Biden Administration Inks Bills to Increase Drug Competition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Medical Prescription Market Definitions
Horvath Health Policy Innovations in Healthcare Financing Policy PO Box 196, College Park, MD 20741 202/465-5836 [email protected] Medical Prescription (Rx) Market Definitions Drug Product Terminology Small Molecule Drugs: Drugs with an active chemical ingredient that is not live, but chemically synthesized and typically are taken orally or topically, such as capsules, tablets, powders, ointments, and sprays. Brands: Also referred to “small molecule drugs,” brand drugs require original research and development for FDA licensure (also called “FDA approval”). They are approved (or licensed) under a New Drug Application (NDA). They are patent protected for 20 years total (which usually includes years clinical research before the drug is approved, or licensed). They are still referred to as brands even after the patent has expired (which distinguishes these drugs from generics). A brand can be ‘first in class” if it is a new chemical entity or new mechanism of action. It is a “me too drug” if it is not first in class. The definition of “me too” varies – different chemical composition, different mechanism of action. The drug is quite similar but different enough to get a patent. Generic: Small molecule products that are demonstrated to be clinically equivalent to a branded product (e.g., same active ingredient and route of administration, same mechanism of action). Generics do not require original research for FDA approval. Generics come to market only after the patent has expired on the brand product. Licensed under an Abbreviated New Drug Application (ANDA) by the FDA. Large Molecule Drugs: Commonly referred to as “biologics” and “biosimilars.” They contain live active ingredients and are generally infused or injected, and otherwise not taken orally or topically. -
IND Exemptions Chart
IND EXEMPTIONS Involving Drugs or Biologics Exemption 1 Exemption 4 Drug/Biologic US product Placebo * Drug/biologic product lawfully marketed in US * The clinical investigation involves the use of a placebo and the investigation does not otherwise * The investigation is not intended to be reported to FDA require submission of an IND as a well controlled study in support of a new indication for use nor intended to be used to support any other significant change in the labeling for the drug/biologic. * The investigation proposed is not intended to support a significant change in the advertising for the drug/ Exemption 5 biologic In Vivo Bioavailability or Bioequivalence * The investigation does not involve a route of * Test product does not contain a new chemical administration, dose, patient population, or other factor entity”’ as defined in 21 CFR 314.108(a) [** a drug that significantly increases the risks (or decreases the that contains no active moiety that has been acceptability of the risks) associated with the use of the approved by FDA in any other application. drug/biologic * The study does not involve a radioactively labeled * The investigation will be conducted in compliance with drug product. FDA regulations for the Protection of Human Subjects and Institutional Review Boards 21 CFR 50 & 56 * The study does not involve a cytotoxic drug product. * The investigation will be conducted in compliance with The investigator will conduct a bioavailability or the FDA requirements for Promotion and Charging for bioequivalence study -
United States District Court for the District of Columbia
Case 1:15-cv-00802-RC Document 29 Filed 03/15/16 Page 1 of 33 UNITED STATES DISTRICT COURT FOR THE DISTRICT OF COLUMBIA FERRING PHARMACEUTICALS, INC., : : Plaintiff, : Civil Action No.: 15-0802 (RC) : v. : Re Document Nos.: 20, 22 : SYLVIA M. BURWELL, et al., : : Defendants. : MEMORANDUM OPINION GRANTING IN PART AND DENYING IN PART DEFENDANTS’ MOTION FOR SUMMARY JUDGMENT AND DENYING PLAINTIFF’S MOTION FOR SUMMARY JUDGMENT I. INTRODUCTION Plaintiff Ferring Pharmaceuticals, Inc. (“Ferring”) is the manufacturer of PREPOPIK, a fixed-dose combination drug product that contains three drug substances: sodium picosulfate, magnesium oxide, and anhydrous citric acid. When it submitted a New Drug Application (“NDA”) for PREPOPIK to the U.S. Food and Drug Administration (“the FDA”), Ferring sought a five-year period of marketing exclusivity because one of the drug substances, sodium picosulfate, had never previously been approved in a NDA. The Federal Food, Drug, and Cosmetics Act (“FDCA”) provides for a five-year period of marketing exclusivity when a drug application is approved “for a drug, no active ingredient (including any ester or salt of the active ingredient) of which has been approved in any other application.” 21 U.S.C. § 355(j)(5)(F)(ii). During that five-year period, “no application may be submitted . which refers to the drug for which the subsection (b) application was submitted.” Id. The dispute in this case is whether the statutory term “drug,” as used in this provision of the FDCA, can reasonably be read to refer to a “drug product” (the finished dosage form of a Case 1:15-cv-00802-RC Document 29 Filed 03/15/16 Page 2 of 33 drug), or must be read to refer to a “drug substance” (the active ingredient of the drug). -
New Chemical Entity Exclusivity Determinations for Certain Fixed- Combination Drug Products
New Chemical Entity Exclusivity Determinations for Certain Fixed- Combination Drug Products Guidance for Industry U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) October 2014 Procedural New Chemical Entity Exclusivity Determinations for Certain Fixed- Combination Drug Products Guidance for Industry Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353 [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) October 2014 Procedural Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION............................................................................................................. 1 II. BACKGROUND ............................................................................................................... 2 III. STATUTORY AND REGULATORY FRAMEWORK ............................................... 2 IV. FDA’S HISTORICAL INTERPRETATION OF THE 5-YEAR NCE EXCLUSIVITY PROVISIONS ....................................................................................... 5 V. REVISED AGENCY INTERPRETATION OF THE 5-YEAR NCE EXCLUSIVITY PROVISIONS ................................................................................................................... -
Natural Products As Leads to Potential Drugs: an Old Process Or the New Hope for Drug Discovery?
J. Med. Chem. 2008, 51, 2589–2599 2589 Natural Products as Leads to Potential Drugs: An Old Process or the New Hope for Drug Discovery? David J. Newman† Natural Products Branch, DeVelopmental Therapeutics Program, DCTD, National Cancer InstitutesFrederick, P.O. Box B, Frederick, Maryland 21702 ReceiVed April 5, 2007 I. Introduction From approximately the early 1980s, the “influence of natural products” upon drug discovery in all therapeutic areas apparently has been on the wane because of the advent of combinatorial chemistry technology and the “associated expectation” that these techniques would be the future source of massive numbers of novel skeletons and drug leads/new chemical entities (NCEa) where the intellectual property aspects would be very simple. As a result, natural product work in the pharmaceutical industry, except for less than a handful of large pharmaceutical compa- nies, effectively ceased from the end of the 1980s. Figure 1. Source of small molecule drugs, 1981–2006: major What has now transpired (cf. evidence shown in Newman categories, N ) 983 (in percentages). Codes are as in ref 1. Major and Cragg, 20071 and Figures 1 and 2 below showing the categories are as follows: “N”, natural product; “ND”, derived from a natural product and usually a semisynthetic modification; “S”, totally continued influence of natural products as leads to or sources synthetic drug often found by random screening/modification of an of drugs over the past 26 years (1981–2006)) is that, to date, existing agent; “S*”, made by total synthesis, but the pharmacophore there has only been one de novo combinatorial NCE approved is/was from a natural product. -
Synergistic Combination Chemotherapy of Lung Cancer: Cisplatin and Doxorubicin Conjugated Prodrug Loaded, Glutathione and Ph Sensitive Nanocarriers
Drug Design, Development and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Synergistic Combination Chemotherapy of Lung Cancer: Cisplatin and Doxorubicin Conjugated Prodrug Loaded, Glutathione and pH Sensitive Nanocarriers This article was published in the following Dove Press journal: Drug Design, Development and Therapy Yonglong Jin1,* Purpose: Prodrug technology-based combination drug therapy has been exploited as Yi Wang2,* a promising treatment strategy to achieve synergistic lung cancer therapy, reduce drug Xiguang Liu1 dose, and decrease side effects. In the present study, we synthesized a pH and glutathione Jing Zhou1 (GSH) sensitive prodrug, cisplatin (CIS) and doxorubicin (DOX) conjugates (CIS-DOXp). Xintong Wang1 CIS-DOXp was loaded by nanocarriers and delivered into the tumor site. Methods: pH and GSH sensitive CIS-DOX prodrug (CIS-DOXp) was synthesized by con Hui Feng1 jugating GSH responsive CIS prodrug with pH sensitive DOX prodrug. CIS-DOXp-loaded Hong Liu2 nanocarriers (CIS-DOXp NC) were prepared using emulsification and solvent evaporation 1Department of Radiotherapy, Affiliated method. The morphology, particle size, polydispersity index (PDI) and zeta potential of nano Hospital of Qingdao University, Qingdao carriers were measured. In vitro cytotoxicity of nanocarriers and the corresponding free drugs 266000, People’s Republic of China; 2Department of Radiation Oncology, Qilu was examined using the MTT assay. In vivo anti-tumor efficiency and biodistribution behaviors Hospital of Shandong University, Jinan were evaluated on lung cancer mice models. 250012, People’s Republic of China Results: The size, PDI, zeta potential, CIS loading efficiency, and DOX loading efficiency *These authors contributed equally to of CIS-DOXp NC were 128.6 ± 3.2 nm, 0.196 ± 0.021, 15.7 ± 1.7 mV, 92.1 ± 2.1%, and 90.4 this work ± 1.8%, respectively. -
1097.Full.Pdf
1521-009X/47/10/1097–1099$35.00 https://doi.org/10.1124/dmd.119.088708 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 47:1097–1099, October 2019 Copyright ª 2019 by The American Society for Pharmacology and Experimental Therapeutics Special Section on Pharmacokinetic and Drug Metabolism Properties of Novel Therapeutic Modalities—Commentary Pharmacokinetic and Drug Metabolism Properties of Novel Therapeutic Modalities Brooke M. Rock and Robert S. Foti Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (B.M.R.) and Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F.) Received July 10, 2019; accepted July 26, 2019 Downloaded from ABSTRACT The discovery and development of novel pharmaceutical therapies in experimental and analytical tools will become increasingly is rapidly transitioning from a small molecule–dominated focus to evident, both to increase the speed and efficiency of identifying safe a more balanced portfolio consisting of small molecules, mono- and efficacious molecules and simultaneously decreasing our de- clonal antibodies, engineered proteins (modified endogenous pro- pendence on in vivo studies in preclinical species. The research and dmd.aspetjournals.org teins, bispecific antibodies, and fusion proteins), oligonucleotides, commentary included in this special issue will provide researchers, and gene-based therapies. This commentary, and the special issue clinicians, and the patients we serve more options in the ongoing as a whole, aims to highlight -
Generic Drug Development and Safety Evaluation
U.S. FOOD & DRUG ADMIN I STRATION Generic Drug Development and Safety Evaluation Howard D. Chazin, MD, MBA, Director CDER Office of Generic Drugs Clinical Safety Surveillance Staff (CSSS) CDER Pediatric Advisory Committee Meeting September 20, 2018 1 Outline 1. Basis for Generic Drug Approvals 2. Contents of an Abbreviated New Drug Application (ANDA) 3. Generic Drug Development • Pharmaceutical Equivalence • Bioequivalence • Therapeutic Equivalence 4. Generic Drug Safety Surveillance • Premarket • Postmarketing 2 Generic Drug Approval • Approval of generic drug starts with a “listed drug” – generally an “innovator” or “brand name” drug. • This is the reference listed drug (RLD) • Abbreviated New Drug Application (ANDA) relies on FDA’s finding of safety and effectiveness for the RLD during the Investigational New Drug (IND) and New Drug Application (NDA) phases of drug review. • Requires demonstration of “sameness” of a number of characteristics + additional information to permit reliance on the RLD 3 Modern Generic Drug Approval Pathway Drug Price Competition and Patent Term Restoration Act of 1984 (Hatch-Waxman Amendments) • First statutory provisions expressly pertaining to generic drugs. • Created the basic scheme under which generic drugs are approved today. • Allowed FDA to approve - under new section 505(j) - generic applications for duplicates of drugs submitted under 505(b). 4 Hatch-Waxman Amendments • Brand Industry Gains: • 5-year New Chemical Entity (NCE) Exclusivity • 3-year New Clinical Studies Exclusivity • Patent Term Extension -
Pharmacophore Hybridisation and Nanoscale Assembly to Discover Self-Delivering Lysosomotropic New-Chemical Entities for Cancer Therapy
ARTICLE https://doi.org/10.1038/s41467-020-18399-4 OPEN Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy Zhao Ma 1,2, Jin Li1, Kai Lin 1, Mythili Ramachandran1, Dalin Zhang1, Megan Showalter3, Cristabelle De Souza1, Aaron Lindstrom1, Lucas N. Solano1, Bei Jia1, Shiro Urayama 4, Yuyou Duan5, ✉ Oliver Fiehn 3, Tzu-yin Lin6, Minyong Li 2,7 & Yuanpei Li 1 1234567890():,; Integration of the unique advantages of the fields of drug discovery and drug delivery is invaluable for the advancement of drug development. Here we propose a self-delivering one-component new-chemical-entity nanomedicine (ONN) strategy to improve cancer therapy through incorporation of the self-assembly principle into drug design. A lysosomo- tropic detergent (MSDH) and an autophagy inhibitor (Lys05) are hybridised to develop bisaminoquinoline derivatives that can intrinsically form nanoassemblies. The selected BAQ12 and BAQ13 ONNs are highly effective in inducing lysosomal disruption, lysosomal dysfunction and autophagy blockade and exhibit 30-fold higher antiproliferative activity than hydroxychloroquine used in clinical trials. These single-drug nanoparticles demonstrate excellent pharmacokinetic and toxicological profiles and dramatic antitumour efficacy in vivo. In addition, they are able to encapsulate and deliver additional drugs to tumour sites and are thus promising agents for autophagy inhibition-based combination therapy. Given their transdisciplinary advantages, these BAQ ONNs have enormous potential to improve cancer therapy. 1 Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA. 2 Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, China. -
Seps Science Article
Drug Discovery & Pharmaceuticals Getting the Most Value from Your Compound Data Matthew Segall, Optibrium Ltd., 7221 Cambridge Research Park, Beach Drive, Cambridge, CB25 9TL, UK, Email: [email protected], Tel: 01223 815900, Fax: 01223 815907 In order to mitigate potential risks in drug discovery, data are routinely generated for large numbers of compounds across many properties at great effort and expense. However, much of these data do not have sufficient impact on compound design and selection decisions and too often they are consigned to a database without ever being considered. This unfortunate situation arises because decision-making based on complex, multi-parameter data is challenging. As a result there is a tendency to oversimplify and focus decisions around smaller numbers of better-known properties, discounting potentially valuable information. This article explores ways in which greater value can be gained from the data generated in drug discovery laboratories. Intuitive multi-parameter optimisation approaches make it easy to include all relevant data in the decision-making process, guiding the selection of compounds with the best balance of properties for a successful drug, while ensuring that each property has an appropriate influence. The article will also illustrate how property data can be easily modelled, thereby capturing and visualising the relationships between chemical structures and their properties, to guide the optimisation of new compounds. If provided in a user- friendly, interactive way, that is accessible -
205060Orig1s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 205060Orig1s000 ADMINISTRATIVE and CORRESPONDENCE DOCUMENTS EXCLUSIVITY SUMMARY NDA # 205060 SUPPL # HFD # 180 Trade Name Epanova Generic Name omega-3-carboxylic acids Applicant Name AstraZeneca Pharmaceuticals LP Approval Date, If Known May 5, 2014 PART I IS AN EXCLUSIVITY DETERMINATION NEEDED? 1. An exclusivity determination will be made for all original applications, and all efficacy supplements. Complete PARTS II and III of this Exclusivity Summary only if you answer "yes" to one or more of the following questions about the submission. a) Is it a 505(b)(1), 505(b)(2) or efficacy supplement? YES X NO If yes, what type? Specify 505(b)(1), 505(b)(2), SE1, SE2, SE3,SE4, SE5, SE6, SE7, SE8 505(b)(1) b) Did it require the review of clinical data other than to support a safety claim or change in labeling related to safety? (If it required review only of bioavailability or bioequivalence data, answer "no.") YES X NO If your answer is "no" because you believe the study is a bioavailability study and, therefore, not eligible for exclusivity, EXPLAIN why it is a bioavailability study, including your reasons for disagreeing with any arguments made by the applicant that the study was not simply a bioavailability study. N/A If it is a supplement requiring the review of clinical data but it is not an effectiveness supplement, describe the change or claim that is supported by the clinical data: N/A Reference ID: 3946142 Page 1 c) Did the applicant request exclusivity? YES X NO If the answer to (d) is "yes," how many years of exclusivity did the applicant request? 5 d) Has pediatric exclusivity been granted for this Active Moiety? YES NO X If the answer to the above question in YES, is this approval a result of the studies submitted in response to the Pediatric Written Request? IF YOU HAVE ANSWERED "NO" TO ALL OF THE ABOVE QUESTIONS, GO DIRECTLY TO THE SIGNATURE BLOCKS AT THE END OF THIS DOCUMENT. -
ED227273.Pdf
DOCUMENT RESUft ED 227 273 y CE 035 300 ' TITLE APharmacy Spicialist, Militkry Curriculum Materials for Vocation47 andileChlaical Education. INSTITuTION Air Force Training Command, Sheppa* AFB, Tex.; Ohio State Univ., Columbus. Natfonal Center for Research in Vocational Education. SPONS AGENCY Office of Education (DHEW)x Washington, D.C. PUB DATE 18 Jul 75 NOTE 774p.; Some pages are marginally legible. ,PUB TYPE Guides - Classroom Use Guides (For Teachers) (052), , EDRS ?RICE 14P05/PC31 Plus Postage. ` DESCRIPTORS Behavioral Objectives; Course Descriptions; A Curriculum Guides; Drug Abuse; Drug,Therapy; 4Drug Use; Learning Activities; Lesson Plans; *Pharmaceutical Education; Pharmacists; *Pharmacology; *Pharmacy; Postsecondary Education; Programed Instructional Materials; Textbooks; Workbooks IDENTIFIERS. Military CuFr.iculum Project liBSTRACT These teacher and studdnt,materials for a . postsecondary-level course in pharmacy comprise one of a numberof military-developed curriculum packages selected for adaptation to voCational instruction 'and curriculum dei7elopment in acivilian setting. The purpose stated for the 256-hour course iS totrain students in the basic technical phases of pharmacy and theminimum essential knowledge and skills necessaryior.the compounding and - dispensing of drugs, the economical operation of a pharmacy,and the proper use of drugs, chemicals, andbiological products. The course consists of three blocks of instruction. Block I contains four, lessons: pharmaceutical calculations I and laboratory,inorganic chemistry, and organic chemistry. The five lessons in Block II cover anatomy ,and physiology, introduction topharmacoloe, toxicology, drug abuse, and pharmaceutical and medicinal agents. Block III provides five lessons: phdrmaceutical calculations\I and II, techniques"of pharmaceutical compounding, pharmaceutiCal dosage for s, and compounding laboratbry. Instructormaterials include a cb se chart, lesson plans, and aplan of instruction detailing instructional,bnits, criterion objectives, lesson duration,and support materials needed.