Understanding Extracellular Electron Transport of Industrial Microorganisms and Optimization for Production Application
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioenergetics
Bioenergetics Patcharee Boonsiri For Education Only Cell is the smallest unit of life. Metabolic processes that occur in cells help keeping the organism alive. In this ebook, there are 4 chapters. Chapter 1 Bioenergetics : Living organisms use energy for their functions and they have the metabolic pathway to produce energy. Chapter 2 Thermodynamics : The laws of Thermodynamics are about conservation of energy and the order/disorder in living organisms. Chapter 3 Gibbs’ free energy : This help predicting direction of the chemical reactions in cells. Chapter 4 High energy compound ATP : ATP is the energy currency for the living organisms. Part 1 Bioenergetics What are the 4 essential things the cells need? 1.molecular building blocks 2.chemical catalysts 3.genetic information 4.energy The activities of living things require energy. The energy help the cells to perform functions such as growth, maintaining balance of the body or called homeostasis, repair, reproduction, movement, and defense. This means that all living organisms must obtain and use energy for their life. What is energy? Energy is ability to do work. Each cell can convert fuel to energy in the form that our bodies can use. Unit of Energy: Calorie, Joule (SI unit) 1 cal = 4.184 J There are 2 forms of energy 1.Potential energy - is stored energy ( for example, chemical, concentration gradient, electrical potential energy) 2.Kinetic energy - energy that is actively engaged in doing work (for example, radient, thermal, mechanical energy) http://2.bp.blogspot.com/-r7ceqpkN4Y4/VipBXGTSwKI/AAAAAAAAABU /nqex7dmiJ08/s1600/Slide%2Bpicture.png What is work? Work is the use of energy to drive all processes other than heat flow. -
Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation
fermentation Article Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation Chunlei Yang Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; [email protected] Received: 2 May 2018; Accepted: 4 June 2018; Published: 7 June 2018 Abstract: To better understand the effects of host selection on gut acetogens and their potential role in syngas fermentation, the composition and hydrogenotrophic features of acetogen populations in cow and sheep rumens, rabbit ceca, and horse feces were studied. The acetogens detected in horses and rabbits were more phylogenetically diverse than those in cows and sheep, suggesting that the host species plays an important role in shaping gut acetogen populations. Acetogen enrichments from these animals presented good capacities to use hydrogen, with acetate as the major end product. Minor propionate, butyrate, and isovalerate were also produced. During 48 h of incubation, acetogen enrichments from horse consumed 4.75 moles of H2 to every 1 mole of acetate—significantly lower than rabbits, cows, and sheep (5.17, 5.53, and 5.23 moles, respectively) (p < 0.05)—and produced significantly more butyrate (p < 0.05). Enrichments from cows and sheep produced significantly higher amounts of propionate when compared to rabbits or horses (p < 0.05); enrichments from sheep produced the highest amounts of isovalerate (p < 0.05). These short chain fatty acids are important precursors for the synthesis of biofuel products, suggesting that gut contents of herbivores may be promising sources for harvesting functional acetogens for biofuel production. -
Azoreductase: a Key Player of Xenobiotic Metabolism Santosh A
Misal and Gawai Bioresour. Bioprocess. (2018) 5:17 https://doi.org/10.1186/s40643-018-0206-8 REVIEW Open Access Azoreductase: a key player of xenobiotic metabolism Santosh A. Misal1,2* and Kachru R. Gawai1* Abstract Azoreductases are diverse favoenzymes widely present among microorganisms and higher eukaryotes. They are mainly involved in the biotransformation and detoxifcation of azo dyes, nitro-aromatic, and azoic drugs. Reduction of azo bond and reductive activation of pro-drugs at initial level is a crucial stage in degradation and detoxifca- tion mechanisms. Using azoreductase-based microbial enzyme systems that are biologically accepted and ecof- riendly demonstrated complete degradation of azo dyes. Azoreductases are favin-containing or favin-free group of enzymes, utilizing the nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate as a reducing equivalent. Azoreductases from anaerobic microorganisms are highly oxygen sensitive, while azoreduc- tases from aerobic microorganisms are usually oxygen insensitive. They have variable pH, temperature stability, and wide substrate specifcity. Azo dyes, nitro-aromatic compounds, and quinones are the known substrates of azore- ductase. The present review gives an overview of recent developments in the known azoreductase enzymes from diferent microorganisms, its novel classifcation scheme, signifcant characteristics, and their plausible degradation mechanisms. Keywords: Azo dye, Azoreductase, Bioremediation, Biotransformation, Detoxifcation, Xenobiotics Introduction of physical, chemical, and biological treatment proce- Azo dyes and nitro-aromatic compounds are consid- dures are employed to degrade and detoxify the chemi- ered as potential xenobiotics. Tey are extensively used cal content and to remove color from dye-containing worldwide in textile, paint, printing, cosmetics, and phar- industrial wastewater. -
Cellular Respiration: Harvesting Chemical Energy
Lecture 13 9/30/05 Lecture Outline Cellular Respiration: 1. Regulation of Enzymes: competitive, allosteric, phosphorylation Harvesting Chemical Energy 2. Equilibrium 3. Digestion vs Metabolism: catabolism and anabolism Chapter 9 4. What is a metabolic pathway? 5. Feedback regulation of pathways 6. Catabolic pathways - stepping down the oxidation series of carbon 7. Harvesting energy from redox reactions I. General - substrate level phosphorylation ATP + Principles – reducing equivalent carriers NADH + H , FADH2 8. Example of a catabolic pathway: Fatty Acid Oxidation 1 2 Figure 9.1 Reactions that proceed in a closed system Living systems = Open System – Eventually reach equilibrium – Must have constant flow of materials in – Constant Energy Input Can do Cannot Do Useful ∆G < 0 ∆G = 0 work work Equilibrium to a living system is called…. ∆G < 0 (b) An open hydroelectric system. Flowing water keeps driving the generator because intake and outflow of water keep the system from reaching equlibrium. (a) A closed hydroelectric system. Water flowing downhill turns a turbine that drives a generator providing electricity to a light bulb, but only until the system reaches equilibrium. Figure 8.7 Figure 8.7 A 3 4 Metabolism – totality of all chemical Metabolism: a series of favorable reactions reactions of an organism Inputs ∆G < 0 digestion ∆G < 0 Hydrolysis of polymers to monomers ∆G < 0 No energy Harvested ! occurs “outside” the cell catabolism –energy capture reactions oxidize substrates, produce energy carriers Figure 8.7 Waste anabolism –energy -
Acetogenesis and the Wood–Ljungdahl Pathway of CO2 Fixation
Biochimica et Biophysica Acta 1784 (2008) 1873–1898 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbapap Review Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation Stephen W. Ragsdale ⁎, Elizabeth Pierce Department of Biological Chemistry, MSRB III, 5301, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, MI 48109-0606, USA article info abstract Article history: Conceptually, the simplest way to synthesize an organic molecule is to construct it one carbon at a time. The Received 2 July 2008 Wood–Ljungdahl pathway of CO2 fixation involves this type of stepwise process. The biochemical events that Received in revised form 12 August 2008 underlie the condensation of two one-carbon units to form the two-carbon compound, acetate, have Accepted 13 August 2008 intrigued chemists, biochemists, and microbiologists for many decades. We begin this review with a Available online 27 August 2008 description of the biology of acetogenesis. Then, we provide a short history of the important discoveries that fi Keywords: have led to the identi cation of the key components and steps of this usual mechanism of CO and CO2 fi fl Acetogenesis xation. In this historical perspective, we have included re ections that hopefully will sketch the landscape Nickel of the controversies, hypotheses, and opinions that led to the key experiments and discoveries. We then Iron–sulfur describe the properties of the genes and enzymes involved in the pathway and conclude with a section Cobalamin describing some major questions that remain unanswered. Methanogenesis © 2008 Elsevier B.V. All rights reserved. -
Looking for Syntrophic Acetogen/Methanogen Interactions
Looking for syntrophic acetogen/methanogen interactions Caroline Van Steendam Final Report Course Directors: Dr. Jared Leadbetter and dr. Dianne Newman Microbial Diversity Course 2015 Caroline Van Steendam – Looking for syntrophic acetogen/methanogen interactions 1 Introduction Many natural environments (e.g., soil sediments) and engineered systems (e.g., rice paddy soils and wastewater treatment) are known to produce methane when anaerobically degrading organic matter. Uncontrolled release of methane in natural environments should be minimized as methane is 23 times more potent at retaining heat in the atmosphere than CO2. In contrast, methane production is often maximized in engineered systems because of its high calorific value and therefore its suitability as an (alternative) energy source. Even though the anaerobic degradation process of organic matter has been studied in detail for decades, new discoveries are still made. Fermenter acetogens and methanogens work together to convert intermediate degradation products, i.e., volatile fatty acids (VFAs), into methane. The fermentative conversion of VFAs is thermodynamically unfavorable under standard conditions (1 M concentration, or 105 Pa for gases) and requires a continuous removal of its reaction products by methanogens to overcome this energy barrier. On top of the well- known syntrophic interactions including interspecies H2, formate, and acetate transfer, it has recently been discovered that electrons can also be exchanged directly between the fermenter acetogen and methanogen (direct interspecies electron transfer, DIET) (Chen et al., 2014; Liu et al., 2012; Nagarajan et al., 2013; Shrestha et al., 2014; Shrestha et al., 2013; Summers et al., 2010; Zhao et al., 2015). The goal of this miniproject is to isolate different types of methanogens from Cedar Swamp and to identify what syntrophic interactions they are capable of. -
Acetogenesis from H2 Plus CO2 and Nitrogen Fixation by an Endosymbiotic Spirochete of a Termite-Gut Cellulolytic Protist
Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist Moriya Ohkumaa,b,1, Satoko Nodaa,c, Satoshi Hattorid, Toshiya Iidaa, Masahiro Yukib, David Starnsa,e, Jun-ichi Inouea, Alistair C. Darbye, and Yuichi Hongoha,f aJapan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, and bBiomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Ibaraki 305-0074, Japan; cInterdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 400-8511, Japan; dDepartment of Food, Life, and Environmental Sciences, Yamagata University, Yamagata 997-8555, Japan; eInstitute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; and fDepartment of Biological Sciences, Tokyo Institute of Technology, Tokyo 152-8550, Japan Edited by Patrick J. Keeling, University of British Columbia, Vancouver, Canada, and accepted by the Editorial Board April 16, 2015 (received for review December 15, 2014) Symbiotic associations of cellulolytic eukaryotic protists and di- cellulose digestion. The protists phagocytose ingested wood verse bacteria are common in the gut microbial communities of particles and almost completely decompose and ferment the termites. Besides cellulose degradation by the gut protists, re- cellulose to produce acetate, H2, and CO2 (6, 8). The host ter- ductive acetogenesis from H2 plus CO2 and nitrogen fixation by mite uses the produced acetate as a major carbon and energy ’ gut bacteria play crucial roles in the host termites nutrition by source. The produced H2 is a key metabolic intermediate that contributing to the energy demand of termites and supplying nitro- fuels many bacteria in the gut (9). -
Hydrogen Or Formate : Alternative Key Players in Methanogenic Degradation
Erschienen in: Environmental Microbiology Reports ; 9 (2017), 3. - S. 189-202 https://dx.doi.org/10.1111/1758-2229.12524 Hydrogen or formate: Alternative key players in methanogenic degradation Bernhard Schink, Dominik Montag, Anja Keller and Introduction Nicolai Muller*€ Formate is formed in classical primary fermentations, such Department of Biology, Microbial Ecology, University of as the mixed-acid fermentation by certain Enterobacteria- Konstanz, Konstanz, D-78457, Germany ceae and by strict anaerobes in pyruvate cleavage by pyru- vate formate lyase (Knappe and Wagner, 2001). Formate Summary can be further converted by the same bacteria to H2 1 CO2 by formate hydrogen lyase (Leonhartsberger et al., 2002; Hydrogen and formate are important electron carriers Sinha et al., 2015). Other strictly anaerobic bacteria form in methanogenic degradation in anoxic environments formate by reduction of CO with low-potential electrons such as sediments, sewage sludge digestors and bio- 2 that are typically provided by ferredoxins (Andreesen and gas reactors. Especially in the terminal steps of meth- Makdessi, 2008). In a similar manner, hydrogen gas can anogenesis, they determine the energy budgets of be formed in anaerobic fermentations by hydrogenases secondary (syntrophically) fermenting bacteria and (Adams et al., 1980; Peters et al., 2015), most often with their methanogenic partners. The literature provides ferredoxins as low-potential electron donors. Both formate considerable data on hydrogen pool sizes in such and hydrogen serve in these reactions as vents for the habitats, but little data exist for formate concentra- release of excess electrons, e. g., from the oxidative decar- tions due to technical difficulties in formate determi- boxylation of 2-oxo acids, to allow ATP synthesis in subse- nation at low concentration. -
The Function of Energy-Dependent Redox Reactions in Cell Metabolism
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 117, Supplement FEBS LETTERS 25 August 1980 THE FUNCTION OF ENERGY-DEPENDENT REDOX REACTIONS IN CELL METABOLISM Michael N. BERRY Department of Clinical Biochemistry, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA JO42, Australia 1. Introduction and no shuttle is required for reducing-equivalent transfer between mitochondrial matrix and inner A major interest of H. A. Krebs has been the membrane. The redox state of this putative pool mechanisms that regulate the steady-state concentra- could be determined by measurement of the sub- tions of metabolic intermediates within the various strates either for the 3-hydroxybutyrate dehydro- ceil compartments. Almost 15 years ago, studies by genase or the glutamate dehydrogenase reactions, and Williamson et al. [l] confirmed earlier findings [2,3] proved to be some lOO-times more reduced than the which suggested that the components of the lactate cytoplasmic compartment [7]. dehydrogenase system in liver are maintained in a This work was subsequently expanded to include constant state apparently close to thermodynamic the NADP-linked couples of the cytoplasm and mito- equilibrium. The ratio, [lactate]/ [pyruvate] was thus chondria, and the relationship of the redox state for considered to reflect the ‘redox state’, the ratio of cytoplasmic NAD(H) to the phosphorylation state of free [NAD]/ [NADH], within the cytoplasmic com- the cytoplasmic and mitochondrial compartments partment of the hepatic cell [ 1,4]. Estimates of cyto- [8]. From these studies developed the concept that a plasmic [NAD] /NADH] ratios of about 400-2000 network of near-equilibria exists within the living cell, under various experimental circumstances were calcu- ultimately regulated by the phosphorylation state of lated from the values found for [lactate]/ [pyruvate] the respiratory chain, poising the redox states of [5-71. -
Bioenergetics of Exercising Humans George A
P1: OTA/XYZ P2: ABC JWBT335-c110007 JWBT335/Comprehensive Physiology November 1, 2011 7:53 Printer Name: Yet to Come Bioenergetics of Exercising Humans George A. Brooks*1 ABSTRACT: Human muscles, limbs and supporting ventilatory, cardiovascular, and metabolic systems are well adapted for walking, and there is reasonable transfer of efficiency of movement to bicycling. Our efficiency and economy of movement of bipedal walking (≈30%) are far superior to those of apes. This overall body efficiency during walking and bicycling represents the multiplicative interaction of a phosphorylative coupling efficiency of ≈60%, and a mechanical coupling effi- ciency of ≈50%. These coupling efficiencies compare well with those of other species adapted for locomotion. We are capable runners, but our speed and power are inferior to carnivorous and omnivorous terrestrial mammalian quadrupeds because of biomechanical and physiological constraints. But, because of our metabolic plasticity (i.e., the ability to switch among carbohydrate (CHO)- and lipid-derived energy sources) our endurance capacity is very good by comparison to most mammals, but inferior to highly adapted species such as wolves and migratory birds. Our ancestral ability for hunting and gathering depends on strategy and capabilities in the areas of thermoregulation, and metabolic plasticity. Clearly, our competitive advantage of survival in the biosphere depends in intelligence and behavior. Today, those abilities that served early hunter- gatherers make for interesting athletic competitions due to wide variations in human phenotypes. In contemporary society, the stresses of regular physical exercise serve to minimize morbidities and mortality associated with physical inactivity, overnutrition, and aging. C 2012 American Physiological Society. -
Define Obligate Anaerobic Bacteria
Define Obligate Anaerobic Bacteria Monomial and uncanonical Michael sages while stretch Thorn evangelize her Salian cloudlessly and episcopized painstakingly. Photospheric Hashim roughhouses downstairs and carpingly, she preplan her oxazines dieting recently. Goidelic Smitty sometimes synchronize his viniculture eftsoons and desolating so pinnately! They preferentially use oxygen as terminal electron acceptor. In such purposes only. The health care professionals should be use our study group showed encouraging results indicate that consumes oxygen content when anaerobes in oxygen we define obligate anaerobic bacteria, they particularly those data. Keane Encyclopedia and Dictionary of Medicine, Nursing, and Allied Health, Seventh Edition. Their presence or most concentrated were killed after cyanobacteria started releasing oxygen is from renaturation rates, where oxygen is associated with milder disease control plates aerobically we define obligate anaerobic bacteria with other? Several model for a high abundance was incubated at são paulo state during a habitat, these microorganisms as we define obligate anaerobic bacteria on? The test as facultative organisms fail to define several antibiotics, but not to define obligate anaerobic bacteria on. In both groups, subgingival bacterial specimens were taken from the deepest sites. Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. Anaerobic conditions are mesophilic cellulolytic bacteria live under a destruction dipikolinat calcium. This can also are tolerant organisms use energy needs it. The genus that these patients; therefore can be an approach using sterile water. It will be incubated without picking up a lack certain others closely allied health. For that reason, different anaerobic media were employed for the enrichment of microorganisms from samples from spacecraft and their housings. -
Insight Into the Function and Evolution of the Wood–Ljungdahl Pathway in Actinobacteria
The ISME Journal https://doi.org/10.1038/s41396-021-00935-9 ARTICLE Insight into the function and evolution of the Wood–Ljungdahl pathway in Actinobacteria 1 2 3 1 1 2 1 Jian-Yu Jiao ● Li Fu ● Zheng-Shuang Hua ● Lan Liu ● Nimaichand Salam ● Peng-Fei Liu ● Ai-Ping Lv ● 4 1 5 1 1,6 7 Geng Wu ● Wen-Dong Xian ● Qiyun Zhu ● En-Min Zhou ● Bao-Zhu Fang ● Aharon Oren ● 8,9 4 5,10,11 2 1,6 Brian P. Hedlund ● Hong-Chen Jiang ● Rob Knight ● Lei Cheng ● Wen-Jun Li Received: 21 September 2020 / Revised: 7 February 2021 / Accepted: 10 February 2021 © The Author(s), under exclusive licence to International Society for Microbial Ecology 2021 Abstract Carbon fixation by chemoautotrophic microbes such as homoacetogens had a major impact on the transition from the inorganic to the organic world. Recent reports have shown the presence of genes for key enzymes associated with the Wood–Ljungdahl pathway (WLP) in the phylum Actinobacteria, which adds to the diversity of potential autotrophs. Here, we compiled 42 actinobacterial metagenome-assembled genomes (MAGs) from new and existing metagenomic datasets and propose three novel classes, Ca. Aquicultoria, Ca. Geothermincolia and Ca. Humimicrobiia. Most members of these classes – 1234567890();,: 1234567890();,: contain genes coding for acetogenesis through the WLP, as well as a variety of hydrogenases (NiFe groups 1a and 3b 3d; FeFe group C; NiFe group 4-related hydrogenases). We show that the three classes acquired the hydrogenases independently, yet the carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS) was apparently present in their last common ancestor and was inherited vertically.