Green Infrastructure Design for Transport Projects: a Road Map To

Total Page:16

File Type:pdf, Size:1020Kb

Green Infrastructure Design for Transport Projects: a Road Map To GREEN INFRASTRUCTURE DESIGN FOR TRANSPORT PROJECTS A ROAD MAP TO PROTECTING ASIA’S WILDLIFE BIODIVERSITY DECEMBER 2019 ASIAN DEVELOPMENT BANK GREEN INFRASTRUCTURE DESIGN FOR TRANSPORT PROJECTS A ROAD MAP TO PROTECTING ASIA’S WILDLIFE BIODIVERSITY DECEMBER 2019 ASIAN DEVELOPMENT BANK Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) © 2019 Asian Development Bank 6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines Tel +63 2 8632 4444; Fax +63 2 8636 2444 www.adb.org Some rights reserved. Published in 2019. ISBN 978-92-9261-991-6 (print), 978-92-9261-992-3 (electronic) Publication Stock No. TCS189222 DOI: http://dx.doi.org/10.22617/TCS189222 The views expressed in this publication are those of the authors and do not necessarily reflect the views and policies of the Asian Development Bank (ADB) or its Board of Governors or the governments they represent. ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. The mention of specific companies or products of manufacturers does not imply that they are endorsed or recommended by ADB in preference to others of a similar nature that are not mentioned. By making any designation of or reference to a particular territory or geographic area, or by using the term “country” in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area. This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) https://creativecommons.org/licenses/by/3.0/igo/. By using the content of this publication, you agree to be bound by the terms of this license. For attribution, translations, adaptations, and permissions, please read the provisions and terms of use at https://www.adb.org/terms-use#openaccess. This CC license does not apply to non-ADB copyright materials in this publication. If the material is attributed to another source, please contact the copyright owner or publisher of that source for permission to reproduce it. ADB cannot be held liable for any claims that arise as a result of your use of the material. Please contact [email protected] if you have questions or comments with respect to content, or if you wish to obtain copyright permission for your intended use that does not fall within these terms, or for permission to use the ADB logo. Corrigenda to ADB publications may be found at http://www.adb.org/publications/corrigenda. Notes: In this publication, “$” refers to United States dollars. ADB recognizes “China” as the People’s Republic of China. On the cover: Wildlife species captured on camera while carrying out a baseline biodiversity assessment in Phibsoo Wildlife Sanctuary, Bhutan. Center photo shows one of Asia’s first wildlife underpasses constructed on a new highway in southern Bhutan (photos by ADB). Printed on recycled paper ContEnts TABLES, FIGURES, AND MAPS --------------------------------------------------------------------- v ACKNOWLEDGMENTS -----------------------------------------------------------------------------vi Abbreviations ---------------------------------------------------------------------------------- vii ANIMAL Species REFERENCED IN THIS Report -----------------------------------------------viii EXecutive Summary ---------------------------------------------------------------------------- x 1. Introduction -----------------------------------------------------------------------------1 2. Terrestrial BIODIVERSITY OF ASIA ------------------------------------------------------3 A. Biodiversity’s Importance to the People of Asia ......................................................................................... 6 B. Impacts on Asia’s Biodiversity ............................................................................................................................ 8 C. Road Development Policy ................................................................................................................................... 9 3. Ecological Impact OF Roads AND OTHER Transportation Projects -------- 10 A. Direct Highway Impacts .....................................................................................................................................10 1. Loss or Degradation of Habitats ......................................................10 2. Wildlife–Vehicle Collisions ...........................................................12 B. Indirect Highway Impacts ..................................................................................................................................14 C. Traffic Relationships to Permeability and Wildlife–Vehicle Collisions .............................................16 4. GREEN Infrastructure AND OTHER Measures to MINIMIZE HIGHway Impact to WILDLIFE --------------------------------------------------------------------- 19 A. Motorist Alert Signage ........................................................................................................................................19 B. Reduced Design Speeds and Traffic Calming Treatments ....................................................................21 C. Wildlife Passage Structures ...............................................................................................................................22 1. Wildlife Underpasses ................................................................22 2. Wildlife Overpasses .................................................................26 3. Wildlife Passage Structure Effectiveness .............................................27 4. Asian Case Studies ..................................................................29 D. Wildlife Fencing and Alternatives ...................................................................................................................30 E. Arboreal Mammal Canopy Bridges ................................................................................................................33 F. At-Grade Crossings and Wildlife “Crosswalks” .........................................................................................34 iii iv Contents 5. LINEAR Infrastructure DESIGN AND Management Considerations --------- 36 A. Overarching Design Principles .........................................................................................................................36 1. Build the Roadbed Formation Once and Be Done ....................................36 2. Build to the Minimum Width Necessary ..............................................36 3. Limit Lateral Road Access ...........................................................37 4. Focus Infrastructure Investment Where Land Tenure/Control Is Secure ..............37 5. Keep it Simple—Minimize Maintenance .............................................38 B. Passage Structure Design Criteria .................................................................................................................38 1. Underpass Openness ................................................................38 2. Passage Structure Size ...............................................................40 3. Passage Structure Spacing and Placement ............................................41 4. Passage Structure Approaches .......................................................44 5. Underpass or Overpass—Which is Better? ...........................................46 C. Wildlife Fencing and Alternatives ...................................................................................................................48 D. Road Management Activities ...........................................................................................................................49 1. Evening/Dusk-to-Dawn Road Closures ..............................................50 2. Seasonal Road Closures .............................................................51 3. Roads as a Resource Protection Asset ................................................52 4. Monitoring and Adaptive Management ..............................................52 E. Reconstruction and Retrofitting Opportunities Benefit Biodiversity .....................................................53 APPENDIx: Conducting Biodiversity Baseline Assessments and Evaluating Road Impacts A. Asian Development Bank Safeguarding Framework ...............................................................................55 B. Desktop Analysis Resources .............................................................................................................................57 C. Biodiversity Baseline Assessment Experimental and Sampling Design ...........................................65 REFERENCES ------------------------------------------------------------------------------------ 80 TablES, FigurES, and Maps TABLES 1 Scope of Asia’s Biodiversity Hotspots ...........................................................4 2 Comparative Impact of Three Road Alignments on Habitat Loss ...............................12 3 Wildlife Underpass Types, Size Categories, and Recommended Dimensions. .40 4 Passage Structure Spacing Recommendations for Asian Wildlife Species .......................42 5 Example Worksheet of Passage Structures for a 50-Kilometer Road ............................43 6 Wildlife Passage Structures in Premiere Highway and Conservation Projects ....................44 A1 Comparison Example of Three Road Alignments and Anticipated Direct Habitat Loss ..........63 A2 Recommended Biodiversity Baseline Assessment Sampling
Recommended publications
  • Landscape Connectivity Science and Practice: Ways Forward for Large Ranging Species and Their Landscapes
    LANDSCAPE CONNECTIVITY SCIENCE AND PRACTICE: WAYS FORWARD FOR LARGE RANGING SPECIES AND THEIR LANDSCAPES 1 Acknowledgements: This report was developed following the Landscape Connectivity Workshop held at and hosted by WWF India, Delhi in May 2018. We are grateful to the following people who provided valuable input, facilitation and compilation of notes throughout and following the workshop: Hamsini Bijlani, Dipankar Ghose (WWF India), Nilanga Jayasinghe (WWF US), Nitin Seker (WWF India), Indira Akoijam (WWF India), Thu Ba Huynh (WWF Tigers Alive). Suggested citation: WWF Tigers Alive (2020). Landscape Connectivity Science and Practice: Ways forward for large ranging species and their landscapes. Workshop Report, WWF Tigers Alive, WWF International. Workshop report editors: Ashley Brooks (WWF Tigers Alive), Hamsini Bijlani. Case study report researcher and author: Kyle Lukas Report prepared by: WWF Tigers Alive Published in: 2020 by WWF – World Wide Fund for Nature (Formerly World Wildlife Fund), Gland, Switzerland. Any reproduction in full or in part must mention the title and credit the above- mentioned publisher as the copyright owner. For more information please contact: Ashley Brooks. [email protected] WWF Tigers Alive is an initiative of WWF that supports tiger range countries achieve their commitments under the Global Tiger Recovery Program to double the number of tigers by 2022. WWF is one of the world’s largest and most experienced independent conservation organizations, with over 5 million supporters and a global network active in more than 100 countries. WWF’s mission is to stop the degradation of the planet’s natural environment and to build a future in which humans live in harmony with nature, by: conserving the world’s biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption.
    [Show full text]
  • High Occupancy Vehicle (HOV) Detection System Testing
    High Occupancy Vehicle (HOV) Detection System Testing Project #: RES2016-05 Final Report Submitted to Tennessee Department of Transportation Principal Investigator (PI) Deo Chimba, PhD., P.E., PTOE. Tennessee State University Phone: 615-963-5430 Email: [email protected] Co-Principal Investigator (Co-PI) Janey Camp, PhD., P.E., GISP, CFM Vanderbilt University Phone: 615-322-6013 Email: [email protected] July 10, 2018 DISCLAIMER This research was funded through the State Research and Planning (SPR) Program by the Tennessee Department of Transportation and the Federal Highway Administration under RES2016-05: High Occupancy Vehicle (HOV) Detection System Testing. This document is disseminated under the sponsorship of the Tennessee Department of Transportation and the United States Department of Transportation in the interest of information exchange. The State of Tennessee and the United States Government assume no liability of its contents or use thereof. The contents of this report reflect the views of the author(s), who are solely responsible for the facts and accuracy of the material presented. The contents do not necessarily reflect the official views of the Tennessee Department of Transportation or the United States Department of Transportation. ii Technical Report Documentation Page 1. Report No. RES2016-05 2. Government Accession No. 3. Recipient's Catalog No. 4. Title and Subtitle 5. Report Date: March 2018 High Occupancy Vehicle (HOV) Detection System Testing 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Deo Chimba and Janey Camp TDOT PROJECT # RES2016-05 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Department of Civil and Architectural Engineering; Tennessee State University 11.
    [Show full text]
  • The Apache and Navajo Counties Wildlife Connectivity Assessment: Report on Stakeholder Input January 2013
    The Apache and Navajo Counties Wildlife Connectivity Assessment: Report on Stakeholder Input January 2013 Photograph by B. Sitko, AGFD Arizona Game and Fish Department In partnership with The Arizona Wildlife Linkages Workgroup TABLE OF CONTENTS LIST OF FIGURES ..................................................................................................................................................................... ii LIST OF TABLES ....................................................................................................................................................................... ii RECOMMENDED CITATION ............................................................................................................................................... iii ACKNOWLEDGMENTS .......................................................................................................................................................... iii DEFINITIONS ............................................................................................................................................................................ iv EXECUTIVE SUMMARY ......................................................................................................................................................... 1 BACKGROUND........................................................................................................................................................................... 2 THE APACHE AND NAVAJO COUNTIES WILDLIFE CONNECTIVITY ASSESSMENT
    [Show full text]
  • Existing Mainline & Streetscape
    EXISTING MAINLINE & STREETSCAPE Features Village of Hillside Village of Westchester Village of Bellwood Village of Broadview Village of Maywood Village of Forest Park Village of Oak Park City of Chicago www.eisenhowerexpressway.com HILLSIDE I-290 MAINLINE I-290 Looking West North Wolf Road I-290 East of Mannheim Road - Retaining Walls Underpass at I-290 - Noise Wall I-290 I-290 Looking West IHB R.R, Crossing I-290 Westbound approaching I-88 Interchange EXISTING MAINLINE AND STREETSCAPE FEATURES EXISTING MAINLINE AND STREETSCAPE FEATURES I-290 Looking West I-290 East side of Mannheim Road Interchange 2 www.eisenhowerexpressway.com CROSS ROADS OTHER FEATURES HILLSIDE Mannheim Road Mannheim Road Bridge, sidewalk and fence over I-290 Hillside Welcome Signage Mannheim Road Mannheim Road Bridge, sidewalk and fence over I-290 Hillside Marker at I-290 Mannheim Road Northbound - Hillside Markers at I-290 EXISTING MAINLINE AND STREETSCAPE FEATURES EXISTING MAINLINE AND STREETSCAPE FEATURES 3 www.eisenhowerexpressway.com WESTCHESTER I-290 MAINLINE I-290 EB CD Road I-290 EB CD Road Entrance I-290 Looking East - Westchester Boulevard Overpass Noise walls along Wedgewood Drive EXISTING MAINLINE AND STREETSCAPE FEATURES EXISTING MAINLINE AND STREETSCAPE FEATURES 4 www.eisenhowerexpressway.com CROSSROADS/FRONTAGE ROADS WESTCHESTER Bellwood Avenue Westchester Boulevard Bridge, sidewalk, wall and fencing over I-290 Looking North towards I-290 overpass Westchester Boulevard Mannheim Road Looking South Looking Southeast EXISTING MAINLINE AND STREETSCAPE FEATURES
    [Show full text]
  • Recommended Ramp Design Procedures for Facilities Without Frontage Roads
    Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/TX-05/0-4538-3 4. Title and Subtitle 5. Report Date RECOMMENDED RAMP DESIGN PROCEDURES FOR September 2004 FACILITIES WITHOUT FRONTAGE ROADS 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. J. Bonneson, K. Zimmerman, C. Messer, and M. Wooldridge Report 0-4538-3 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Texas Transportation Institute The Texas A&M University System 11. Contract or Grant No. College Station, Texas 77843-3135 Project No. 0-4538 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Technical Report: Research and Technology Implementation Office September 2002 - August 2004 P.O. Box 5080 14. Sponsoring Agency Code Austin, Texas 78763-5080 15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Ramp Design Considerations for Facilities without Frontage Roads 16. Abstract Based on a recent change in Texas Department of Transportation (TxDOT) policy, frontage roads are not to be included along controlled-access highways unless a study indicates that the frontage road improves safety, improves operations, lowers overall facility costs, or provides essential access. Interchange design options that do not include frontage roads are to be considered for all new freeway construction. Ramps in non- frontage-road settings can be more challenging to design than those in frontage-road settings for several reasons. Adequate ramp length, appropriate horizontal and vertical curvature, and flaring to increase storage area at the crossroad intersection should all be used to design safe and efficient ramps for non-frontage-road settings.
    [Show full text]
  • General Plan Update 2014 - 2024 Town of Payson, Arizona
    [PAGE INTENTIONALLY LEFT BLANK] General Plan Update 2014 - 2024 Town of Payson, Arizona PROJECT TEAM ACKNOWLEDGEMENTS Payson Town Council: Planning & Zoning Commission: Kenny Evans, Mayor Jeff Loyd, Chairman Michael Hughes, Vice Mayor John Swenson, Vice Chairman John Wilson, Council Member Dan Jaeger, Commissioner Ed Blair, Council Member Clark Jones, Commissioner Su Connell, Council Member Lori Meyers, Commissioner Fred Carpenter, Council Member James Scheidt, Commissioner Rick Croy, Council Member Mark Waldrop, Commissioner General Plan Steering Committee Joel Mona Barbara Underwood Ron Hitchcock Ralph Bossert Kayla Percell Emily DePugh Jeff Loyd Joel Goode Rob Ingram Robert Sanders Sharon King John Wakelin Jim Hunt Staff Participants: Debra Galbraith, Town Manager LaRon Garrett, Assistant Town Manager Sheila DeSchaaf, Zoning Administrator Donald Engler, Chief of Police Cameron Davis, Chris Floyd, Parks, Recreation & Tourism Director Executive Assistant Community Development Doni Wilbanks, Planning Technician Citizen Participants: As part of the General Plan Update 2014-2024 process, the Town of Payson engaged citizen participation through an online survey, workshops, an information forum, and access to Town staff and officials. Over 775 Payson citizens and stakeholders participated in the yearlong Update process. Consultants: TischlerBise was retained by the Town of Payson to deliver a General Plan Update 2014-2024. The findings and conclusions in this analysis are the culmination of data collection, research, and stakeholder input.
    [Show full text]
  • Improving Habitat and Connectivity Model Predictions with Multi-Scale Resource Selection Functions from Two Geographic Areas
    Landscape Ecol (2019) 34:503–519 https://doi.org/10.1007/s10980-019-00788-w (0123456789().,-volV)(0123456789().,-volV) RESEARCH ARTICLE Improving habitat and connectivity model predictions with multi-scale resource selection functions from two geographic areas Ho Yi Wan . Samuel A. Cushman . Joseph L. Ganey Received: 22 May 2018 / Accepted: 18 February 2019 / Published online: 4 March 2019 Ó This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019 Abstract converted the models into landscape resistance sur- Context Habitat loss and fragmentation are the most faces and used simulations to model connectivity pressing threats to biodiversity, yet assessing their corridors for the species, and created composite impacts across broad landscapes is challenging. habitat and connectivity models by averaging the Information on habitat suitability is sometimes avail- local and non-local models. able in the form of a resource selection function model Results While the local and the non-local models developed from a different geographical area, but its both performed well, the local model performed best applicability is unknown until tested. in the part of the study area where it was built, but Objectives We used the Mexican spotted owl as a performed worse in areas that are beyond the extent of case study to demonstrate how models developed from the data used to train it. The composite habitat model different geographic areas affect our predictions for improved performances over both models in most habitat suitability, landscape resistance, and connec- cases.
    [Show full text]
  • Guidelines for Wildlife and Traffic in the Carpathians
    Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Part of Output 3.2 Planning Toolkit TRANSGREEN Project “Integrated Transport and Green Infrastructure Planning in the Danube-Carpathian Region for the Benefit of People and Nature” Danube Transnational Programme, DTP1-187-3.1 April 2019 Project co-funded by the European Regional Development Fund (ERDF) www.interreg-danube.eu/transgreen Authors Václav Hlaváč (Nature Conservation Agency of the Czech Republic, Member of the Carpathian Convention Work- ing Group for Sustainable Transport, co-author of “COST 341 Habitat Fragmentation due to Trans- portation Infrastructure, Wildlife and Traffic, A European Handbook for Identifying Conflicts and Designing Solutions” and “On the permeability of roads for wildlife: a handbook, 2002”) Petr Anděl (Consultant, EVERNIA s.r.o. Liberec, Czech Republic, co-author of “On the permeability of roads for wildlife: a handbook, 2002”) Jitka Matoušová (Nature Conservation Agency of the Czech Republic) Ivo Dostál (Transport Research Centre, Czech Republic) Martin Strnad (Nature Conservation Agency of the Czech Republic, specialist in ecological connectivity) Contributors Andriy-Taras Bashta (Biologist, Institute of Ecology of the Carpathians, National Academy of Science in Ukraine) Katarína Gáliková (National
    [Show full text]
  • High Occupancy Vehicle Lanes Evaluation Ii
    HIGH OCCUPANCY VEHICLE LANES EVALUATION II Traffic Impact, Safety Assessment, and Public Acceptance Dr. Peter T. Martin, Associate Professor University of Utah Dhruvajyoti Lahon, Aleksandar Stevanovic, Research Assistants University of Ut ah Department of Civil and Environmental Engineering University of Utah Traffic Lab 122 South Central Campus Drive Salt Lake City, Utah 84112 November 2004 Acknowledgements The authors thank the Utah Department of Transportation employees for the data they furnished and their assistance with this study. The authors particularly thank the Technical Advisory Committee members for their invaluable input throughout the study. The authors are also thankful to the respondents who took the time to participate in the public opinion survey. The valuable contribution of those who helped collect data and conduct public opinion surveys is greatly appreciated. Disclaimer The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. ii TABLE OF CONTENTS 1. INTRODUCTION .............................................................................................................1 1.1 Background................................................................................................................1
    [Show full text]
  • How Should We Measure Landscape Connectivity?
    Landscape Ecology 15: 633–641, 2000. 633 © 2000 Kluwer Academic Publishers. Printed in the Netherlands. How should we measure landscape connectivity? Lutz Tischendorf∗ & Lenore Fahrig Ottawa-Carleton Institute of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (∗Current address: Busestrasse 76, 28213 Bremen, Germany; E-mail: [email protected]) Received 9 April 1999; Revised 27 December 1999; Accepted 7 February 2000 Abstract The methods for measuring landscape connectivity have never been compared or tested for their responses to habitat fragmentation. We simulated movement, mortality and boundary reactions across a wide range of land- scape structures to analyze the response of landscape connectivity measures to habitat fragmentation. Landscape connectivity was measured as either dispersal success or search time, based on immigration into all habitat patches in the landscape. Both measures indicated higher connectivity in more fragmented landscapes, a potential for problematic conclusions for conservation plans. We introduce cell immigration as a new measure for landscape connectivity. Cell immigration is the rate of immigration into equal-sized habitat cells in the landscape. It includes both within- and between-patch movement, and shows a negative response to habitat fragmentation. This complies with intuition and existing theoretical work. This method for measuring connectivity is highly robust to reductions in sample size (i.e., number of habitat cells included in the estimate), and we hypothesize that it therefore should be amenable to use in empirical studies. The connectivity measures were weakly correlated to each other and are therefore generally not comparable. We also tested immigration into a single patch as an index of connectivity by comparing it to cell immigration over the landscape.
    [Show full text]
  • Road Transportation to the Year 2000
    PRO CEE J IN S- Twenty-fourth Annual Meeting Theme: "Transportation Management, Policy and Technology" November 2-5, 1983 Marriott Crystal City Hotel Marriott Crystal Gateway Hotel Arlington, VA Volume XXIV • Number 1 1983 gc <rR TRANSPORTATION RESEARCH FORUM 1. Road Transportation Requirements To the Year 2000 by J. R. Sutherland* and M. U. Hassan** H'S PAPER presents an overview of are to avoid the experience of the state T the present and future role of the of disrepair of the U.S. highway system road mode in Canada with emphasis on due to lack of timely investment and the Provincial highway system. It brief- resulting damage to the economy, it is .d escribes the trends in road transpo- important that the state of Canada's tation demand and supply: looks at fu- road system be seriously monitored and demand and in general terms iden- appropriate measures taken. tifies the infrastructure and provincial The purpose of this paper is to pro.. flanc..ial requirements to the year 2000. scat an overview of the role of the road The keep its dominant mode in Canada with emphasis on the role private car will in passenger travel which is expect- provincial highway system. The paper ed to grow at 2% per year. The infra- briefly describes the trends in road structure will require capacity expansion transportation demand and supply: it ,en primary highways, upgrading of sur- looks at future demand and in general Laci standards on secondary highways terms identifies the infrastructure and and timely rehabilitation and mainte- financial requirements. Some alterna- ilaPe2.
    [Show full text]
  • LAKE PONTCHARTRAIN CAUSEWAY HAER LA-21 and SOUTHERN TOLL PLAZA Causeway Boulevard Metairie Jefferson Parish Louisiana
    LAKE PONTCHARTRAIN CAUSEWAY HAER LA-21 AND SOUTHERN TOLL PLAZA Causeway Boulevard Metairie Jefferson Parish Louisiana PHOTOGRAPHS COPIES OF COLOR TRANSPARENCIES WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD National Park Service U.S. Department of the Interior 100 Alabama Street, SW Atlanta, Georgia 30303 HISTORIC AMERICAN ENGINEERING RECORD LAKE PONTCHARTRAIN CAUSEWAY AND SOUTHERN TOLL PLAZA HAER LA-21 Page 1 Location: The Lake Pontchartrain Causeway spans Lake Pontchartrain from Causeway Boulevard in Metairie, Jefferson Parish to Highway 190, Mandeville, St. Tammany Parish, Louisiana. The southern Toll Plaza was located at the Jefferson Parish terminus of the Lake Pontchartrain Causeway. The Northern Terminus of the Lake Pontchartrain Causeway is located at 30.365 and -90.094167. The Southern Terminus is located at 30.02 and - 90.153889. This information was acquired using Google Earth imagery. There are no restrictions on the release of this information to the public. USGS Quadrangle maps (7.5 minute series): (north to south) Mandeville, Spanish Fort NE, West of Spanish Fort NE, Indian Beach There are no restrictions on this information. Owner: Greater New Orleans Expressway Commission Present Use: Vehicle Bridge Significance: When completed in 1956, the Lake Pontchartrain Causeway was the world’s longest bridge. This record was broken by completion of the parallel span in 1969. At 23.87 miles long, the Causeway is the world’s longest continuous span over water. The prestressed, pre-cast concrete structural system displays mid-twentieth century technology that typifies modern bridge construction techniques. In addition, the Causeway is significant in the development of the Jefferson and St.
    [Show full text]