High Performance Marine Vessels Wwwwwwwwwww Liang Yun ● Alan Bliault

Total Page:16

File Type:pdf, Size:1020Kb

High Performance Marine Vessels Wwwwwwwwwww Liang Yun ● Alan Bliault High Performance Marine Vessels wwwwwwwwwww Liang Yun ● Alan Bliault High Performance Marine Vessels Liang Yun Alan Bliault Marine Design and Research A.S Norske Shell Institute of China Sola, Norway Shanghai, China ISBN 978-1-4614-0868-0 e-ISBN 978-1-4614-0869-7 DOI 10.1007/978-1-4614-0869-7 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2012932303 © Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identifi ed as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Speed is not simply about velocity in air or water but should be considered in context with its purpose and the tools available. Until recently in historical terms, the motive power available for travel over the water was manpower itself or wind. Over many centuries sailing vessels have been refi ned so that they could harness more of its power effi ciently, and reach higher into an oncoming wind so as to perform a more direct route to the objective. The wind is not available to order nevertheless, and so “speed” achieved is not constant. The invention of reciprocating engines, initially steam driven, made a step change for maritime transport, just as it did on land a little over two centuries ago. It changed the meaning of speed over water, since not only could a vessel be designed to travel directly to its destination, but also could transport much greater payloads than pos- sible previously, and could deliver independent of the weather environment. In the fi rst century of powered marine craft, speeds increased from around 20 knots to about double that. At such speed, there are challenges even for large craft due to rapid increase of drag on the hull if a boat continues to try to push its way through. The propeller driving such a vessel also loses effi ciency due to a phe- nomenon known as cavitation unless specially designed to harness it. In the early part of the twentieth century, pioneering engineers conquered both problems and developed planing craft that could travel much faster by skimming over the water surface. The racing fraternity that grew in this period took things to the limit and produced craft that were in danger of fl ying if a stray gust of wind should hit. Commercial and military craft have not tested these boundaries quite so close, even though in the last half century service speeds for passenger ferry trans- port have doubled. The search for more speed—humanity has a tendency always to seek more—has been enabled through increasingly effi cient and lightweight power plants such as high-speed diesels and gas turbine engines, and lighter and stronger structural mate- rials (aluminium alloy, GRP, titanium alloy), that have enabled designers of fast boats, hydrofoils, and air-cushion craft to develop performance close to physical limits of speed in a seaway. v vi Preface In the last 30 years or so, a revolution in electronics has given us the possibility for automated stabilization of motions that was simply not possible before, together with big strides in power plant effi ciency, not to mention satellite navigation. These have been important enablers to comfort at higher speed and high-speed vessel development. A series of new variations of high-speed craft or high-performance marine vessels (HPMV) have been developed in the last half century, including improved planing monohull craft from the 1940s, hydrofoils from the 1950s air-cushion vehi- cles and surface effect ships from the 1960s, small water plane area twin hull craft from the 1970s, high-speed catamarans from the 1980s, wave piercing craft from the 1990s, high-speed trimarans in the fi rst decade of twenty-fi rst century, and wing in ground effect craft from 1970s to the present. These various concepts and the hybrids that we will describe form an interacting group of vehicle concepts. Designers, scientists, and various organizations both commercial, military and governmental have dedicated resources over the last century, and particularly heav- ily in the last 50 years to fi nd ways that combinations of the hull geometries, hydro- foils, and static or dynamic air cushions can be used to deliver speedy vessels that can perform very challenging missions. This work continues, still strongly driven by military objectives, and increasingly now by energy effi ciency and environmen- tal impact rather than simply the mission envelope defi ned by speed/payload/ environment/range. A product such as a high-speed marine vessel can only be successful if it is able to fulfi l a market requirement in an appropriate way. To deliver people or cargo effi ciently, there must be a timing fi t, often with other transportation linking in at each end of the mission. This applies in the military environment just as much as for Ferries or utility missions. As the other transport elements develop, this also changes the demand for the marine transport and can affect their continued success in ser- vice. Until recently it has been the cost of fuel that has played a large part in HPMV economy. While this continues, the cost inclusive of environmental impact is becom- ing a strong driver to further develop powering effi ciency. Both technology and human society are continually developing. To the present largely fuelled by hydrocarbon-derived energy, this societal development has accel- erated greatly over the past half century as the population has also grown worldwide mainly concentrated around large cities. Fast marine craft have matured, while still having a much wider variety of concepts in use than that available for passenger aircraft that have converged to a narrow variation around a geometrical confi gura- tion and mass production. Maybe this is because the range of applications is much wider for HPMV. It does at least continue to offer opportunities for Aero-Marine Engineers to be involved in a wide range of concepts and challenging operations! In this book, we refer to the craft family as HPMV, as the vessels are not only built for high speed, but may also have other attributes such as amphibious capability (air-cushion vehicles) or extreme seaworthiness (SWATH). Specialists from some countries refer to such craft simply as high-speed craft (HSC); however, the use of HPMV is more common now, and we will use that description and acro- nym in this book. Preface vii The authors have been concerned with HPMV for a long time. Liang Yun has more than 40 years of experience at the Marine Design and Research Institute of China, Shanghai (MARIC), and 20 years plus as the Chairman of HPMV Design subcommittee of the China Society of Naval Architecture and Marine engineering, CSNAME, as well as organizing the annual International HPMV Conference, Shanghai, China for a dozen years. He has been involved in ACV development in China since the very fi rst prototypes were constructed in Harbin in the late 1950s and has been involved to some extent in design of many other vessel types treated here. Alan Bliault has also worked in the ACV industry in its early days as a Naval Architect, but became involved in the offshore oil industry in the early 1980s and so has led a double life since that time, in order to maintain his connections with the world of fast marine craft. Some while ago, we decided to write a series of books on the analysis and design of different HPMV and have completed two on individual craft: “Theory and Design of Air Cushion Craft” (2000); “WIG and Ekranoplan, Ground Effect Technology” (2009) presenting the hydrodynamic and aerodynamic theory behind these two types. This will be followed by volumes on Catamarans/Trimarans and Monohulls/ Hydrofoils in due course. We do feel that many people have a strong interest in this technology, however while many HPMV are in operation in different parts of the world, until now there has not been a single volume giving an overview, discussing the differences and special features between them, as well as the approach to selection taken in various cases for both civil and military applications. So, we present this book entitled “High-Performance Marine Vessels” for reader’s interest. We cover as many HPMV concepts as practical within a single volume, with technical summary descriptions and discussion of the design drivers as an introduc- tion for a wide readership. We include many pictures and fi gures describing the shapes and confi gurations as well as features of various HPMV, together with some tables to introduce the leading particulars of the craft types. Our idea with this book has been to survey HPMV development, the market drivers, and the responses over time of the marine construction industry. The book introduces the HPMV family of craft concepts in Chap. 1 . Chapters 2 – 6 introduce successively the ACV, SES, WIG, Hydrofoils, Monohulls, Catamarans, Wave piercers, and Trimarans. In Chap. 7 hybrid and novel HPMV confi gurations are surveyed.
Recommended publications
  • The Miller Hydrofoil Sailboard
    International Hydrofoil Society Reprint... The Miller Hydrofoil Sailboard For racers of the future, this design provides fast acceleration and a smoother ride on choppy seas Reprinted by permission from the San Francisco Bay Boardsailing Association (SFBA) Newsletter May 1997 <new!> Rich Miller's free 28-page Illustrated Technical Paper: Click Here (Adobe Acrobat file) <new!> Sam Bradfield's, Harken Board Sailing Hydrofoil Pictures, Product Catalog and the Harken Hydrofoil Flight Manual courtesy of a current owner Jonathan Levine. He reports that it was made only briefly by Harken, appearing in their 1986 catalog. They recently told him that they sold somewhere around 50 of them.: Click Here (Adobe Acrobat file) (wnw070911update) See also: Hydrofoil Sailboards, Windsurfers, Surfboards (Last Update 11 Sept 07) Since the beginning, board sailors have been talking about putting hydrofoils on a sailboard, flying up out of the water, getting rid of lots of drag, and going really fast. A few people have taken the idea beyond discussion, writing patents and building prototypes. During the mid-eighties, a hydrofoil designed by Sam Bradfield was sold by the Harken Company. That design consisted of an entire small airplane that was mounted on a fin that attached in the centerboard slot of the original Windsurfer. Although some of the prototypes and the Bradfield-Harken hydrofoil were able to lift the board and rider clear of the water, none delivered performance that even equaled that of the conventional sailboards available at the time. Now there is a hydrofoil sail-board system that may turn the fantasy of great hydrofoil performance into reality.
    [Show full text]
  • HMS Warrior 1860 Points of Interest
    HMS Warrior 1860 Points of interest On the jetty: • Warrior was the first iron-hulled warship. • She was built at Blackwall in London and was launched in 1860. • The figurehead shows a Greek warrior. • It was one of the last to be made – ships now have badges. • Warrior is 418 feet (127.4m) long and 58 feet (17.6m) wide. • Warrior’s displacement (weight) is 9,210 tons! On the upper deck: • Warrior has 3 masts – the foremast, mainmast and the mizzen. • Imagine climbing up to furl the sails - sailors worked in bare feet for better grip. • The ship sailed at night so ropes had to be recognised by touch – hence the phrases “know the ropes”. • There are two funnels – Warrior was powered by a steam engine as well as sails. • The funnels could be lowered (and the propeller raised) when the engine was not in use. • Warrior had a top speed of 17.5 knots (about 20 mph) using both sails and steam. At the very front of the ship. Look through the netting to the black metal grills. • These are the “heads” (toilets) for the men - imagine using them in a gale! Look at the brass strips on the deck by the gun. • These are “racers”. • They made it easier to move the gun so it could be fired from various different positions. On the main (gun) deck • Each set of tables and benches is called a “mess”. • Each “mess” was the living/eating/sleeping/recreation area for 18 men. • Imagine 18 hairy sailors in this space! • Sailors slept in hammocks.
    [Show full text]
  • Trimarans and Outriggers
    TRIMARANS AND OUTRIGGERS Arthur Fiver's 12' fibreglass Trimaran with solid plastic foam floats CONTENTS 1. Catamarans and Trimarans 5. A Hull Design 2. The ROCKET Trimaran. 6. Micronesian Canoes. 3. JEHU, 1957 7. A Polynesian Canoe. 4. Trimaran design. 8. Letters. PRICE 75 cents PRICE 5 / - Amateur Yacht Research Society BCM AYRS London WCIN 3XX UK www.ayrs.org office(S)ayrs .org Contact details 2012 The Amateur Yacht Research Society {Founded June, 1955) PRESIDENTS BRITISH : AMERICAN : Lord Brabazon of Tara, Walter Bloemhard. G.B.E., M.C, P.C. VICE-PRESIDENTS BRITISH : AMERICAN : Dr. C. N. Davies, D.sc. John L. Kerby. Austin Farrar, M.I.N.A. E. J. Manners. COMMITTEE BRITISH : Owen Dumpleton, Mrs. Ruth Evans, Ken Pearce, Roland Proul. SECRETARY-TREASURERS BRITISH : AMERICAN : Tom Herbert, Robert Harris, 25, Oakwood Gardens, 9, Floyd Place, Seven Kings, Great Neck, Essex. L.I., N.Y. NEW ZEALAND : Charles Satterthwaite, M.O.W., Hydro-Design, Museum Street, Wellington. EDITORS BRITISH : AMERICAN : John Morwood, Walter Bloemhard "Woodacres," 8, Hick's Lane, Hythe, Kent. Great Neck, L.I. PUBLISHER John Morwood, "Woodacres," Hythc, Kent. 3 > EDITORIAL December, 1957. This publication is called TRIMARANS as a tribute to Victor Tchetchet, the Commodore of the International MultihuU Boat Racing Association who really was the person to introduce this kind of craft to Western peoples. The subtitle OUTRIGGERS is to include the ddlightful little Micronesian canoe made by A. E. Bierberg in Denmark and a modern Polynesian canoe from Rarotonga which is included so that the type will not be forgotten. The main article is written by Walter Bloemhard, the President of the American A.Y.R.S.
    [Show full text]
  • This Article Covers the Life of Walter Toy, Who, After Many Other Adventures, Wound up in the 16Th Company of the 20Th Engineers at the Age of 54 Years
    This article covers the life of Walter Toy, who, after many other adventures, wound up in the 16th Company of the 20th Engineers at the age of 54 years. Information is from the website of The HMS Ganges Association, a group dedicated to maintaining contact with persons associated with the training ship by the name. (http://www.hmsgangesassoc.org/waltertoy.htm) The Life of a 19th Century Ganges Boy Walter Toy was born on the 1st January 1863 in Budock, only a few miles from the port of Falmouth in Cornwall. His father was a farm laborer, his mother a laundress and he was the fourth of seven children and the second son. After he left school, Walter would only have had about three choices of what to do with his life - to follow his father and work on the land, the hard grind of working in the tin mines, or going to sea. His elder brother by five years, Charles, had already entered the Royal Navy and was a Signalman 2nd Class aboard H.M.S. "Warrior". No doubt Walter worked with his father for a time, but with the example of his brother, and being of age to join the Navy as a Boy, he knew what he wanted to do. The local papers carried advertisements asking boys of 15 to 16 and a half years of age to volunteer for the Royal Navy and they should apply to the Commanding Officer of H.M.S. "Ganges", a boys training ship, then moored in St Just Pool at Mylor, a short distance from Falmouth.
    [Show full text]
  • Ships and Sailors in Early Twentieth-Century Maritime Fiction
    In the Wake of Conrad: Ships and Sailors in Early Twentieth-Century Maritime Fiction Alexandra Caroline Phillips BA (Hons) Cardiff University, MA King’s College, London A Thesis Submitted for the Degree of Doctor of Philosophy Cardiff University 30 March 2015 1 Table of Contents Abstract 3 Acknowledgements 4 Introduction - Contexts and Tradition 5 The Transition from Sail to Steam 6 The Maritime Fiction Tradition 12 The Changing Nature of the Sea Story in the Twentieth Century 19 PART ONE Chapter 1 - Re-Reading Conrad and Maritime Fiction: A Critical Review 23 The Early Critical Reception of Conrad’s Maritime Texts 24 Achievement and Decline: Re-evaluations of Conrad 28 Seaman and Author: Psychological and Biographical Approaches 30 Maritime Author / Political Novelist 37 New Readings of Conrad and the Maritime Fiction Tradition 41 Chapter 2 - Sail Versus Steam in the Novels of Joseph Conrad Introduction: Assessing Conrad in the Era of Steam 51 Seamanship and the Sailing Ship: The Nigger of the ‘Narcissus’ 54 Lord Jim, Steam Power, and the Lost Art of Seamanship 63 Chance: The Captain’s Wife and the Crisis in Sail 73 Looking back from Steam to Sail in The Shadow-Line 82 Romance: The Joseph Conrad / Ford Madox Ford Collaboration 90 2 PART TWO Chapter 3 - A Return to the Past: Maritime Adventures and Pirate Tales Introduction: The Making of Myths 101 The Seduction of Silver: Defoe, Stevenson and the Tradition of Pirate Adventures 102 Sir Arthur Conan Doyle and the Tales of Captain Sharkey 111 Pirates and Petticoats in F. Tennyson Jesse’s
    [Show full text]
  • A „Szőke Tisza” Megmentésének Lehetőségei
    A „SZŐKE TISZA” MEGMENTÉSÉNEK LEHETŐSÉGEI Tájékoztató Szentistványi Istvánnak, a szegedi Városkép- és Környezetvédelmi Bizottság elnökének Összeállította: Dr. Balogh Tamás © 2012.03.27. TIT – Hajózástörténeti, -Modellező és Hagyományőrző Egyesület 2 TÁJÉKOZTATÓ Szentistványi István, a szegedi Városkép- és Környezetvédelmi Bizottság elnöke részére a SZŐKE TISZA II. termesgőzössel kapcsolatban 2012. március 27-én Szentistványi István a szegedi Városkép- és Környezetvédelmi Bizottság elnöke e-mailben kért tájékoztatást Dr. Balogh Tamástól a TIT – Hajózástörténeti, -Modellező és Hagyományőrző Egyesület elnökétől a SZŐKE TISZA II. termesgőzössel kapcsolatban, hogy tájékozódjon a hajó megmentésének lehetőségéről – „akár jelentősebb anyagi ráfordítással, esetleges városi összefogással is”. A megkeresésre az alábbi tájékoztatást adom: A hajó 2012. február 26-án süllyedt el. Azt követően egyesületünk honlapján – egy a hajónak szentelt tematikus aloldalon – rendszeresen tettük közzé a hajóra és a mentésére vonatkozó információkat, képeket, videókat (http://hajosnep.hu/#!/lapok/lap/szoke-tisza-karmentes), amelyekből szinte napi ütemezésben nyomon követhetők a február 26-március 18 között történt események. A honlapon elérhető információkat nem kívánom itt megismételni. Egyebekben a hajó jelentőségéről és az esetleges városi véleménynyilvánítás elősegítésére az alábbiakat tartom szükségesnek kiemelni: I) A hajó jelentősége: Bár a Kulturális Örökségvédelmi Hivatal előtt jelenleg zajlik a hajó örökségi védelembe vételére irányuló eljárás (a hajó örökségi
    [Show full text]
  • Log of Sailing Catamaran Eclipse
    Log of sailing catamaran Eclipse Oct 2002 – Mar 2005 Plymouth UK to Panama Richard Woods Jetti Matzke Table of contents Sailing Maps page 3 Sailing south page 8 Crossing the Atlantic page 10 Barbados and the Grenadines page 13 N Caribbean page 17 The Virgins page 22 Puerto Rico and the Bahamas page 26 SE USA page 32 The Chesapeake page 35 New York and New England page 38 Maine page 40 Bahamas revisited page 44 Cuba page 49 Belize and Guatemala page 56 Land Maps page 64 Land Trips page 66 Bay Islands page 96 Panama page 103 San Blas page 115 Appendix page 125 Photo Albums page 159 2 Sailing Maps Sailing South, Plymouth to Canaries Nov 2002 Crossing the Atlantic Dec 2002 Barbados and the Grenadines Jan 2003 3 The N Caribbean Feb April 2003 The Virgins to Puerto Rico May 2003 Puerto Rico to the Bahamas May June 2003 4 The Bahamas June 2003 SE USA July 2003 5 Chesapeake to Maine and back Jul Sept 2003 Bahamas revisited and Cuba Jan Feb 2004 6 Belize, Guatemala and Bay Islands March Nov 2004 Bay Islands, Vivorillo Cays, Providencia, Panama Dec 2004 7 Sailing South November 2002 I am writing this in the Canary Islands, about 1800 miles from Plymouth, and I see we’ve now been away for exactly 4 weeks. It’s probably no surprise to anyone to learn that leaving the UK at the end of October is not a good idea! During our crossing of the Bay of Biscay we had over 40 knots of wind, but since I have a remote control autopilot we can sit below on watch and still see out all round, which in the cold and rain was great! We arrived in N Spain after a stop in S Brittany and spent a few days cruising (in the rain and to windward - of course!) round the coast to Bayonna.
    [Show full text]
  • Portsmouth Dockyard in the Twentieth Century1
    PART THREE PORTSMOUTH DOCKYARD IN THE TWENTIETH CENTURY1 3.1 INTRODUCTION The twentieth century topography of Portsmouth Dockyard can be related first to the geology and geography of Portsea Island and secondly to the technological development of warships and their need for appropriately sized and furnished docks and basins. In 2013, Portsmouth Naval Base covered 300 acres of land, with 62 acres of basin, 17 dry docks and locks, 900 buildings and 3 miles of waterfront (Bannister, 10 June 2013a). The Portsmouth Naval Base Property Trust (Heritage Area) footprint is 11.25 acres (4.56 hectares) which equates to 4.23% of the land area of the Naval Base or 3.5% of the total Naval Base footprint including the Basins (Duncan, 2013). From 8 or 9 acres in 1520–40 (Oppenheim, 1988, pp. 88-9), the dockyard was increased to 10 acres in 1658, to 95 acres in 1790, and gained 20 acres in 1843 for the steam basin and 180 acres by 1865 for the 1867 extension (Colson, 1881, p. 118). Surveyor Sir Baldwin Wake Walker warned the Admiralty in 1855 and again in 1858 that the harbour mouth needed dredging, as those [ships] of the largest Class could not in the present state of its Channel go out of Harbour, even in the event of a Blockade, in a condition to meet the Enemy, inasmuch as the insufficiency of Water renders it impossible for them to go out of Harbour with all their Guns, Coals, Ammunition and Stores on board. He noted further in 1858 that the harbour itself “is so blocked up by mud that there is barely sufficient space to moor the comparatively small Force at present there,” urging annual dredging to allow the larger current ships to moor there.
    [Show full text]
  • 'The Admiralty War Staff and Its Influence on the Conduct of The
    ‘The Admiralty War Staff and its influence on the conduct of the naval between 1914 and 1918.’ Nicholas Duncan Black University College University of London. Ph.D. Thesis. 2005. UMI Number: U592637 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U592637 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 CONTENTS Page Abstract 4 Acknowledgements 5 Abbreviations 6 Introduction 9 Chapter 1. 23 The Admiralty War Staff, 1912-1918. An analysis of the personnel. Chapter 2. 55 The establishment of the War Staff, and its work before the outbreak of war in August 1914. Chapter 3. 78 The Churchill-Battenberg Regime, August-October 1914. Chapter 4. 103 The Churchill-Fisher Regime, October 1914 - May 1915. Chapter 5. 130 The Balfour-Jackson Regime, May 1915 - November 1916. Figure 5.1: Range of battle outcomes based on differing uses of the 5BS and 3BCS 156 Chapter 6: 167 The Jellicoe Era, November 1916 - December 1917. Chapter 7. 206 The Geddes-Wemyss Regime, December 1917 - November 1918 Conclusion 226 Appendices 236 Appendix A.
    [Show full text]
  • Numerical Modelling of Sailing Hydrofoil Boats
    Bøe, Mikael Numerical Modelling of Sailing Hydrofoil Boats Master’s thesis in Marin Teknikk Supervisor: Steen, Sverre June 2019 Master’s thesis Master’s NTNU Faculty of Engineering Faculty Department of Marine Technology Norwegian University of Science and Technology of Science University Norwegian Bøe, Mikael Numerical Modelling of Sailing Hydrofoil Boats Master’s thesis in Marin Teknikk Supervisor: Steen, Sverre June 2019 Norwegian University of Science and Technology Faculty of Engineering Department of Marine Technology NTNU Trondheim Norwegian University of Science and Technology Department of Marine Technology MASTER THESIS IN MARINE TECHNOLOGY SPRING 2019 FOR Mikael Bøe Numerical modelling of sailing hydrofoil boats High-performance sailing boats are increasingly using hydrofoils to lift the hull out of the water and thereby reduce the total resistance at high speed. For instance have the later America’s Cup yachts been constructed in this way. When predicting the performance of a sailing yacht, it is common determine the condition that balances the aerodynamic forces (mainly on the sails and rig) and the hydrodynamic forces on the hull, keel and rudder. This involves finding the trim, heel, yaw (drift angle), speed and required rudder – often using an iterative procedure. The process is often named Velocity Prediction Process (VPP). Traditionally, hydrodynamic forces have been found by interpolation in a large, multi-dimensional table coming out of an extensive series of captive model tests (using a yacht dynamometer). In the later years, CFD is increasingly used instead of model tests. Aerodynamic forces might be determined in a similar way, using wind tunnel experiments, CFD, or analytics-based calculations.
    [Show full text]
  • Hydrofoil Cruising and Daysailing
    Reprinted from SailTech-89, Proceedings of the Eighteenth Annual Conference on Sailing Technology, Volume 35, pages 29-39. The conference was sponsored by the AIAA and SNAME, and held at Stanford University, October 14-15, 1989. In prior years, these conferences were entitled The Ancient Interface. (Please note a new address for David A. Keiper: 123 South Pacific Street, Cape Girardeau, Missouri 63701.) HYDROFOIL CRUISING AND DAYSAILING David A. Keiper -4'707 Box- 1-8081- -San-Frai+c&eo.i-CA- 9414-8 - Abstract Results of further sea trials of the 31'4'' hydrofoil trimaran "Williwaw" are presented. Modifications for the next hydrofoil cruising yacht are discussed. The design of, and performance results with a 14-foot cartoppable hydrofoil sailboat are presented. 1. INTRODUCTION Francisco Bay, striking while the boat was not moving, led to capsizes. With float-hull buoyancy The design of, and early sea-trial results with the of 40% of loaded weight, the boat had a 31'4" L.O.A. hydrofoil cruising yacht "Williwaw" successful 500-mile shakedown cruise off the were described at Ancient Interface I11 [I]. California coast. However, I still felt there was Some further improvement modifications were too much risk of capsize. On all ocean passages, described at Ancient Interface VI, and movies "Williwaw" had a float-hull buoyancy of about were shown of "Williwaw" in action [2]. Since 60-70% of loaded boat weight. With 20,000 miles that time (1975), there were an additional 12,000 of hydrofoil cruising behind me, I now feel that miles of sea trials, which included both heavy it is safest if float hulls can carry 100% of weather sailing and tradewind sailing, from loaded boat weight.
    [Show full text]
  • A Short History of Timing
    A SHORT HISTORY Contact details: WSSRC OF TIMING PO Box 2 Bordon Hampshire GU35 9JX 40 years of the World Sailing UK Speed Record Council Email: [email protected] PPL Media © IDEC - Francis Joyon (France). Single-handed Around the World Record Holder Cover picture: l’Hydroptère - World Nautical Mile Record Holder, Crossing San Francisco Bay. Alcatraz Island to leeward. Photo: © Christophe Launay INTRODUCTION The integrity of WSSRC has always depended on the skill and hard work of its Commissioners – men and women who seem to spend an inordinate amount of time standing on windswept shores or in icy water while strange sailing craft flash pass. One who has been involved since the very beginning is Michael Ellison who has quite literally spent years of his life ensuring that the right competitor gets the right time and that it is an accurate one. Here’s how he recalls it: Time? A frightening thought - I spent over a year on Fuerteventura alone ! The start was two weeks in Australia for Yellow Pages. A month in California for Longshot, a month or six weeks in Namibia for kites and then Sailrocket each year since 2006 Luderitz only has a small airport, a sign on the gate says “Please hand your guns to a member of staff before boarding the plane”. Usually I am driven from Cape Town or last year from Johannesburg by a competitor. It normally takes over 24 hours flying time to South Africa via the Gulf or via Frankfurt to Windhoek. Two weeks in Tonga (2004) and two weeks in Cape Verde islands clocked up some flying hours plus the driving time down to the numerous early “annual” French events, totting up several months in total at Ste Marie, Fos, Port St Louis, Leucate, etc.
    [Show full text]