MOMENT of INERTIA Moments of Area

Total Page:16

File Type:pdf, Size:1020Kb

MOMENT of INERTIA Moments of Area MOMENT OF INERTIA Moments of Area Example 1: Pressure on a dam The left figure shows a dam bounding a body of water. Acting at any point is a water pressure which is a force per unit of area Water pressure is a function of both water specific weight (γ ) and water depth (x). The pressure is constant across an area of infinitely small height dx and width 'L' but will vary linearly with height 'x' as p x=⋅x 2 First Moment of Area Assume pressure p(x) is applied to elemental area dA. Element dA is located a distance 'x' below the z-axis. If we multiply this elemental area by distance 'x', we can define elemental moment: dM = x⋅dA or if expressed algebraically M i = x⋅Ai Integrating, we find the statical or first M = x⋅dA moment of area as: ∫A expressed algebraically as M = ∑ x⋅Ai i 3 Second Moment of Area If we take an element of area dA and multiply it by pressure p(x)... ...the elemental force acting on dA is: dF = p x⋅dA If we multiply this elemental moment by its distance 'x' from the z-axis, we have: dF = p x⋅dA The moment of dF about the z-axis is: dM = x⋅dF dM = x⋅⋅x⋅dA = ⋅x 2⋅dA 4 Second Moment of Area If we define γ as a constant and divide it out, we are left with: dM = x⋅ x⋅dA Mathematically, this is a moment of the first moment of area, thus we refer to this as the second moment of area. The moment of the entire distribution is equal to the integral of dM over the entire area. M = dM = x2 dA ∫A ∫A Algebraically, we can replace elemental area dA with some area Ai of finite size. Total moment is then the sum of all individual moments. 2 M = ∑ x ⋅Ai i 5 Second Moment of Area Thus, the second moment of area... ...is often called area moment of inertia due to the similarity to the mathematical form of the integral for the resultant moments of the inertia forces in the case of rotating bodies (i.e.: mass moment of inertia). For our purposes, we will hereafter refer to the second moment of area simply as the moment of inertia As such, the moment of interia is defined as: I = distance 2 dA ∫A An algebraic approximation can be expressed as: 2 I = ∑ distance Ai i 6 Area Moment of Inertia Example 2: Beam Bending - Stress A common application is to determine the internal bending stress in a beam. Such stresses are linear. Analysis of these stresses is a strength of materials topic and does require the moment of inertia of the beam cross section. y This will be addressed in detail in your strength of materials course M⋅y = b I 7 Area Moment of Inertia Example 3: Beam Bending – Deflection Consider bending the same beam in two planes...for example, a 2 x 4 laid across a pair of carpenter's horses. Now try with your own ruler. About which axis is the ruler 'stiffer'? Study the equation for moment of inertia again. I = distance 2 dA ∫A Notice that for a given cross section, it is not area that matters, it is the orientation of the section. 8 Area Moment of Inertia As stated previously, the second moment of area, or area moment of inertia, is given by: I = distance2 dA ∫A Let's consider finding the moment of inertia about some arbitrary 'x' or 'y' axis. Consider cross section below with area 'A'. Elemental area dA is located a Y x distance 'x' from the y-axis and a distance 'y' from the x-axis. Then: dA I = y2 dA y x ∫A 2 I y = ∫ x dA A X The units of moment of inertia will be length to the fourth power such as in4, ft4, mm4, or m4 9 Centroidal Moment of Inertia In most cases, we are interested in the moment of inertia about an x-y axis superimposed on the centroid of the cross section. This is known as the centroidal moment of inertia. Centroidal moments of inertia for simple geometric shapes can be found in many engineering handbooks, on the Internet, and in the appendix of this online text. But before we use such handbook data, let's apply the general equation for moment of inertia to a rectangular cross section. 10 Centroidal Moment of Inertia Consider a rectangle with a base width 'b' and a height 'h'. The application of calculus will yield: y = ⋅ h/2 dA b dy 2 2 I xc =∫ y ⋅dA = ∫ y b⋅dy dy A −h / 2 3 3 y y3 h/ 2 b h −h b⋅h3 h c x = b⋅ ∣ = − = 3 −h/ 2 3 [ 2 2 ] 12 y x dx b dA = h⋅dx b/ 2 2 2 h c I yc =∫ x ⋅dA = ∫ x h⋅dx x A −b/ 2 3 3 x3 b/2 h b −b h⋅b3 = h⋅ ∣ = − = 3 −b/ 2 3 [ 2 2 ] 12 b 11 Centroidal Moment of Inertia We can also estimate the moment of inertia using algebraic methods. By breaking the area into finite sections (lets try four), then the moment of inertia (Ixc only) calculates as: y h Ai = b⋅ 2 4 I xc = y ⋅Ai 2 2 2 2 h/ 4 3h h h h h h 3h h 3h = ⋅b⋅ ⋅b⋅ ⋅b⋅ ⋅b⋅ 8 h/ 4 8 4 8 4 8 4 8 4 h [ ] [ ] [ ] [ ] h 8 h x 2 2 2 2 8 3h h/ 4 3h h h 3h h 8 = ⋅b⋅ [ 8 8 8 8 ] 4 h/ 4 5bh3 b = 64 Note this does not equal the moment of inertia calculated using calculus methods. We can get closer by breaking the area into more and smaller rectangles. 12 Centroidal Moment of Inertia For example, by dividing the rectangle into 8 equal areas, we would calculate the moment of inertia to be: 2 I xc = y ⋅Ai 2 2 2 2 2 2 2 2 7h 5h 3h h h 3h 5h 7h h = ⋅b⋅ [ 16 16 16 16 16 16 16 16 ] 8 168 h2 h 21bh 3 = ⋅b⋅ = 256 8 256 Although much closer to the result obtained through integration, it is still not equal. Although we could continue to divide this rectangle into even smaller areas to refine the solution, it is unneccessary. Integrations have been accomplished for common geometric shapes and are tabulated in the appendix to this online text. 13 Centroidal Moment of Inertia When applying the relationships listed in the appendix, take care to note the location of the x-y coordinate axis. Moments of inertia can be found about any axis one wishes. For example, the moment of inertia of a rectangle about an x-axis depends on the x-axis in which you are interested, the centroidal axis or the base axis. y y' b⋅h3 b3⋅h I = I = x ' 12 y ' 12 h x' b⋅h3 b3⋅h c I = I = x 3 y 3 b x 14.
Recommended publications
  • The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected]
    The University of Akron IdeaExchange@UAkron The Dr. Gary B. and Pamela S. Williams Honors Honors Research Projects College Fall 2017 The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects Part of the Aerospace Engineering Commons, Aviation Commons, Civil and Environmental Engineering Commons, Mechanical Engineering Commons, and the Physics Commons Recommended Citation Koken, Michael, "The Experimental Determination of the Moment of Inertia of a Model Airplane" (2017). Honors Research Projects. 585. http://ideaexchange.uakron.edu/honors_research_projects/585 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. 2017 THE EXPERIMENTAL DETERMINATION OF A MODEL AIRPLANE KOKEN, MICHAEL THE UNIVERSITY OF AKRON Honors Project TABLE OF CONTENTS List of Tables ................................................................................................................................................
    [Show full text]
  • Rotational Motion (The Dynamics of a Rigid Body)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat­ ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de­ scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates.
    [Show full text]
  • Fluid Mechanics
    MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are not familiar with this concept are advised to complete this tutorial before studying either of these areas. In this section you will do the following. Define the centre of area. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas. Derive standard formulae. D.J.Dunn 1 1. CENTROIDS AND FIRST MOMENTS OF AREA A moment about a given axis is something multiplied by the distance from that axis measured at 90o to the axis. The moment of force is hence force times distance from an axis. The moment of mass is mass times distance from an axis. The moment of area is area times the distance from an axis. Fig.1 In the case of mass and area, the problem is deciding the distance since the mass and area are not concentrated at one point. The point at which we may assume the mass concentrated is called the centre of gravity. The point at which we assume the area concentrated is called the centroid. Think of area as a flat thin sheet and the centroid is then at the same place as the centre of gravity. You may think of this point as one where you could balance the thin sheet on a sharp point and it would not tip off in any direction. This section is mainly concerned with moments of area so we will start by considering a flat area at some distance from an axis as shown in Fig.1.2 Fig..2 The centroid is denoted G and its distance from the axis s-s is y.
    [Show full text]
  • Pierre Simon Laplace - Biography Paper
    Pierre Simon Laplace - Biography Paper MATH 4010 Melissa R. Moore University of Colorado- Denver April 1, 2008 2 Many people contributed to the scientific fields of mathematics, physics, chemistry and astronomy. According to Gillispie (1997), Pierre Simon Laplace was the most influential scientist in all history, (p.vii). Laplace helped form the modern scientific disciplines. His techniques are used diligently by engineers, mathematicians and physicists. His diverse collection of work ranged in all fields but began in mathematics. Laplace was born in Normandy in 1749. His father, Pierre, was a syndic of a parish and his mother, Marie-Anne, was from a family of farmers. Many accounts refer to Laplace as a peasant. While it was not exactly known the profession of his Uncle Louis, priest, mathematician or teacher, speculations implied he was an educated man. In 1756, Laplace enrolled at the Beaumont-en-Auge, a secondary school run the Benedictine order. He studied there until the age of sixteen. The nest step of education led to either the army or the church. His father intended him for ecclesiastical vocation, according to Gillispie (1997 p.3). In 1766, Laplace went to the University of Caen to begin preparation for a career in the church, according to Katz (1998 p.609). Cristophe Gadbled and Pierre Le Canu taught Laplace mathematics, which in turn showed him his talents. In 1768, Laplace left for Paris to pursue mathematics further. Le Canu gave Laplace a letter of recommendation to d’Alembert, according to Gillispie (1997 p.3). Allegedly d’Alembert gave Laplace a problem which he solved immediately.
    [Show full text]
  • Bending Stress
    Bending Stress Sign convention The positive shear force and bending moments are as shown in the figure. Figure 40: Sign convention followed. Centroid of an area Scanned by CamScanner If the area can be divided into n parts then the distance Y¯ of the centroid from a point can be calculated using n ¯ Âi=1 Aiy¯i Y = n Âi=1 Ai where Ai = area of the ith part, y¯i = distance of the centroid of the ith part from that point. Second moment of area, or moment of inertia of area, or area moment of inertia, or second area moment For a rectangular section, moments of inertia of the cross-sectional area about axes x and y are 1 I = bh3 x 12 Figure 41: A rectangular section. 1 I = hb3 y 12 Scanned by CamScanner Parallel axis theorem This theorem is useful for calculating the moment of inertia about an axis parallel to either x or y. For example, we can use this theorem to calculate . Ix0 = + 2 Ix0 Ix Ad Bending stress Bending stress at any point in the cross-section is My s = − I where y is the perpendicular distance to the point from the centroidal axis and it is assumed +ve above the axis and -ve below the axis. This will result in +ve sign for bending tensile (T) stress and -ve sign for bending compressive (C) stress. Largest normal stress Largest normal stress M c M s = | |max · = | |max m I S where S = section modulus for the beam. For a rectangular section, the moment of inertia of the cross- 1 3 1 2 sectional area I = 12 bh , c = h/2, and S = I/c = 6 bh .
    [Show full text]
  • Magnetism, Angular Momentum, and Spin
    Chapter 19 Magnetism, Angular Momentum, and Spin P. J. Grandinetti Chem. 4300 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin In 1820 Hans Christian Ørsted discovered that electric current produces a magnetic field that deflects compass needle from magnetic north, establishing first direct connection between fields of electricity and magnetism. P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Biot-Savart Law Jean-Baptiste Biot and Félix Savart worked out that magnetic field, B⃗, produced at distance r away from section of wire of length dl carrying steady current I is 휇 I d⃗l × ⃗r dB⃗ = 0 Biot-Savart law 4휋 r3 Direction of magnetic field vector is given by “right-hand” rule: if you point thumb of your right hand along direction of current then your fingers will curl in direction of magnetic field. current P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Microscopic Origins of Magnetism Shortly after Biot and Savart, Ampére suggested that magnetism in matter arises from a multitude of ring currents circulating at atomic and molecular scale. André-Marie Ampére 1775 - 1836 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Magnetic dipole moment from current loop Current flowing in flat loop of wire with area A will generate magnetic field magnetic which, at distance much larger than radius, r, appears identical to field dipole produced by point magnetic dipole with strength of radius 휇 = | ⃗휇| = I ⋅ A current Example What is magnetic dipole moment induced by e* in circular orbit of radius r with linear velocity v? * 휋 Solution: For e with linear velocity of v the time for one orbit is torbit = 2 r_v.
    [Show full text]
  • Thermodynamics of Spacetime: the Einstein Equation of State
    gr-qc/9504004 UMDGR-95-114 Thermodynamics of Spacetime: The Einstein Equation of State Ted Jacobson Department of Physics, University of Maryland College Park, MD 20742-4111, USA [email protected] Abstract The Einstein equation is derived from the proportionality of entropy and horizon area together with the fundamental relation δQ = T dS connecting heat, entropy, and temperature. The key idea is to demand that this relation hold for all the local Rindler causal horizons through each spacetime point, with δQ and T interpreted as the energy flux and Unruh temperature seen by an accelerated observer just inside the horizon. This requires that gravitational lensing by matter energy distorts the causal structure of spacetime in just such a way that the Einstein equation holds. Viewed in this way, the Einstein equation is an equation of state. This perspective suggests that it may be no more appropriate to canonically quantize the Einstein equation than it would be to quantize the wave equation for sound in air. arXiv:gr-qc/9504004v2 6 Jun 1995 The four laws of black hole mechanics, which are analogous to those of thermodynamics, were originally derived from the classical Einstein equation[1]. With the discovery of the quantum Hawking radiation[2], it became clear that the analogy is in fact an identity. How did classical General Relativity know that horizon area would turn out to be a form of entropy, and that surface gravity is a temperature? In this letter I will answer that question by turning the logic around and deriving the Einstein equation from the propor- tionality of entropy and horizon area together with the fundamental relation δQ = T dS connecting heat Q, entropy S, and temperature T .
    [Show full text]
  • Relationship of Structure and Stiffness in Laminated Bamboo Composites
    Construction and Building Materials 165 (2018) 241–246 Contents lists available at ScienceDirect Construction and Building Materials journal homepage: www.elsevier.com/locate/conbuildmat Technical note Relationship of structure and stiffness in laminated bamboo composites Matthew Penellum a, Bhavna Sharma b, Darshil U. Shah c, Robert M. Foster c,1, ⇑ Michael H. Ramage c, a Department of Engineering, University of Cambridge, United Kingdom b Department of Architecture and Civil Engineering, University of Bath, United Kingdom c Department of Architecture, University of Cambridge, United Kingdom article info abstract Article history: Laminated bamboo in structural applications has the potential to change the way buildings are con- Received 22 August 2017 structed. The fibrous microstructure of bamboo can be modelled as a fibre-reinforced composite. This Received in revised form 22 November 2017 study compares the results of a fibre volume fraction analysis with previous experimental beam bending Accepted 23 December 2017 results. The link between fibre volume fraction and bending stiffness shows that differences previously attributed to preservation treatment in fact arise due to strip thickness. Composite theory provides a basis for the development of future guidance for laminated bamboo, as validated here. Fibre volume frac- Keywords: tion analysis is an effective method for non-destructive evaluation of bamboo beam stiffness. Microstructure Ó 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// Mechanical properties Analytical modelling creativecommons.org/licenses/by/4.0/). Bamboo 1. Introduction produce a building material [5]. Structural applications are cur- rently limited by a lack of understanding of the properties.
    [Show full text]
  • Centrally Loaded Columns
    Ziemian c03.tex V1 - 10/15/2009 4:17pm Page 23 CHAPTER 3 CENTRALLY LOADED COLUMNS 3.1 INTRODUCTION The cornerstone of column theory is the Euler column, a mathematically straight, prismatic, pin-ended, centrally loaded1 strut that is slender enough to buckle without the stress at any point in the cross section exceeding the proportional limit of the material. The buckling load or critical load or bifurcation load (see Chapter 2 for a discussion of the significance of these terms) is defined as π 2EI P = (3.1) E L2 where E is the modulus of elasticity of the material, I is the second moment of area of the cross section about which buckling takes place, and L is the length of the column. The Euler load, P E , is a reference value to which the strengths of actual columns are often compared. If end conditions other than perfectly frictionless pins can be defined mathemat- ically, the critical load can be expressed by π 2EI P = (3.2) E (KL)2 where KL is an effective length defining the portion of the deflected shape between points of zero curvature (inflection points). In other words, KL is the length of an equivalent pin-ended column buckling at the same load as the end-restrained 1Centrally loaded implies that the axial load is applied through the centroidal axis of the member, thus producing no bending or twisting. 23 Ziemian c03.tex V1 - 10/15/2009 4:17pm Page 24 24 CENTRALLY LOADED COLUMNS column. For example, for columns in which one end of the member is prevented from translating with respect to the other end, K can take on values ranging from 0.5 to l.0, depending on the end restraint.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Finite Element Model Calibration of an Instrumented Thirteen-Story Steel Moment Frame Building in South San Fernando Valley, California
    Finite Element Model Calibration of An Instrumented Thirteen-story Steel Moment Frame Building in South San Fernando Valley, California By Erol Kalkan Disclamer The finite element model incuding its executable file are provided by the copyright holder "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage. Acknowledgments Ground motions were recorded at a station owned and maintained by the California Geological Survey (CGS). Data can be downloaded from CESMD Virtual Data Center at: http://www.strongmotioncenter.org/cgi-bin/CESMD/StaEvent.pl?stacode=CE24567. Contents Introduction ..................................................................................................................................................... 1 OpenSEES Model ........................................................................................................................................... 3 Calibration of OpenSEES Model to Observed Response
    [Show full text]
  • The Equation of Radiative Transfer How Does the Intensity of Radiation Change in the Presence of Emission and / Or Absorption?
    The equation of radiative transfer How does the intensity of radiation change in the presence of emission and / or absorption? Definition of solid angle and steradian Sphere radius r - area of a patch dS on the surface is: dS = rdq ¥ rsinqdf ≡ r2dW q dS dW is the solid angle subtended by the area dS at the center of the † sphere. Unit of solid angle is the steradian. 4p steradians cover whole sphere. ASTR 3730: Fall 2003 Definition of the specific intensity Construct an area dA normal to a light ray, and consider all the rays that pass through dA whose directions lie within a small solid angle dW. Solid angle dW dA The amount of energy passing through dA and into dW in time dt in frequency range dn is: dE = In dAdtdndW Specific intensity of the radiation. † ASTR 3730: Fall 2003 Compare with definition of the flux: specific intensity is very similar except it depends upon direction and frequency as well as location. Units of specific intensity are: erg s-1 cm-2 Hz-1 steradian-1 Same as Fn Another, more intuitive name for the specific intensity is brightness. ASTR 3730: Fall 2003 Simple relation between the flux and the specific intensity: Consider a small area dA, with light rays passing through it at all angles to the normal to the surface n: n o In If q = 90 , then light rays in that direction contribute zero net flux through area dA. q For rays at angle q, foreshortening reduces the effective area by a factor of cos(q).
    [Show full text]