Drug Combinations: Mathematical Modeling and Networking Methods
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2019 Ministerial Declaration
COMMISSION ON NARCOTIC DRUGS VIENNA IMPLEMENTATION OF ALL INTERNATIONAL DRUG POLICY COMMITMENTS Follow-up to the 2019 Ministerial Declaration “Strengthening Our Actions at the National, Regional and International Levels to Accelerate the Implementation of Our Joint Commitments to Address and Counter the World Drug Problem” UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Commission on Narcotic Drugs IMPLEMENTATION OF ALL INTERNATIONAL DRUG POLICY COMMITMENTS Follow-up to the 2019 Ministerial Declaration “Strengthening Our Actions at the National, Regional and International Levels to Accelerate the Implementation of Our Joint Commitments to Address and Counter the World Drug Problem” UNITED NATIONS Vienna, 2019 © United Nations, July 2019. All rights reserved, worldwide. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Contents 1. Ministerial Declaration on Strengthening Our Actions at the National, Regional and International Levels to Accelerate the Implementation of Our Joint Commitments to Address and Counter the World Drug Problem ...............................1 2. Outcome document of the thirtieth special session of the General Assembly, entitled “Our joint commitment to effectively addressing and countering the world drug problem” ..................................................9 3. Joint Ministerial Statement of the 2014 High-Level Review by the Commission on Narcotic Drugs of the Implementation by Member States of the Political Declaration and Plan of Action on International Cooperation towards an Integrated and Balanced Strategy to Counter the World Drug Problem ...............................35 4. -
Pharmacokinetic Interactions of Drugs with St John's Wort
http://www.paper.edu.cn Pharmacokinetic interactions of Journal of Psychopharmacology 18(2) (2004) 262–276 © 2004 British Association drugs with St John’s wort for Psychopharmacology ISSN 0269-8811 SAGE Publications Ltd, London, Thousand Oaks, CA and New Delhi 10.1177/0269881104042632 Shufeng Zhou Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore. Eli Chan Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore. Shen-Quan Pan Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore. Min Huang Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510089, PR China. Edmund Jon Deoon Lee Department of Pharmacology, Faculty of Medicine, National University of Singapore, Singapore. Abstract There is a worldwide increasing use of herbs which are often cancer patients receiving irinotecan treatment. St John’s wort did not administered in combination with therapeutic drugs, raising the alter the pharmacokinetics of tolbutamide, but increased the incidence potential for herb–drug interactions. St John’s wort (Hypericum of hypoglycaemia. Several cases have been reported that St John’s wort perforatum) is one of the most commonly used herbal antidepressants. A decreased cyclosporine blood concentration leading to organ rejection. literature search was performed using Medline (via Pubmed), Biological St John’s wort caused breakthrough bleeding and unplanned pregnancies Abstracts, Cochrane Library, AMED, PsycINFO and Embase (all from their when used concomitantly with oral contraceptives. It also caused inception to September 2003) to identify known drug interaction with serotonin syndrome when coadministered with selective serotonin- St John’s wort. The available data indicate that St John’s wort is a reuptake inhibitors (e.g. -
CYP3A4 Mediated Pharmacokinetics Drug Interaction Potential of Maha
www.nature.com/scientificreports OPEN CYP3A4 mediated pharmacokinetics drug interaction potential of Maha‑Yogaraj Gugglu and E, Z guggulsterone Sarvesh Sabarathinam1, Satish Kumar Rajappan Chandra2 & Vijayakumar Thangavel Mahalingam1* Maha yogaraja guggulu (MYG) is a classical herbomineral polyherbal formulation being widely used since centuries. The aim of this study was to investigate the efect of MYG formulation and its major constituents E & Z guggulsterone on CYP3A4 mediated metabolism. In vitro inhibition of MYG and Guggulsterone isomers on CYP3A4 was evaluated by high throughput fuorometric assay. Eighteen Adult male Sprague–Dawley rats (200 ± 25 g body weight) were randomly divided into three groups. Group A, Group B and Group C were treated with placebo, MYG and Standard E & Z guggulsterone for 14 days respectively by oral route. On 15th day, midazolam (5 mg/kg) was administered orally to all rats in each group. Blood samples (0.3 mL) were collected from the retro orbital vein at 0.25, 0.5, 0.75, 1, 2, 4, 6, 12 and 24 h of each rat were collected. The fndings from the in vitro & in vivo study proposed that the MYG tablets and its guggulsterone isomers have drug interaction potential when consumed along with conventional drugs which are CYP3A4 substrates. In vivo pharmacokinetic drug interaction study of midazolam pointed out that the MYG tablets and guggulsterone isomers showed an inhibitory activity towards CYP3A4 which may have leads to clinically signifcant interactions. Te use of alternative medicine such as herbal medicines, phytonutrients, ayurvedic products and nutraceuticals used widely by the majority of the patients for their primary healthcare needs. -
Synthetic Drugs: Overview and Issues for Congress
Synthetic Drugs: Overview and Issues for Congress Lisa N. Sacco Analyst in Illicit Drugs and Crime Policy Kristin Finklea Specialist in Domestic Security May 3, 2016 Congressional Research Service 7-5700 www.crs.gov R42066 Synthetic Drugs: Overview and Issues for Congress Summary Synthetic drugs, as opposed to natural drugs, are chemically produced in a laboratory. Their chemical structure can be either identical to or different from naturally occurring drugs, and their effects are designed to mimic or even enhance those of natural drugs. When produced clandestinely, they are not typically controlled pharmaceutical substances intended for legitimate medical use. Designer drugs are a form of synthetic drugs. They contain slightly modified molecular structures of illegal or controlled substances, and they are modified in order to circumvent existing drug laws. While the issue of synthetic drugs and their abuse is not new, Congress has demonstrated a renewed concern with the issue. From 2009 to 2011, synthetic drug abuse was reported to have dramatically increased. During this time period, calls to poison control centers for incidents relating to harmful effects of synthetic cannabinoids (such as “K2” and “Spice”) and stimulants (such as “bath salts”) increased at what some considered to be an alarming rate. The number of hospital emergency department visits involving synthetic cannabinoids more than doubled from 2010 to 2011. In 2012 and 2013, however, the number of calls to poison control centers for incidents relating to harmful effects of synthetic cannabinoids and synthetic stimulants decreased. Calls regarding bath salts have declined each year since 2011, while calls regarding synthetic cannabinoids have increased since the drops in 2012 and 2013. -
Grapefruit Juice and Psychotropics: How to Avoid Potential Interactions
Savvy Psychopharmacology Grapefruit juice and psychotropics: How to avoid potential interactions Danielle L. Bishop, PharmD, BCPP s. H, age 42, was given a diagnosis she reports feeling much better during a fol- of bipolar disorder 10 years ago and low-up call and she makes an appointment Mhas been taking carbamazepine, to have her carbamazepine level rechecked 1,200 mg/d, and olanzapine, 10 mg/d, for the in a week. past 2 years. She has not experienced a mood episode while on this regimen, and her car- Although grapefruit products are high in bamazepine level was 9.2 μg/mL 6 months vitamins and low in calories, they can be Vicki L. Ellingrod, ago. The only adverse effect she experienced associated with potentially serious drug PharmD, FCCP was weight gain of approximately 10 lb. interactions. The interaction between Department Editor Ms. H takes a calcium supplement, but no grapefruit juice and the calcium channel other medications. blocker felodipine was discovered inad- Ms. H reports to her psychiatrist that, for vertently >20 years ago; since that time, the past few days, she has been feeling nau- possible interactions with >85 medica- seated, fatigued, and dizzy, but has contin- tions have been identified.1 Interactions ued taking her medications as prescribed. with grapefruit products are complicated Her carbamazepine level is found to be 13.1 μg/mL. Ms. H states she has not started Practice Points any new medications or supplements; her • In general, an entire grapefruit or 8 oz serum creatinine and liver function test of juice is enough to alter a susceptible results are within normal limits. -
Pharmacogenetic Testing: a Tool for Personalized Drug Therapy Optimization
pharmaceutics Review Pharmacogenetic Testing: A Tool for Personalized Drug Therapy Optimization Kristina A. Malsagova 1,* , Tatyana V. Butkova 1 , Arthur T. Kopylov 1 , Alexander A. Izotov 1, Natalia V. Potoldykova 2, Dmitry V. Enikeev 2, Vagarshak Grigoryan 2, Alexander Tarasov 3, Alexander A. Stepanov 1 and Anna L. Kaysheva 1 1 Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; [email protected] (T.V.B.); [email protected] (A.T.K.); [email protected] (A.A.I.); [email protected] (A.A.S.); [email protected] (A.L.K.) 2 Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; [email protected] (N.V.P.); [email protected] (D.V.E.); [email protected] (V.G.) 3 Institute of Linguistics and Intercultural Communication, Sechenov University, 119992 Moscow, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-499-764-9878 Received: 2 November 2020; Accepted: 17 December 2020; Published: 19 December 2020 Abstract: Pharmacogenomics is a study of how the genome background is associated with drug resistance and how therapy strategy can be modified for a certain person to achieve benefit. The pharmacogenomics (PGx) testing becomes of great opportunity for physicians to make the proper decision regarding each non-trivial patient that does not respond to therapy. Although pharmacogenomics has become of growing interest to the healthcare market during the past five to ten years the exact mechanisms linking the genetic polymorphisms and observable responses to drug therapy are not always clear. Therefore, the success of PGx testing depends on the physician’s ability to understand the obtained results in a standardized way for each particular patient. -
Drug Interactions: What You Should Know
DRUG INTERACTIONS: WHAT YOU SHOULD KNOW Council on Family Health Drug Interactions here are more opportunities today than ever before to learn about your health and to take Tbetter care of yourself. It is also more important than ever to know about the medicines you take. If you take several different medicines, see more than one doctor or have certain health conditions, you and your doctors need to be aware of all the medicines you take to avoid potential problems, such as drug interactions. Drug interactions may make your drug less effec- tive, cause unexpected side effects or increase the action of a particular drug. Some drug interactions can even be harmful to you. Reading the label every time you use a nonprescription or prescription drug and taking the time to learn about drug interactions may be critical to your health. You can reduce the risk of potentially harmful drug interactions and side effects with a little bit of knowledge and common sense. Drug interactions fall into three broad categories: ■ Drug-drug interactions occur when two or more drugs react with each other. This drug- drug interaction may cause you to experience an unexpected side effect. For example, mixing a drug you take to help you sleep (a sedative) and a drug you take for allergies (an antihistamine) can slow your reactions and make driving a car or operating machinery dangerous. ■ Drug-food/beverage interactions result from drugs reacting with foods or beverages. For example, mixing alcohol with some drugs may cause you to feel tired or slow your reactions. -
Plague Plague
Disease Planning Guide - Plague Mass Post Exposure Prophylaxis I. Disease-specific guidance: The following guide should only be used in events where a plague epidemic has been identified, an Emergency Use Authorization from the Food and Drug Administration has been issued and a state and local emergency declaration has been issued by the proper authorities. Model Standing Order – Pg 1 Clients will arrive at dispensing sites with a voucher indicating which medication, if any, they should receive. Specific guidance related to dispensing is shown in red . Model Standing Order – Pg 2 Clients that present this voucher will not receive medication for the individual named on the form. Dispensers may collect “Do Not Dispense Medication” vouchers for records purposes. Model Standing Order – Pg 3 II. PERSONS FOR WHOM PROPHYLAXIS MAY BE ORDERED Persons who have a confirmed or suspect exposure to Yersinia pestis, the causative agent of plague, as determined by the local or State Health Officer. Table 1: Recommended Post-Exposure Prophylaxis for Inhalational Plague Patient Category Therapy Recommendation Duration 10 days Adults Doxycycline , 100 mg PO BID or Ciprofloxacin , 500 mg PO BID 10 days Ciprofloxacin , 15 mg/kg PO BID, max 500 mg/dose or Doxycycline : >45 kg: 100 mg PO BID Children <45 kg: 2.2 mg/kg PO BID ***************************************** If susceptibility to penicillin has been confirmed: Amoxicillin : >20 kg: 500 mg PO TID <20 kg: 80 mg/kg/day PO divided TID 10 days Doxycycline , 100 mg PO BID or Pregnant women Ciprofloxacin , 500 mg PO BID ***************************************** If susceptibility to penicillin has been confirmed: Amoxicillin 500 mg PO TID 10 days Immunocompromised Doxycycline , 100 mg PO BID or Ciprofloxacin , 500 mg PO BID Adapted from: Working Group on Civilian Biodefense. -
Article Download
wjpls, 2019, Vol. 5, Issue 9, 168-177 Research Article ISSN 2454-2229 Ohieku et al. World Journal of Pharmaceutical World Journal and ofLife Pharmaceutical Sciences and Life Sciences WJPLS www.wjpls.org SJIF Impact Factor: 5.088 DIGOXIN INTERACTIONS WITH MEDICATIONS USED IN CONGESTIVE HEART FAILURES AND OTHER CO-MORBID DISEASES: AN IDENTIFICATION OF PATIENTS REQUIRING CONSTANT DRUG THERAPY MONITORING AND VIGILANCE *John David Ohieku and Muhammad Al-amin Usman Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, University of Maiduguri, PMB 1069, Maiduguri, Borno State, Nigeria. *Corresponding Author: John David Ohieku Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, University of Maiduguri, PMB 1069, Maiduguri, Borno State, Nigeria. Article Received on 20/07/2019 Article Revised on 10/08/2019 Article Accepted on 01/09/2019 ABSTRACT Background: Digoxin has narrow therapeutic index and many drug combinations are capable of affecting both its pharmacokinetic and pharmacodynamics profile, which may lead to lethal outcomes. Objectives: The objectives were to assess potential interactions between digoxin and other medications and to evaluate its degree, clinical outcomes as well as identify patients that may require constant monitoring and vigilance. Methods: The cross- sectional and prospective study involves the evaluation of digoxin interaction with other medications using online drug interaction software checkers developed by Medscape.com, Drug.com, Drugbank.com and Epocrates. -
Pharmacogenomic Biomarkers in Docetaxel Treatment of Prostate Cancer: from Discovery to Implementation
G C A T T A C G G C A T genes Review Pharmacogenomic Biomarkers in Docetaxel Treatment of Prostate Cancer: From Discovery to Implementation Reka Varnai 1,2, Leena M. Koskinen 3, Laura E. Mäntylä 3, Istvan Szabo 4,5, Liesel M. FitzGerald 6 and Csilla Sipeky 3,* 1 Department of Primary Health Care, University of Pécs, Rákóczi u 2, H-7623 Pécs, Hungary 2 Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, Vörösmarty u 4, H-7621 Pécs, Hungary 3 Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland 4 Institute of Sport Sciences and Physical Education, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary 5 Faculty of Sciences, Doctoral School of Biology and Sportbiology, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary 6 Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia * Correspondence: csilla.sipeky@utu.fi Received: 17 June 2019; Accepted: 5 August 2019; Published: 8 August 2019 Abstract: Prostate cancer is the fifth leading cause of male cancer death worldwide. Although docetaxel chemotherapy has been used for more than fifteen years to treat metastatic castration resistant prostate cancer, the high inter-individual variability of treatment efficacy and toxicity is still not well understood. Since prostate cancer has a high heritability, inherited biomarkers of the genomic signature may be appropriate tools to guide treatment. In this review, we provide an extensive overview and discuss the current state of the art of pharmacogenomic biomarkers modulating docetaxel treatment of prostate cancer. This includes (1) research studies with a focus on germline genomic biomarkers, (2) clinical trials including a range of genetic signatures, and (3) their implementation in treatment guidelines. -
Treatment of Patients with Substance Use Disorders Second Edition
PRACTICE GUIDELINE FOR THE Treatment of Patients With Substance Use Disorders Second Edition WORK GROUP ON SUBSTANCE USE DISORDERS Herbert D. Kleber, M.D., Chair Roger D. Weiss, M.D., Vice-Chair Raymond F. Anton Jr., M.D. To n y P. G e o r ge , M .D . Shelly F. Greenfield, M.D., M.P.H. Thomas R. Kosten, M.D. Charles P. O’Brien, M.D., Ph.D. Bruce J. Rounsaville, M.D. Eric C. Strain, M.D. Douglas M. Ziedonis, M.D. Grace Hennessy, M.D. (Consultant) Hilary Smith Connery, M.D., Ph.D. (Consultant) This practice guideline was approved in December 2005 and published in August 2006. A guideline watch, summarizing significant developments in the scientific literature since publication of this guideline, may be available in the Psychiatric Practice section of the APA web site at www.psych.org. 1 Copyright 2010, American Psychiatric Association. APA makes this practice guideline freely available to promote its dissemination and use; however, copyright protections are enforced in full. No part of this guideline may be reproduced except as permitted under Sections 107 and 108 of U.S. Copyright Act. For permission for reuse, visit APPI Permissions & Licensing Center at http://www.appi.org/CustomerService/Pages/Permissions.aspx. AMERICAN PSYCHIATRIC ASSOCIATION STEERING COMMITTEE ON PRACTICE GUIDELINES John S. McIntyre, M.D., Chair Sara C. Charles, M.D., Vice-Chair Daniel J. Anzia, M.D. Ian A. Cook, M.D. Molly T. Finnerty, M.D. Bradley R. Johnson, M.D. James E. Nininger, M.D. Paul Summergrad, M.D. Sherwyn M. -
The Clinical Toxicology of Gamma-Hydroxybutyrate, Gamma-Butyrolactone and 1,4-Butanediol
Clinical Toxicology (2012), 50: 458–470 Copyright © 2012 Informa Healthcare USA, Inc. ISSN: 1556-3650 print / 1556-9519 online DOI: 10.3109/15563650.2012.702218 REVIEW ARTICLE The clinical toxicology of gamma-hydroxybutyrate, gamma-butyrolactone and 1,4-butanediol LEO J SCHEP 1 , KAI KNUDSEN 2 , ROBIN J SLAUGHTER 1 , J ALLISTER VALE 3 , and BRUNO MÉGARBANE 4 1 National Poisons Centre, Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand 2 Department of Anesthesia and Intensive Care Medicine, Surgical Sciences, Blå Stråket 5, Sahlgrenska University Hospital, Gothenburg, Sweden 3 National Poisons Information Service (Birmingham Unit) and West Midlands Poisons Unit, City Hospital, Birmingham, UK; School of Biosciences and College of Medical and Dental Sciences, University of Birmingham, Birmingham,UK 4 Hôpital Lariboisière, Réanimation Médicale et Toxicologique, INSERM U705, Université Paris-Diderot, Paris, France Introduction. Gamma-hydroxybutyrate (GHB) and its precursors, gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD), are drugs of abuse which act primarily as central nervous system (CNS) depressants. In recent years, the rising recreational use of these drugs has led to an increasing burden upon health care providers. Understanding their toxicity is therefore essential for the successful management of intoxicated patients. We review the epidemiology, mechanisms of toxicity, toxicokinetics, clinical features, diagnosis, and management of poisoning due to GHB and its analogs and discuss the features and management of GHB withdrawal. Methods. OVID MEDLINE and ISI Web of Science databases were searched using the terms “ GHB, ” “ gamma-hydroxybutyrate, ” “ gamma-hydroxybutyric acid, ” “ 4-hydroxybutanoic acid, ” “ sodium oxybate, ” “ gamma-butyrolactone, ” “ GBL, ” “ 1,4-butanediol, ” and “ 1,4-BD ” alone and in combination with the keywords “ pharmacokinetics, ” “ kinetics, ” “ poisoning, ” “ poison, ” “ toxicity, ” “ ingestion, ” “ adverse effects, ” “ overdose, ” and “ intoxication.