Selenothrips Rubrocinctus

Total Page:16

File Type:pdf, Size:1020Kb

Selenothrips Rubrocinctus Index | Glossary A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Selenothrips rubrocinctus Distinguishing features Female macropterous; body blackish-brown, tarsi and apices of tibiae yellow, antennal segments III–IV yellow at base and apex; fore wing dark brown. Antennae 8-segmented, III–IV with long Male and female forked sensorium, III–V with two long dorsal setae, sensorium on VI extending beyond antennal apex. Head with strongly constricted basal neck. pronotum transversely striate. Head, pronotum and pterothorax Metanotum with prominent triangle enclosing transverse lines of sculpture. Fore wing with long costal setae, first and second veins with almost complete setal row. Median tergal setae long; VIII with many discal microtrichia, posteromarginal comb long and regular. Male tergite IX with 3 pairs of prominent thorn-like setae; Meso & metanotum sternites III–VII with small oval pore plate near anterior margin. Antenna Metathoracic V-shaped furca Related species The very dark forewings distinguish this species from most other thrips, and it is the only species recognised in the genus Forewing Selenothrips. A second species, glabratus Priesner that is known only from Africa, is now placed in its own genus, Xestothrips. Biological data Tergites VII–X Adults, larvae and pupae occur together on leaves, and the species breeds on a wide range of unrelated plants that have hard leaves, including Cacao, Persea and Mangifera. Populations increase particularly when plants are water stressed (Fennah, 1965). Distribution data Pantropical, sometimes extending into subtropical areas such as Florida. Family name THRIPIDAE, PANCHAETOTHRIPINAE Species name Selenothrips rubrocinctus (Giard) Original name and synonyms Physopus rubrocincta Giard, 1901: 263 Heliothrips (Selenothrips) decolor Karny, 1911: 179 Heliothrips (Selenothrips) mendax Schmutz, 1913: 994 Brachyurothrips indicus Bagnall, 1926: 98. References ThripsWiki (2020) Thrips Wiki-providing information on the World’s thrips. Available from: http://thrips.info/wiki/Main Page [accessed 28.viii.2019]. Wilson TH (1975) A monograph of the subfamily Panchaetothripinae (Thysanoptera: Thripidae). Memoirs of the American Entomological Institute 23: 1–354. Copyright © 2020. All rights reserved..
Recommended publications
  • Bean Thrips Surveys
    Blackwell Publishing AsiaMelbourne, AustraliaAENAustralian Journal of Entomology1326-6756© 2006 The Authors; Journal compilation © 2006 Australian Entomological SocietyMay 2006452122129Original ArticleSurvey for Caliothrips fasciatus in Australia M S Hoddle et al. Australian Journal of Entomology (2006) 45, 122–129 Populations of North American bean thrips, Caliothrips fasciatus (Pergande) (Thysanoptera: Thripidae: Panchaetothripinae) not detected in Australia Mark S Hoddle,1* Christina D Stosic1 and Laurence A Mound2 1Department of Entomology, University of California, Riverside, CA 92521, USA. 2Australian National Insect Collection, CSIRO Entomology, Canberra, ACT 2601, Australia. Abstract Caliothrips fasciatus is native to the USA and western Mexico and overwintering adults are regular contaminants in the ‘navel’ of navel oranges exported from California, USA to Australia, New Zealand and elsewhere. Due to the long history of regular interceptions of C. fasciatus in Australia, a survey for this thrips was undertaken around airports, seaports, public recreational parks and major agricul- tural areas in the states of Queensland, New South Wales, Victoria, South Australia and Western Australia to determine whether C. fasciatus has successfully invaded Australia. Host plants that are known to support populations of C. fasciatus, such as various annual and perennial agricultural crops, urban ornamentals and weeds along with native Australian flora, were sampled for this thrips. A total of 4675 thrips specimens encompassing at least 76 species from a minimum of 47 genera, and three families were collected from at least 159 plant species in 67 families. Caliothrips striatopterus was collected in Queensland, but the target species, C. fasciatus, was not found anywhere. An undescribed genus of Thripidae, Panchaetothripinae, was collected from ornamental Grevillea (var.
    [Show full text]
  • Selenothrips Rubrocinctus
    Selenothrips rubrocinctus Distinguishing features Female macropterous; body blackish-brown, tarsi and apices of tibiae yellow, antennal segments III–IV yellow at base and apex; forewings dark brown. Antennae 8-segmented, III–IV with long forked sensorium, III–V with two long dorsal setae, sensorium on VI extending beyond antennal apex. Head with strongly constricted basal neck. Pronotum transversely striate. Metanotum Female Female [Timor Leste] with prominent triangle enclosing transverse lines of sculpture. Fore wing with long costal setae, first and second veins with almost complete setal row. Median tergal setae long; VIII with many discal microtrichia, posteromarginal comb long and regular. Male tergite IX with 3 pairs of prominent thorn-like setae; sternites III–VII with small oval pore plate near anterior margin. Related species Head, pronotum and pterothorax Antenna The very dark forewings distinguish this species from most other thrips, and it is the only species recognised in the genus Selenothrips. Biological data Adults, larvae and pupae occur together on leaves, and the species breeds on a wide range of unrelated plants that have hard leaves, including Cacao, Persea Meso & metanotum and Mangifera. Populations increase particularly when plants are water Metathoracic V-shaped furca stressed (Fennah, 1965). Distribution data Forewing Pantropical, sometimes extending into subtropical areas such as Florida; Male and female present in northern Australia (Mound et al., 2012), and also collected in Timor- Leste. Family name THRIPIDAE - PANCHAETOTHRIPINAE Species name Tergites VII–X Selenothrips rubrocinctus (Giard) Original name & synonyms Physopus rubrocincta Giard, 1901 Heliothrips (Selenothrips) decolor Karny, 1911 Heliothrips (Selenothrips) mendax Schmutz, 1913 Brachyurothrips indicus Bagnall, 1926.
    [Show full text]
  • Selenothrips
    Selenothrips Generic diagnosis Female macropterous. Head wider than long, strongly reticulate, not rubrocinctus male & female projecting in front of eyes; ocellar region elevated, occipital ridge absent, cheek constricted at base; three pairs of postocular setae; maxillary palps 2- segmented. Antennae 8-segmented, segment I without paired dorso-apical rubrocinctus head & thoraxrubrocinctus antenna setae; III with sense cone forked, IV with one forked and one simple sense cones. Pronotum with transverse reticulation, no long setae. Mesonotum entire, transverse, anteromedian campaniform sensilla present. Metanotum weakly reticulate medially, with triangle, median setae behind anterior margin, campaniform sensilla present. Fore wing anterior margin fringe cilia shorter than costal setae; first and second veins with complete rows of long setae; clavus with four veinal but no discal setae; posterior margin fringe cilia wavy. Prosternal ferna divided; basantra membranous and rubrocinctus meso & metanota without setae; mesosternal endofurca without spinula, metasternal rubrocinctus tergites VII-X endofurca narrowly U-shaped slightly extending toward mesosternum. Legs without reticulation, tarsi 1-segmented. Tergites with entire craspedum, II- VIII reticulate laterally and on anterior median area; VIII with complete comb; IX with two pairs of campaniform sensilla; X median split complete. rubrocinctus fore wing Sternites with entire craspedum; II–VII with three pairs of posteromarginal setae; VII with two additional small setae. Male sternites III–VII each with one small pore plate. Relationship data Thripidae sub-family Panchaetothripinae: this group is represented widely around the world, particularly in tropical areas, and comprises about 40 genera. This is one of seven genera from Africa that appear to form a distinct clade within the Panchaetothripinae (Mound et al., 2001).
    [Show full text]
  • Thysanoptera: Thripidae) in Iran
    Archive of SID Iranian Journal of Animal Biosystematics (IJAB) Vol.11, No.2, 113-119, 2015 ISSN: 1735-434X (print); 2423-4222 (online) First record of the genus Sericothrips (Thysanoptera: Thripidae) in Iran Poorkashkooli, M. a, Safaralizadeh, M.H. a, Minaei,K. b* a Department of Plant Protection, Faculty of agriculture, Urmia University, Urmia, West Azerbaijan, P.O. Box 57135-165, Iran. b Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran. P. O. Box 7144165186 (Received: 7 September 2015 ; Accepted: 7 November 2015 ) The genus Sericothrips Haliday is reported for the first time from Iran, based on the specimens collected on Lotus sp. and identified as S. bicornis (Karny). This is the third genus of subfamily Sericothripinae in Iran, and illustrations are provided to identify this species. The number of Thysanoptera genera now known from Iran is discussed, as well as the host associations of Iranian Sericothripinae. Key words: Iran, genus, new record, Urmia, thrips. INTRODUCTION Thirteen families of insect order Thysanoptera or thrips are recognized, including 5 known only from fossils (Mound, 2011a). Of the eight living families, the members of family Thripidae have the most close association with plants. In this family, four subfamilies (Dendrothripinae, Panchaetothripinae, Sericothripinae, Thripinae) are recognized. Within Thripinae, most species feed on leaves or pollen although Scolothrips Hinds species exclusively prey on tetranychid mites on various plant leaves (Mound, 2011b; Minaei & Abdolahi, 2015) and Frankliniella occidentalis (Pergande) , F schultzei (Trybom) and Thrips tabaci Lindeman also sometimes feed on mites despite being important pest species (Mound & Teulon, 1995; Wilson et al., 1996).
    [Show full text]
  • Populations of North American Bean Thrips, Caliothrips Fasciatus (Pergande) (Thysanoptera : Thripidae : Panchaetothripinae) Not Detected in Australia
    UC Riverside UC Riverside Previously Published Works Title Populations of North American bean thrips, Caliothrips fasciatus (Pergande) (Thysanoptera : Thripidae : Panchaetothripinae) not detected in Australia Permalink https://escholarship.org/uc/item/2sd0t3xm Journal Australian Journal of Entomology, 45 ISSN 1326-6756 Authors Hoddle, M S Stosic, C D Mound, L A Publication Date 2006 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Blackwell Publishing AsiaMelbourne, AustraliaAENAustralian Journal of Entomology1326-6756© 2006 The Authors; Journal compilation © 2006 Australian Entomological SocietyMay 2006452122129Original ArticleSurvey for Caliothrips fasciatus in Australia M S Hoddle et al. Australian Journal of Entomology (2006) 45, 122–129 Populations of North American bean thrips, Caliothrips fasciatus (Pergande) (Thysanoptera: Thripidae: Panchaetothripinae) not detected in Australia Mark S Hoddle,1* Christina D Stosic1 and Laurence A Mound2 1Department of Entomology, University of California, Riverside, CA 92521, USA. 2Australian National Insect Collection, CSIRO Entomology, Canberra, ACT 2601, Australia. Abstract Caliothrips fasciatus is native to the USA and western Mexico and overwintering adults are regular contaminants in the ‘navel’ of navel oranges exported from California, USA to Australia, New Zealand and elsewhere. Due to the long history of regular interceptions of C. fasciatus in Australia, a survey for this thrips was undertaken around airports, seaports, public recreational parks and major agricul- tural areas in the states of Queensland, New South Wales, Victoria, South Australia and Western Australia to determine whether C. fasciatus has successfully invaded Australia. Host plants that are known to support populations of C. fasciatus, such as various annual and perennial agricultural crops, urban ornamentals and weeds along with native Australian flora, were sampled for this thrips.
    [Show full text]
  • EU Project Number 613678
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................
    [Show full text]
  • Pest Risk Analysis (PRA) of Guava in Bangladesh
    Government of the People’s Republic of Bangladesh Ministry of Agriculture Department of Agricultural Extension Plant Quarantine Wing Strengthening Phytosanitary Capacity in Bangladesh Project Pest Risk Analysis (PRA) of Guava in Bangladesh May 2017 Pest Risk Analysis (PRA) of Guava in Bangladesh Panel of Authors Dr. Sk. Hemayet Hossain - Team Leader Dr. S.M. Abul Hossain - Entomologist Dr. M. Anwar Hossain - Plant Pathologist Md. Lutfor Rahman - Agronomist Reviewed by Md. Ahsanullah Consultant (PRA) Strengthening Phytosanitary Capacity in Bangladesh Project Plant Quarantine Wing Department of Agricultural Extension Khamarbari, Farmgate, Dhaka. May 2017 Submitted By Eusuf and Associates South Avenue Tower (4th Floor, Bloack A) 7 Gulshan Avenue, Dhaka 1212, Bangladesh TeL: +(880-2) 880-2-883-2149, 880-2-883-2169, Fax: +88-02-988-6431 E-mail: [email protected], Website: http//www.eusuf.org FORWARD The Strengthening Phytosanitary Capacity in Bangladesh (SPCB) Project under Plant Quarantine Wing (PQW), Department of Agricultural Extension (DAE), Ministry of Agriculture conducted the study for the “Pest Risk Analysis (PRA) of Guava in Bangladesh” according to the provision of contract agreement signed between SPCB-DAE and Eusuf and Associates (Pvt.) Limited on December 2016. The PRA study is a five month assignment commencing from 1 January 2017 under the SPCB-DAE. The overall objectives of this Pest Risk Analysis are to identify the pests and/or pathways of quarantine concern for a specified area of Guava and evaluate their risk, to identify endangered areas, and if appropriate, to identify risk management options. To carry out the PRA study, the consulting firm conducted field investigations in 67 upazila under 28 major Guava growing districts of Bangladesh.
    [Show full text]
  • AESA Based IPM – Cashewnut
    AESA BASED IPM PACKAGE AESA based IPM – Cashewnut Directorate of Plant Protection National Institute of Plant Health Quarantine and Storage Management N. H. IV, Faridabad, Haryana Rajendranagar, Hyderabad, Telangana Department of Agriculture and Cooperation Ministry of Agriculture Government of India 1 The AESA based IPM - Cashewnut, was compiled by the NIPHM working group under the Chairmanship of Dr. Satyagopal Korlapati, IAS, DG, NIPHM, and guidance of Shri. Utpal Kumar Singh, IAS, JS (PP). The package was developed taking into account the advice of experts listed below on various occasions before finalization. NIPHM Working Group: Chairman : Dr. Satyagopal Korlapati, IAS, Director General Vice-Chairmen : Dr. S. N. Sushil, Plant Protection Advisor : Dr. P. Jeyakumar, Director (PHM) Core Members : 1. Er. G. Shankar, Joint Director (PHE), Pesticide Application Techniques Expertise. 2. Dr. O. P. Sharma, Joint Director (A & AM), Agronomy Expertise. 3. Dr. Dhana Raj Boina, Assistant Director (PHM), Entomology Expertise. 4. Dr. Satish Kumar Sain. Assistant Director (PHM), Pathology Expertise Other Members: 1 Dr. N. Srinivasa Rao, Assistant Director (RPM), Rodent Pest Management Expertise. 2. Dr. B. S. Sunanda, Assistant Scientific Officer (PHM), Nematology Expertise. Contributions by DPPQ&S Experts: 1. Shri. Ram Asre, Additional Plant Protection Advisor (IPM), 2. Dr. K. S. Kapoor, Deputy Director (Entomology), 3. Dr. Sanjay Arya, Deputy Director (Plant Pathology), 4. Dr. Subhash Kumar, Deputy Director (Weed Science) 5. Dr. C. S. Patni, Plant Protection Officer (Plant Pathology) Contributions by External Experts: Information on Region- wise Distribution of Pests Provided by: 2 3 4 5 Contents Cashewnut plant description I. Pests A. Pests of National Significance 1.
    [Show full text]
  • Panchaetothrips Generic Diagnosis Female Macropterous
    Index | Glossary A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Panchaetothrips Generic diagnosis Female macropterous. Head longer than wide, strongly reticulate, not projecting in front of eyes; ocellar region not elevated, occipital ridge present; two pairs of postocular setae; maxillary palps 2-segmented. Antennae 8-segmented, segment I without paired dorso-apical setae; III and IV with sense cones simple or indicus female indicus head & thorax forked, IV with or without extra simple sense cone. Pronotum transversely reticulate, no long setae. Mesonotum entire, reticulate, anteromedian campaniform sensilla absent. Metanotum with median setae behind anterior margin, strongly reticulate medially, campaniform sensilla present. Fore wing first vein with setal row incomplete, second vein row absent; clavus with four veinal but no discal setae; posterior margin fringe cilia indicus tergite II wavy. Prosternal ferna divided; basantra membranous and without setae; mesosternal endofurca without spinula, metasternal endofurca lyre-shaped not extending to mesosternum. Legs strongly reticulate, tarsi 2-segmented. Abdomen swollen and pyriform, tergites with entire craspedum; II anterolaterally with group of closely spaced ridges; III–VIII weakly reticulate laterally; VIII without comb; IX anterior campaniform sensilla present; X strongly tubiform, median split complete. Sternites with entire craspedum, II– VII with three pairs of posteromarginal setae; VII with two additional small setae. Male sternites III–VII each with a transverse linear ridge-like pore plate. Biological data As with other members of the Panchaetothripinae, the species of this genus are all leaf-feeding. Distribution data Distributed across the Palaeotropics, from Africa to The Philippines, northern Australia and southern China.
    [Show full text]
  • A New Species of Heliothrips (Thysanoptera, Panchaetothripinae), Based on Morphological and Molecular Data
    Zootaxa 4638 (1): 143–150 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4638.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:AB4B8D27-115C-4116-B789-EB952A00231A A new species of Heliothrips (Thysanoptera, Panchaetothripinae), based on morphological and molecular data YANLAN XIE1,2,3, LAURENCE A. MOUND4 & HONGRUI ZHANG1,2,5 1Plant Protection College, Yunnan Agricultural University, Kunming, 650201, P.R. China 2State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, P.R. China 3Biotechnology and Engineering College, West Yunnan University, Lincang, 677000, P.R. China 4Australian National Insect Collection, CSIRO, Canberra, Australia 5Correspondence author. E-mail: [email protected] Abstract Heliothrips longisensibilis sp. n. is described from the tropical regions of southern China, Yunnan and Hainan, based on morphology and data from mitochondrial and nuclear genes. However, specimens that are identical in colour and structure are reported from northern Brazil, and this is presumably the area of origin of this new species. The area of origin within South America of the Greenhouse Thrips, Heliothrips haemorrhoidalis, is discussed and remains in doubt. An identification key to the four species of Heliothrips is provided. Key words: Heliothrips longisensibilis, new species, mitochondrial genes (COI), nuclear genes (ITS2+28S+EF-1α) Introduction The greenhouse thrips, Heliothrips haemorrhoidalis, is one of the most well-known species of Thysanoptera and is recorded widely around the world. Despite this, all three species currently included in the genus Heliothrips are presumed to be native to South America (ThripsWiki 2019).
    [Show full text]
  • 1 the RESTRUCTURING of ARTHROPOD TROPHIC RELATIONSHIPS in RESPONSE to PLANT INVASION by Adam B. Mitchell a Dissertation Submitt
    THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell 1 A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology and Wildlife Ecology Winter 2019 © Adam B. Mitchell All Rights Reserved THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell Approved: ______________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: ______________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: ______________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Douglas W. Tallamy, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Charles R. Bartlett, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Jeffery J. Buler, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Redbanded Thrips, Selenothrips Rubrocinctus (Giard) (Insects: Thysanoptera: Thripidae)1 H
    EENY-099 Redbanded Thrips, Selenothrips rubrocinctus (Giard) (Insects: Thysanoptera: Thripidae)1 H. A. Denmark and D. O. Wolfenbarger2 Introduction Synonymy The redbanded thrips, Selenothrips rubrocinctus (Giard), Heliothrips rubrocinctus Giard was first described from Guadeloupe, West Indies, where it was causing considerable damage to cacao. As a result, Physopus rubrocinctus Giard (1901) it was referred to as the cacao or cocoa thrips. The earliest report relating to this thrips was a report by W.E. Broadway Heliothrips (Selenothrips) decolor Karny in 1898, when he called attention to the “blight” of cacao. Heliothrips (Selenothrips) mendex Schmutz Brachyurothrips indicus Bagnall (from Forestry Compendium) Distribution The redbanded thrips is a tropical-subtropical species thought to have originated in northern South America (Chin and Brown 2008) and is found in the following areas: • Asia — China, Malaya, Philippine Islands, Taiwan; • Africa — Bioko, Ghana, Ivory Coast, Nigeria, Principe Island, Sierra Leone, Tanzania, Uganda, Zaire; • Australasia and Pacific Islands — Hawaiian Islands, Mariana Islands, New Caledonia, New Guinea, Papua, Figure 1. Redbanded thrips adult. and Solomon Islands; Credits: James L. Castner, University of Florida • North America — United States (Florida), Mexico; • Central America — Costa Rica, Honduras, Panama; 1. This document is EENY-099 (originally published as DPI Entomology Circular No. 108), one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date June 1999. Revised September 2008 and May 2016. Reviewed February 2019. Visit the EDIS website at https://edis.ifas.ufl.edu. This document is also available on the Featured Creatures website at http://entnemdept.ifas.ufl.edu/creatures/. 2. H. A. Denmark and D.
    [Show full text]