportions of component cells. Distinct induced pluripotent stem cell clones showed congruent transcrip- tional programs, with interexperimental and interclonal variation also strongly associated with nephron patterning. Epithelial cells isolated from organoids aligned with total organoids at the same day of differentiation, again implicating relative matura- tion as a confounder. This understanding of experimental variation facilitated an optimized analysis of organoid-based disease modeling, thereby increasing the utility of kidney organoids for personalized medicine and functional genomics. he ability to derive induced pluripotent stem cells (iPSCs) In this study, we provide a comprehensive transcriptional from the somatic cells of patients1, together with directed dif- and morphological evaluation of our kidney organoid protocol. Tferentiation protocols, provides a capacity to model the cell Applying RNA sequencing (RNA-seq) to 57 whole organoids and types affected by disease. -
Comparison of Orthologs Across Multiple Species by Various Strategies
COMPARISON OF ORTHOLOGS ACROSS MULTIPLE SPECIES BY VARIOUS STRATEGIES BY HUI LIU DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biophysics and Computational Biology in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor Eric Jakobsson, Chair, Director of Research Professor Gene E. Robinson Associate Professor Saurabh Sinha Assistant Professor Jian Ma Abstract Thanks to the improvement of genome sequencing technology, abundant multi-species genomic data now became available and comparative genomics continues to be a fast prospering filed of biological research. Through the comparison of genomes of different organisms, we can understand what, at the molecular level, distinguishes different life forms from each other. It shed light on revealing the evolution of biology. And it also helps to refine the annotations and functions of individual genomes. For example, through comparisons across mammalian genomes, we can give an estimate of the conserved set of genes across mammals and correspondingly, find the species-specific sets of genes or functions. However, comparative genomics can be feasible only if a meaningful classification of genes exists. A natural way to do so is to delineate sets of orthologous genes. However, debates exist about the appropriate way to define orthologs. It is originally defined as genes in different species which derive from speciation events. But such definition is not sufficient to derive orthologous genes due to the complexity of evolutionary events such as gene duplication and gene loss. While it is possible to correctly figure out all the evolutionary events with the true phylogenetic tree, the true phylogenetic tree itself is impractical to be inferred. -
Supplementary Table S2
1-high in cerebrotropic Gene P-value patients Definition BCHE 2.00E-04 1 Butyrylcholinesterase PLCB2 2.00E-04 -1 Phospholipase C, beta 2 SF3B1 2.00E-04 -1 Splicing factor 3b, subunit 1 BCHE 0.00022 1 Butyrylcholinesterase ZNF721 0.00028 -1 Zinc finger protein 721 GNAI1 0.00044 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 GNAI1 0.00049 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 PDE1B 0.00069 -1 Phosphodiesterase 1B, calmodulin-dependent MCOLN2 0.00085 -1 Mucolipin 2 PGCP 0.00116 1 Plasma glutamate carboxypeptidase TMX4 0.00116 1 Thioredoxin-related transmembrane protein 4 C10orf11 0.00142 1 Chromosome 10 open reading frame 11 TRIM14 0.00156 -1 Tripartite motif-containing 14 APOBEC3D 0.00173 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3D ANXA6 0.00185 -1 Annexin A6 NOS3 0.00209 -1 Nitric oxide synthase 3 SELI 0.00209 -1 Selenoprotein I NYNRIN 0.0023 -1 NYN domain and retroviral integrase containing ANKFY1 0.00253 -1 Ankyrin repeat and FYVE domain containing 1 APOBEC3F 0.00278 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3F EBI2 0.00278 -1 Epstein-Barr virus induced gene 2 ETHE1 0.00278 1 Ethylmalonic encephalopathy 1 PDE7A 0.00278 -1 Phosphodiesterase 7A HLA-DOA 0.00305 -1 Major histocompatibility complex, class II, DO alpha SOX13 0.00305 1 SRY (sex determining region Y)-box 13 ABHD2 3.34E-03 1 Abhydrolase domain containing 2 MOCS2 0.00334 1 Molybdenum cofactor synthesis 2 TTLL6 0.00365 -1 Tubulin tyrosine ligase-like family, member 6 SHANK3 0.00394 -1 SH3 and multiple ankyrin repeat domains 3 ADCY4 0.004 -1 Adenylate cyclase 4 CD3D 0.004 -1 CD3d molecule, delta (CD3-TCR complex) (CD3D), transcript variant 1, mRNA. -
Nephrin Mutations Can Cause Childhood-Onset Steroid-Resistant Nephrotic Syndrome
BRIEF COMMUNICATION www.jasn.org Nephrin Mutations Can Cause Childhood-Onset Steroid-Resistant Nephrotic Syndrome Aure´lie Philippe,*† Fabien Nevo,*† Ernie L. Esquivel,*† Dalia Reklaityte,*† ʈ Olivier Gribouval,*† Marie-Jose`phe Teˆte,*‡ Chantal Loirat,§ Jacques Dantal, Michel Fischbach,¶ Claire Pouteil-Noble,** Ste´phane Decramer,†† Martin Hoehne,‡‡ Thomas Benzing,‡‡ Marina Charbit,‡ Patrick Niaudet,*†‡ and Corinne Antignac*†§§ † *Inserm U574, Hoˆpital Necker-Enfants Malades, Universite´ Paris Descartes, Faculte´deMe´ decine Rene´ Descartes, BRIEF COMMUNICATION ‡Pediatric Nephrology and §§Department of Genetics, Hoˆpital Necker-Enfants Malades, Assistance Publique-Hoˆpitaux de Paris, and §Pediatric Nephrology Department, Universite´ Paris VII, Assistance Publique-Hoˆpitaux de Paris, Hoˆpital ʈ Robert Debre´, Paris, ITERT, Department of Nephrology and Clinical Immunology, CHU Nantes, Nantes, ¶Nephrology Dialysis Transplantation Children’s Unit, Hoˆpital de Hautepierre, Strasbourg, **Transplantation and Nephrology Unit, Centre Hospitalier Lyon-Sud, Pierre-Be´nite, and ††Department of Pediatric Nephrology, Hoˆpital des Enfants, and Inserm, U858/I2MR, Department of Renal and Cardiac Remodeling, Toulouse, France; and ‡‡Department of Medicine IV, University of Cologne, Cologne, Germany ABSTRACT Classically, infants with mutations in NPHS1, which encodes nephrin, present with but has since been described in other nephrotic syndrome within the first 3 mo of life (congenital nephrotic syndrome of populations.3–5 Nephrin is a single-pass the Finnish-type), and children with mutations in NPHS2, which encodes podocin, transmembrane protein consisting of present later with steroid-resistant nephrotic syndrome. Recently, however, eight extracellular Ig-like modules, a fi- NPHS2 mutations have been identified in children with congenital nephrotic syn- bronectin type III–like motif, and a cy- drome. Whether NPHS1 mutations similarly account for some cases of childhood tosolic C-terminal tail. -
NPHS2 Antibody (Podocin) (R30382)
NPHS2 Antibody (Podocin) (R30382) Catalog No. Formulation Size R30382 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human, Mouse, Rat Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity Buffer Lyophilized from 1X PBS with 2.5% BSA and 0.025% sodium azide/thimerosal UniProt Q9NP85 Applications Western blot : 0.5-1ug/ml Limitations This NPHS2 antibody is available for research use only. Western blot testing of NPHS2 antibody and rat kidney tissue lysate. Predicted molecular weight ~42kDa. Description NPHS2, also called Podocin (PDCN), is a protein which lines the podocytes and assists in maintaining the barrier at the glomerular basement membrane. NPHS2 is a causative gene for Familial idiopathic nephrotic syndromes, which represents a heterogeneous group of kidney disorders, and include autosomal recessive steroid-resistant nephrotic syndrome, which is characterized by early childhood onset of proteinuria, rapid progression to end-stage renal disease and focal segmental glomerulosclerosis. By positional cloning, it was mapped to 1q25-31. It is almost exclusively expressed in the podocytes of fetal and mature kidney glomeruli, and encodes a new integral membrane protein, podocin, belonging to the stomatin protein family. Boute et al.(2000) found ten different NPHS2 mutations, comprising nonsense, frameshift and missense mutations, to segregate with the disease, demonstrating a crucial role for podocin in the function of the glomerular filtration barrier. Application Notes The stated application concentrations are suggested starting amounts. Titration of the NPHS2 antibody may be required due to differences in protocols and secondary/substrate sensitivity. -
NPHS2 Gene Mutation, Atopy, and Gender As Risk Factors for Steroid-Resistant Nephrotic Syndrome in Indonesians
Paediatrica Indonesiana VOLUME 51 September NUMBER 5 Original Article NPHS2 gene mutation, atopy, and gender as risk factors for steroid-resistant nephrotic syndrome in Indonesians Dedi Rachmadi, Dany Hilmanto, Ponpon Idjradinata, Abdurahman Sukadi Abstract QUHFHQW\HDUVPROHFXODUJHQHWLFVWXGLHVKDYH Background 6WHURLGUHVLVWDQWQHSKURWLFV\QGURPH 6516 RIWHQ EHHQZHOOGHYHORSHGLQFOXGLQJVWXGLHVIRU GHYHORSVLQWRHQGVWDJHUHQDOGLVHDVH3UHYLRXVVWXGLHVKDYH JHQHVLQYROYHGLQWKHSDWKRJHQHVLVRIQHSKURWLF reported that NPHS2JHQHPXWDWLRQJHQGHUDQGDWRSLFKLVWRU\ V\QGURPH2ISDUWLFXODULQWHUHVWLVWKHJHQH DUHULVNIDFWRUVDVVRFLDWHGZLWK6516,QWHUHWKQLFVRFLRFXOWXUDO I DQGHQYLURQPHQWDOGLIIHUHQFHVKDYHDOVREHHQVXJJHVWHGWRDIIHFW encoding a protein that maintains the diaphragm slit WKHVHPXWDWLRQV RISRGRF\WHV*HQHPXWDWLRQDQDO\VLVLVLPSRUWDQW Objective7RDQDO\]HSRVVLEOHULVNIDFWRUVIRU6516LQFOXGLQJ with regards to phenotype and predicting the severity NPHS2JHQHPXWDWLRQV &o7DQGGHO* JHQGHUDQG RIFOLQLFDOPDQLIHVWDWLRQV The NPHS2 gene encodes DWRSLFKLVWRU\LQ,QGRQHVLDQVXEMHFWVZLWK6516 the podocin protein and is located on chromosome Methods$FDVHFRQWUROVWXG\ZLWKVXEMHFWVFRQVLVWLQJRI 6516SDWLHQWVDQGFRQWUROVXEMHFWVZDVXQGHUWDNHQLQ T0XWDWLRQRIWKLVJHQHKDVEHHQDVVRFLDWHG ,QGRQHVLDQWHDFKLQJFHQWUHKRVSLWDOVIURP6HSWHPEHUWR ZLWKSRRUVWHURLGUHVSRQVHLQWUHDWPHQWRIQHSKURWLF 'HFHPEHU$QDO\VLVRIWKHNPHS2JHQHPXWDWLRQLQ V\QGURPH 16 3UHYLRXVVWXGLHVKDYHVKRZQWKDW &o7ZDVSHUIRUPHGE\DPSOLILFDWLRQUHIUDFWRU\PXWDWLRQV\VWHP SRNS patients with an NPHS2JHQHPXWDWLRQKDG SRO\PHUDVHFKDLQUHDFWLRQ $5063&5 ZKLOHWKDWIRUWKH NPHS2JHQHPXWDWLRQLQGHO*ZDVSHUIRUPHGE\UHVWULFWLRQ -
COX5A Plays a Vital Role in Memory Impairment Associated with Brain Aging Via the BDNF/ERK1/2 Signaling Pathway
ORIGINAL RESEARCH published: 10 July 2020 doi: 10.3389/fnagi.2020.00215 COX5A Plays a Vital Role in Memory Impairment Associated With Brain Aging via the BDNF/ERK1/2 Signaling Pathway Yan-Bin Xiyang 1†, Ruan Liu 1, Xu-Yang Wang 2, Shan Li 1, Ya Zhao 1, Bing-Tuan Lu 1, Zhi-Cheng Xiao 3, Lian-Feng Zhang 4, Ting-Hua Wang 1* and Jie Zhang 5*† 1Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China, 2Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People’s Hospital, Shanghai, China, 3Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, VIC, Australia, 4Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing, China, 5Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China Cytochrome c oxidase subunit Va (COX5A) is involved in maintaining normal mitochondrial function. However, little is known on the role of COX5A in the development and progress of Alzheimer’s disease (Martinez-Losa et al., 2018). In this Edited by: study, we established and characterized the genomic profiles of genes expressed Mercè Pallàs, University of Barcelona, Spain in the hippocampus of Senescence-Accelerated Mouse-prone 8 (SAMP8) mice, and Reviewed by: revealed differential expression of COX5A among 12-month-aged SAMP8 mice and Susan Anne Farr, 2-month-aged SAMP8 mice. -
CG/CA Genotypes Represent Novel Markers in the NPHS2 Gene Region Associated with Nephrotic Syndrome
Journal of Genetics (2020)99:33 Ó Indian Academy of Sciences https://doi.org/10.1007/s12041-020-1188-9 (0123456789().,-volV)(0123456789().,-volV) RESEARCH ARTICLE CG/CA genotypes represent novel markers in the NPHS2 gene region associated with nephrotic syndrome LEILA ESMAELI CHAMGORDANI, NASIM EBRAHIMI, FARZANE AMIRMAHANI and SADEQ VALLIAN* Genetics Division, Faculty of Biological Sciences and Technologies, Department of Cellular and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran *For correspondence. E-mail: [email protected]. Received 15 November 2019; revised 10 January 2020; accepted 14 January 2020 Abstract. Nephrotic syndrome (NS) is considered as a primary disease of the kidney that represents a heterogeneous group of glomerular disorders occurring mainly in children. It is generally divided into steroid-sensitive and steroid-resistant forms, depending upon the patient’s response to steroid therapy. Among the genes involved, the NPHS2 gene has been reported as the causative gene in steroid resistant form of nephrotic syndrome. In the present study, heterozygosity rate, allelic frequency and linkage of rs2274625 and rs3829795 markers were investigated in the NPHS2 gene region. To determine the SNP alleles, tetra-primer ARMS PCR was used. After genotyping rs2274625 and rs3829795 polymorphic markers in 120 unrelated individuals and nine trios families, the data were analysed using various computer programs such as UCSC Genome Browser, dbSNP and SNPper. Based on the statistical analysis of the results, for rs2274625 marker, allele frequency for C and T alleles was 97% and 3%, respectively. For rs3829795 marker allele frequency for G and A alleles was 55% and 45%, respectively.