Computational Intelligence Based Complex Adaptive System-Of- Systems Architecture Evolution Strategy

Total Page:16

File Type:pdf, Size:1020Kb

Computational Intelligence Based Complex Adaptive System-Of- Systems Architecture Evolution Strategy Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Summer 2015 Computational intelligence based complex adaptive system-of- systems architecture evolution strategy Siddharth Agarwal Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Computer Sciences Commons, Statistics and Probability Commons, and the Systems Engineering Commons Department: Engineering Management and Systems Engineering Recommended Citation Agarwal, Siddharth, "Computational intelligence based complex adaptive system-of-systems architecture evolution strategy" (2015). Doctoral Dissertations. 2401. https://scholarsmine.mst.edu/doctoral_dissertations/2401 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. COMPUTATIONAL INTELLIGENCE BASED COMPLEX ADAPTIVE SYSTEM-OF- SYSTEMS ARCHITECTURE EVOLUTION STRATEGY by SIDDHARTH AGARWAL A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in SYSTEMS ENGINEERING 2015 Approved Cihan H. Dagli, Advisor David Enke Abhjit Gosavi Ruwen Qin Robert Paige 2015 Siddhartha Agarwal All Rights Reserved iii ABSTRACT The dynamic planning for a system-of-systems (SoS) is a challenging endeavor. Large scale organizations and operations constantly face challenges to incorporate new systems and upgrade existing systems over a period of time under threats, constrained budget and uncertainty. It is therefore necessary for the program managers to be able to look at the future scenarios and critically assess the impact of technology and stakeholder changes. Managers and engineers are always looking for options that signify affordable acquisition selections and lessen the cycle time for early acquisition and new technology addition. This research helps in analyzing sequential decisions in an evolving SoS architecture based on the wave model through three key features namely; meta- architecture generation, architecture assessment and architecture implementation. Meta- architectures are generated using evolutionary algorithms and assessed using type II fuzzy nets. The approach can accommodate diverse stakeholder views and convert them to key performance parameters (KPP) and use them for architecture assessment. On the other hand, it is not possible to implement such architecture without persuading the systems to participate into the meta-architecture. To address this issue a negotiation model is proposed which helps the SoS manger to adapt his strategy based on system owners behavior. This work helps in capturing the varied differences in the resources required by systems to prepare for participation. The viewpoints of multiple stakeholders are aggregated to assess the overall mission effectiveness of the overarching objective. A search and rescue mission (SAR) SoS example problem illustrates application of the method. Also a dynamic programing approach can be used for generating meta- architectures based on the wave model. iv ACKNOWLEDGMENTS Foremost, I would like to express my gratitude to my advisor Dr. Cihan H. Dagli for the continuous support of my Ph.D. study and research, for his patience and immense knowledge. Besides my advisor, I would like to thank the rest of my thesis committee: Dr. David Enke, Dr. Abhijit Gosavi, Dr. Ruwen Qin, and Dr. Robert Paige and Louie E. Pape for their encouragement, insightful comments, and hard questions. Most importantly, I would like to thank my wife Neha. Her friendship, care, support, encouragement, patience and unwavering love were undeniably the bedrock upon which the past four years of my life stand. Her immense devotion and love needs no testimony. She has been my motivation and strength since I met her. I am and will forever remain deeply indebted to my parents Mr. Niraj Agarwal and Mrs. Annu Agarwal, for giving birth to me at the first place, for their immeasurable sacrifices, supporting me spiritually and financially throughout my life. They have inculcated in me the right set of values and helped me become a better human being in all walks of life. No achievement for me whether big or small can ever be measured without their greater share of contribution. I wish to thank, my brother-in-law Manjit and his wife Priyanka, my in-laws Shri. Sunil Koolwal and Smt. Kalpana Koolwal, who have brought great joy and satisfaction to my life. Finally I would like to thank my maternal grandmother late Mrs. Usha Mittal for always encouraging and believing in me against all odds. I believe my paternal grandparents late Shri. Prem Chand Agarwal and Smt. Shanta Agarwal have always loved me more than anyone else. Thanks and good wishes to all my SMART lab mates for the stimulating discussions, sleepless nights, and the fun we had. At the same time I would like to thank everyone who has touched me in some way, knowingly or unknowingly, and assisted me reach this mark and I wish them all the best in their future endeavors. This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Systems Engineering Research Center (SERC) under Contract H98230-08-D-0171. SERC is a federally funded University Affiliated Research Center managed by Stevens Institute of Technology. v TABLE OF CONTENTS Page ABSTRACT ....................................................................................................................... iii ACKNOWLEDGMENTS ................................................................................................. iv LIST OF ILLUSTRATIONS ........................................................................................... viii LIST OF TABLES ............................................................................................................. xi SECTION 1. INTRODUCTION ...................................................................................................... 1 1.1 BACKGROUND & MOTIVATION ................................................................... 1 1.2. IMPACT OF THE RESEARCH ......................................................................... 5 1.2.1. Contribution to the State of Systems Engineering Knowledge. ............... 6 1.3. DISSERTATION ORGANIZATION ................................................................ 6 2. LITERATURE REVIEW ON SOS & AUTOMATED NEGOTIATION ................. 8 2.1. SYSTEM-OF-SYSTEMS ................................................................................... 8 2.1.1. Types of System-of-Systems. ................................................................. 10 2.2. LITERATURE REVIEW OF SOS PROJECTS ............................................... 12 2.3. SOS ACQUISITION PROCESS ...................................................................... 15 2.4. ASSESSING SYSTEMS ARCHITECTURE ................................................... 16 2.5. HANDLING MANY OBJECTIVES ................................................................ 17 2.6. AUTOMATED NEGOTIATIONS ................................................................... 19 2.7. IDENTIFYING GAPS IN LITERATURE ....................................................... 22 3. THE INTEGRATED MODEL ................................................................................. 27 3.1. DEFINING THE SOS PROBLEM ................................................................... 27 3.2. INTEGRATED MODEL VARIABLES AND PARAMETERS .................... 30 3.2.1. Wave Model Processes ........................................................................... 31 3.2.2. Flexible Intelligent & Learning Architectures. ...................................... 32 3.3. META-ARCHITECTURE FORMULATION AND GENERATION ............. 37 3.3.1. The Pareto-Box Problem. ....................................................................... 37 3.4. META-ARCHITECTURE ASSESSMENT AND SELECTION .................... 43 3.4.1. Introduction – Fuzzy Logic. ................................................................. .45 vi 3.4.1.1 Type-I fuzzy logic system. ..........................................................46 3.4.1.2 Type-2 fuzzy sets. .......................................................................51 3.5. SOS NEGOTIATION APPROACH................................................................. 55 3.5.1. General Negotiation Protocol ................................................................. 57 3.5.2. Modeling the Opponent .......................................................................... 58 3.5.2.1 Hierarchical clustering. ...............................................................60 3.5.2.2 K-means clustering algorithm. ....................................................62 3.5.2.3 Elbow method. ............................................................................63 3.5.2.4 Training a LVQ network. ............................................................64 3.5.2.5 Radial basis function network. ....................................................66 3.5.3. Making a Decision Based on Current Round of Negotiation ................. 67 3.5.3.1 Ordered weighted averaging operator. ........................................69 3.5.4. Proposing an Offer. ...............................................................................
Recommended publications
  • Managing Requirements for a System of Systems
    Orchestrating a Systems Approach Managing Requirements for a System of Systems Ivy Hooks Compliance Automation, Inc. As we encounter more system of systems (SOS) and more complex SOS, we must consider the changes that will be required of our existing processes. For example, requirements management has been focused on a system or a product. This article looks at how the SOS has evolved, including what parts of requirements management apply to the SOS and where the process will need revision. It also discusses the need for dynamic scope for the SOS and more use of standards to interface the sys- tems. Challenges definitely exist in SOS, not just in the Department of Defense but also in every aspect of the networked world. Our existing requirements management process is necessary, but not sufficient for the SOS. here is much in literature depicting ent data processing systems – one for each new systems to accomplish their mission system of systems (SOS) [1]. I will use satellite program. The person providing without reinventing the wheel or duplicat- theT characteristics Maier [2] has defined the tour had no idea why things were like ing capabilities. Writing requirements to (in boldface below), followed by my sum- they were, but I later talked to a NASA interface to these existing systems is gen- mary of each. headquarters person who explained it very erally straightforward, involving an under- 1. Operational Independence of the clearly. “Of course fewer systems would standing of what the new system must do Individual Systems. If you decom- be better, but we can’t take the risk.
    [Show full text]
  • Emergent Behavior in Systems of Systems John S
    Emergent Behavior in Systems of Systems John S. Osmundson Thomas V. Huynh Department of Information Sciences Department of Systems Engineering Naval Postgraduate School Naval Postgraduate School 1 University Circle 1 University Circle Monterey, CA 93943, USA Monterey, CA 93943, USA [email protected] [email protected] Gary O. Langford Department of Systems Engineering Naval Postgraduate School 1 University Circle Monterey, CA 93943 [email protected] Copyright © 2008 by John Osmundson, Thomas Huynh and Gary Langford. Published and used by INCOSE with permission. Abstract. As the development of systems of systems becomes more important in global ventures, so does the issues of emergent behavior. The challenge for systems engineers is to predict and analyze emergent behavior, especially undesirable behavior, in systems of systems. In this paper we briefly discuss definitions of emergent behavior, describe a large-scale system of system that exhibits emergent behavior, review previous approaches to analyzing emergent behavior, and then present a system modeling and simulation approach that has promise of allowing systems engineers to analyze potential emergent behavior in large scale systems of systems. Introduction Recently there has been increased interest in what has been become known as systems of systems (SoS) and SoS engineering. Examples of SoS are military command, control, computer, communications and information (C4I) systems (Pei 2000), intelligence, surveillance and reconnaissance (ISR) systems (Manthrope 1996), intelligence collection management systems (Osmundson et al 2006a), electrical power distribution systems (Casazza and Delea 2000) and food chains (Neutel 2002.), among others. Much of this current interest in SoS is focused on the desire to integrate existing systems to achieve new capabilities that are unavailable by operation of any of the existing single individual systems.
    [Show full text]
  • Enabling Constructs and Methods from the Field of Engineering Systems
    Architecting the System of Systems Enterprise: Enabling Constructs and Methods from the Field of Engineering Systems The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Rhodes, D.H., A.M. Ross, and D.J. Nightingale. “Architecting the system of systems enterprise: Enabling constructs and methods from the field of engineering systems.” Systems Conference, 2009 3rd Annual IEEE. 2009. 190-195. © Copyright 2009 As Published http://dx.doi.org/10.1109/SYSTEMS.2009.4815796 Publisher Institute of Electrical and Electronics Engineers Version Final published version Citable link http://hdl.handle.net/1721.1/60049 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. IEEE SysCon 2009 —3rd Annual IEEE International Systems Conference, 2009 Vancouver, Canada, March 23–26, 2009 Architecting the System of Systems Enterprise: Enabling Constructs and Methods from the Field of Engineering Systems Donna H. Rhodes, Adam M. Ross, and Deborah J. Nightingale Massachusetts Institute of Technology 77 Massachusetts Avenue, Building E38-572 Cambridge, MA 02139 http://seari.mit.edu Abstract. Engineering systems is a field of scholarship focused on engineering, calling for identifying “Considerations for developing fundamental theories and methods to address the SoS/Enterprise Engineering” as one of six recommended challenges of large-scale complex systems in context of their socio- research initiatives. Experts attending this workshop agreed technical environments. The authors describe facets of their recent that system-of-systems engineering and complex enterprise and ongoing research within the field of engineering systems to engineering present new challenges in identifying and develop constructs and methods for architecting enterprises engaged in system-of-systems (SoS) engineering,.
    [Show full text]
  • System-Of-Systems Viewpoint for System Architecture Documentation
    System-of-Systems Viewpoint for System Architecture Documentation John Klein∗ and Hans van Vliet† VU University, Amsterdam, Netherlands Revised 11 Nov 2017 Abstract Context: The systems comprising a system of systems (SoS) are inde- pendently acquired, operated, and managed. Frequently, the architecture documentation of these existing systems addresses only a stand-alone perspective, and must be augmented to address concerns that arise in the integrated SoS. Objective: We evaluated an architecture documentation viewpoint to address the concerns of a SoS architect about a constituent system, to support SoS design and analysis involving that constituent system. Method: We performed an expert review of documentation produced by applying the viewpoint to a system, using the active review method. Results: The expert panel was able to used a view constructed using the baseline version of the viewpoint to answer questions related to all SoS architect concerns about a constituent system, except for questions concerning the interaction of the constituent system with the platform and network infrastructure. Conclusions: We found that the expert panel was unable to answer certain questions because the baseline version of the viewpoint had a gap in coverage related to relationship of software units of execution (e.g., processes or services) to computers and networks. The viewpoint was revised to add a Deployment Model to address these concerns, and is included in an appendix. arXiv:1801.06837v1 [cs.SE] 21 Jan 2018 Keywords: architecture documentation; system of systems; viewpoint defi- nition; active review; expert panel; design cycle 1 Introduction A system of systems (SoS) is created by composing constituent systems.
    [Show full text]
  • Systems of Systems Engineering and the Internet of Things Or “Your Iot App Is Only As Good As It’S Least Stable Interface”
    Systems of Systems Engineering and the Internet of Things Or “Your IoT App is only as good as it’s least stable interface” GJ Bleakley ([email protected]) M Hause ([email protected]) Elemental Links Agenda • Introduction – What are systems of systems – The IOT as a special class of Systems of System – Perceived approach to developing IOT Systems • Architecture and Engineering the I/IoT – Challenges of I/IoT – IIC Reference Architecture – UAF Elemental Links 2 What is a SoS • A SoS is an integration of a finite number of constituent systems which are independent and operatable, and which are networked together for a period of time to achieve a certain higher goal. (Jamshidi 2009) 3 Systems vs. Enterprise vs. SoS • System Engineering is like specifying a building, e.g. a swimming pool • Enterprise Architecture is like urban planning • – Need for the swimming pool driven by council/government health objectives • The Swimming Pool is only part of the solution • Other means to reach the objective, e.g.. running tracks, cycle lanes • Need to integrate these solutions into existing services • Provide service infrastructure to support and maintain them Elemental• EA Links is about managing and developing Systems of Systems 4 Example: Traffic Management Case Study Scenarios (from DANSE) •Trip Preparations •City traffic – Interactions with other autonomous cars – Interactions with pedestrians – Overtaking Situations •Autonomous Parking •Public Driverless Taxi •PDL back to the airport •Private Car comes home •Billing Elemental Links 5 traits of SoS – Maier (2+3) • Operational independence – The constituent systems can operate independently from the SoS and other systems.
    [Show full text]
  • Systems Engineering Guide: 7 Considerations for Systems Engineering 8 in a System of Systems Environment 9 10 11
    1 2 3 4 5 System of Systems 6 Systems Engineering Guide: 7 Considerations for Systems Engineering 8 in a System of Systems Environment 9 10 11 12 13 14 15 16 17 18 19 20 21 Version 1.0 DRAFT 22 14 December 2007 23 24 25 26 27 28 29 30 Director, Systems and Software Engineering 31 Deputy Under Secretary of Defense (Acquisition and Technology) 32 Office of the Under Secretary of Defense 33 (Acquisition, Technology and Logistics) 34 35 1 36 Preface 37 38 The Department of Defense (DoD) continually seeks to acquire material solutions to 39 address capability needs of the war fighter in military operations and to provide efficient 40 support and readiness in peacetime. A growing number of these capabilities are 41 achieved through a system of systems (SoS) approach. As defined in the DoD Defense 42 Acquisition Guidebook [2004], an SoS is “a set or arrangement of systems that results 43 when independent and useful systems are integrated into a larger system that delivers 44 unique capabilities.” 45 46 Systems engineering (SE) is a key enabler of systems acquisition. SE practices and 47 approaches historically have been described with a single system rather than an SoS in 48 mind. This guide examines the SoS environment as it exists in the DoD today and the 49 challenges it poses for systems engineering. Specifically, the guide addresses the 16 50 DoD Technical Management Processes and Technical Processes presented in the 51 Defense Acquisition Guidebook [2004] Chapter 4 “Systems Engineering” in the context 52 of SoS.
    [Show full text]
  • LNCS 4561, Pp
    Role of Humans in Complexity of a System-of-Systems Daniel DeLaurentis School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA [email protected] Abstract. This paper pursues three primary objectives. First, a brief introduc- tion to system-of-systems is presented in order to establish a foundation for ex- ploration of the role of human system modeling in this context. Second, the sources of complexity related to human participation in a system-of-systems are described and categorized. Finally, special attention is placed upon how this complexity might be better managed by greater involvement of modeling of human behavior and decision-making. The ultimate objective of the research thrust is to better enable success in the various system-of-systems that exist in society. Keywords: system-of-systems, complexity, human behaviors, connectivity. 1 Introduction A system-of-systems (SoS) consist of multiple, heterogeneous, distributed, occasion- ally independently operating systems embedded in networks at multiple levels that evolve over time. While the moniker may be recent, the notion of a “system-of- systems” is not new. There have been and still are numerous examples of collections of systems that rely upon the interaction of multiple, but independently operating, sys- tems. Ground and air transportation, energy, and defense are high profile examples. These existed before the phrase “system-of-systems” entered common use, have been studied extensively through several fields of inquiry, but rarely have been examined as a distinct problem class. In recent years, the formal study of systems-of-systems has increased in importance, driven largely by the defense and aerospace industries, where the government’s procurement approach has changed.
    [Show full text]
  • System of Systems Integration Technology & Experimentation
    System of Systems Integration Technology & Experimentation (SoSITE) Architecting Composable-SoS Configurations Justin Taylor Abstract # 18869 Lockheed Martin Aeronautics 27 October 2016 Skunk Works Program Manager This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Architecting Composable-SoS Configurations A System Architect & Integrator’s Perspective Requirements SoS Allocation System Composition Delivery Requirements Decomposition Source: Systems Engineering Guide for Systems of Systems v1.0, August 2008 • Background: DoD has long relied on tightly integrated weapons platforms using top-down requirements allocation • Challenge for a SoS-Architect: When the environment changes, must employ systems in unplanned ways – Must be able to plug them together – Must have confidence that they satisfy the mission • Implication on Constituent Systems: Must provide broad characterization to support SoS-Architect DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. 2 Integrated Analytic Framework IAF Cost Analytically Multiple Valid Solutions Research Combine to Accomplish the Mission Datasets Increased Autonomy Constructive Military Utility, Cost Leverage Sim Analysis Increased Increased Multi- Quantity
    [Show full text]
  • A Framework for Enterprise Systems Engineering Processes
    A Framework for Enterprise Systems Engineering Processes Dr. Robert S. Swarz Dr. Joseph K. DeRosa Tel: +1 781-271-2847 Tel: +1 781-271-3332 Email: [email protected] Email: [email protected] Fax: +1 781-271-2841 Fax: +1 781-271-3803 The MITRE Corporation 202 Burlington Road Bedford, MA 01730-1420 U.S.A. Abstract: In this paper, we describe how traditional systems engineering processes, such as those delineated in the ANSI//EIA 632 standard, are becoming inadequate for today’s complex systems, in which there is a rich set of interconnections and interrelationships between all of the systems in an enterprise. We further suggest that a new discipline (or an extension of the old discipline) is developing in response, called Enterprise Systems Engineering (ESE). We next explain some salient characteristics of complex adaptive systems and motivate how these properties, such as variation, interaction, and selection can be used to shape the evolution of the enterprise. We outline five important new processes: Technology Planning, Capability-Based Engineering Analysis, Enterprise Architecture, Strategic Technical Planning, and Enterprise Analysis and Assessment that can be used to exercise a degree of control beyond that which can be afforded by traditional means. Key words: Enterprise Systems Engineering, Evolution, Variety, Selection, Process, Enterprise Architecture, Capabilities ICSSEA 2006 Swarz & Derosa 1. INTRODUCTION In 1999, the Electronic Industries Alliance (EIA) published their Processes for Engineering a System. This has become an American National Standard (ANSI/EIA 632), and is consistent with the approach being taken by the International Standards Organization’s standard ISO 15288. In addition, the Institute of Electrical and Electronics Engineers (IEEE) standard 1220 represents an application of EIA 632 to the electronics and electrical industry.
    [Show full text]
  • Mobility Aircraft Interoperability in a Multi
    MOBILITY AIRCRAFT INTEROPERABILITY IN A MULTI-DOMAIN ENVIRONMENT (A/TA SEMINAR BRIEF) Daniel Malloy LM Aero SoSITE Program Manager LM Aero ADP [email protected] Distribution Statement “A” (Approved for Public Release, Distribution Unlimited) REALIZING MULTI-DOMAIN DISTRIBUTED ARCHITECTURE • Multi-Domain Operations (MDO) require increased warfighter speed in DATA TO DECISION - Platforms need to be interoperable in a dynamic Command & Control (C2) architecture - Operations based on heterogenous distributed platforms, sensors, weapons, and applications - Decision making is distributed across the battlespace • Datalink communications, machine-to-machine information exchange, and automated/autonomous decision aids are key enablers for realizing this MDO architecture • USAF is developing and maturing foundational technology through flight test demonstrations to realize MDO sooner than thought possible • Two key MDO enabling technologies: - FLEXIBLE AUTONOMY FRAMEWORK to enable enhanced Situational Awareness (SA) and mission management (C2) with minimum impact on Pilot/Operator workload - “STITCHES” technology developed under DARPA's SoSITE Program to enable interoperability Distribution Statement “A” (Approved for Public Release, Distribution Unlimited) MULTI-DOMAIN OPERATIONS (MDO) VISION Involves Multi-Domain Every Node Connects To Produce High-velocity, Planning…and Execution – Shares – Learns operationally agile ops that present multiple dilemmas for an adversary at an operational tempo they cannot match Multi-Domain Operations: Warfare
    [Show full text]
  • A Model-Based Approach to System-Of-Systems Engineering Via the Yss Tems Modeling Language Kevin Hughes Bonanne Purdue University
    Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations Summer 2014 A Model-Based Approach To System-Of-Systems Engineering Via The ysS tems Modeling Language Kevin Hughes Bonanne Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Part of the Databases and Information Systems Commons Recommended Citation Bonanne, Kevin Hughes, "A Model-Based Approach To System-Of-Systems Engineering Via The ysS tems Modeling Language" (2014). Open Access Theses. 407. https://docs.lib.purdue.edu/open_access_theses/407 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance Kevin H. Bonanne A MODEL-BASED APPROACH TO SYSTEM-OF-SYSTEMS ENGINEERING VIA THE SYSTEMS MODELING LANGUAGE Master of Science in Aeronautics and Astronautics William Crossley Daniel DeLaurentis Saurabh Bagchi C Disclaimer (Graduate School Form ) Daniel DeLaurentis Tom Shih 06/27/2014 A MODEL-BASED APPROACH TO SYSTEM-OF-SYSTEMS ENGINEERING VIA THE SYSTEMS MODELING LANGUAGE AThesis Submitted to the Faculty of Purdue University by Kevin H. Bonanne In Partial Fulfillment of the Requirements for the Degree of Master of Science August 2014 Purdue University West Lafayette, Indiana ii To Tom, Carmella, my friends, and my family iii ACKNOWLEDGMENTS The work in this thesis would not be possible without the guidance of Dr. Daniel DeLaurentis, who has taught me and fostered my development over many years; Dr. William Crossley and Dr. Saurabh Bagchi and Bob Kenley, who served on my committee; Dr. Oleg Sindiy, who mentored me through much of my early career; Dr.
    [Show full text]
  • 18 Systems of Systems Engineering: Basic Concepts, Model-Based
    Systems of Systems Engineering: Basic Concepts, Model-Based Techniques, and Research Directions 18 CLAUS BALLEGAARD NIELSEN, Aarhus University PETER GORM LARSEN, Aarhus University JOHN FITZGERALD, Newcastle University JIM WOODCOCK,UniversityofYork JAN PELESKA, University of Bremen The term “System of Systems” (SoS) has been used since the 1950s to describe systems that are composed of independent constituent systems, which act jointly towards a common goal through the synergism between them. Examples of SoS arise in areas such as power grid technology, transport, production, and military enterprises. SoS engineering is challenged by the independence, heterogeneity, evolution, and emergence properties found in SoS. This article focuses on the role of model-based techniques within the SoS engineering field. A review of existing attempts to define and classify SoS is used to identify several dimensions that characterise SoS applications. The SoS field is exemplified by a series of representative systems selected from the literature on SoS applications. Within the area of model-based techniques the survey specifically reviews the state of the art for SoS modelling, architectural description, simulation, verification, and testing. Finally, the identified dimensions of SoS characteristics are used to identify research challenges and future research areas of model-based SoS engineering. Categories and Subject Descriptors: H.1.1 [Systems and Information Theory]: General Systems The- ory; I.6.0 [Simulation and Modelling]: General; F.4.0 [Mathematical Logic and Formal Languages]: General General Terms: Design, Languages Additional Key Words and Phrases: System of systems, systems engineering, model-based engineering ACM Reference Format: Claus Ballegaard Nielsen, Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, and Jan Peleska.
    [Show full text]