Structural Investigation of Graphitic Carbon Nitride Via XRD and Neu- Tron Diffraction Federica Fina†, Samantha K

Total Page:16

File Type:pdf, Size:1020Kb

Structural Investigation of Graphitic Carbon Nitride Via XRD and Neu- Tron Diffraction Federica Fina†, Samantha K Structural investigation of graphitic carbon nitride via XRD and Neu- tron Diffraction Federica Fina†, Samantha K. Callear‡, George M. Carins†, John T. S. Irvine†* † School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, Scotland, United Kingdom ‡ ISIS Neutron and Muon Facility, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, Unit- ed Kingdom ABSTRACT: Graphitic carbon nitride (g-C3N4) has, since 2009, attracted great attention for its activity as a visible light-active photocatalyst for hydrogen evolution. Since it was synthesized in 1834, g-C3N4 has been extensively studied both catalytically and structurally. While its 2D structure seems to have been solved, its 3D crystal structure has not yet been confirmed. This study attempts to solve the 3D structure of graphitic carbon nitride by mean of x-ray diffraction and of neutron scattering. Initially, various structural models are considered and their XRD patterns compared to the meas- ured one. After selecting possible candidates as g-C3N4 structure, neutron scattering is employed to identify the best model that describes the 3D structure of graphitic carbon nitride. Parallel chains of tri-s-triazine units organized in layers with an A-B stacking motif are found to describe the structure of the synthesized graphitic carbon nitride well. A misa- lignment of the layers is favorable because of the decreased π-π repulsive inter-layer interactions. INTRODUCTION due to the highly disordered character of the material an Graphitic carbon nitride (g-C N ) is one of the several accurate description of its 3D structure had only been 3 4 20-21 allotropes of the carbon nitrides family. It was synthesised suggested. for the first time by Berzelius and named “melon” by Liebling in 1834.1 It is a polyconjugated semiconductor composed of carbon and nitrogen atoms and it is charac- terised by a layered graphitic-like structure.2 The fully polymerised form of g-C3N4, characterised by a C:N ratio of 0.75, cannot be practically obtained. Therefore, the material presents a hydrogen content of 1-2 %, which var- ies depending on the synthesis procedure.3 Graphitic car- bon nitride can be easily synthesised via solid state syn- thesis from cheap materials such as melamine, it is insol- uble in most solvents and shows great stability in extreme conditions (pH = 0 and pH = 14).2, 4 Due to these charac- Figure 1 Structures considered representative of g-C3N4: a) teristics, it has recently attracted great attention for dif- triazine based and b) tri-s-triazine based. ferent catalytic applications, in particular photocatalysis To the best of our knowledge the most recent work on 2, 4 21 for hydrogen evolution from water. Even though widely the 3D structure of g-C3N4 is that of Tyborsky et al.. In studied as a catalyst, to date, the g-C3N4 crystal structure their work x-ray diffraction modelling is employed to has not been fully solved. The first examples of structural solve the structure of graphitic carbon nitride. However, investigation date back to the early 20th century.5-7 Since due to the short range order of the material which pre- then two main 2D structures have been suggested: a tria- vents proper structure refinement, x-ray diffraction alone zine-based (Figure 1a)8-11 and a tri-s-triazine-based is not sufficient. Neutron scattering on the other hand one(Figure 1b)12-15. Many investigations have been carried can provide additional information useful for the struc- out in order to confirm which of the two structures could ture determination of g-C3N4. 12-13, 16-20 16, 19 describe g-C3N4. By 2009 , with the aid of elec- Neutrons interact with the nuclei of the atoms instead tron diffraction,16, 19-20 and solid state Nuclear Magnetic of the electrons and can therefore offer complementary 16 Resonance, the 2D structure of g-C3N4 synthesised by information to XRD analysis regarding the atomic struc- thermal condensation of small organic polymers was con- ture of materials..22 Additionally due to the size of the sidered solved. The structure of g-C3N4 was confirmed as neutrons, neutron scattering is very sensitive to hydrogen a tri-s-triazine based polymeric structure. 16, 19 However, and other light elements such as carbon. Due to the op- posite sign of the scattering lengths of H and D,23 negative phitic carbon nitride was packed into a flat plate TiZr peaks are produced in the first case and positive in the container that was chosen because of the opposite sign of second. A comparison of labelled and not-labelled mate- the scattering length of the two elements, giving an over- rials allows for direct identification of atomic correlations all null scattering.24 The container had a wall thickness of involving hydrogen. Neutron scattering can therefore be a 1 mm and an inner aperture of 1 mm. The beam size was 3 suitable analytical technique for g-C3N4 and can offer cm x 3 cm. A Vanadium plate was used as a standard to complementary information to the XRD analysis. In the normalize the data. Measurements of the background and present work, we employ structural models proposed in container were also collected and used to correct the raw the literature, we create some new ones and generate data. The data normalisation and corrections were carried their theoretical XRD patterns. These are then compared out using GudrunN.24 PDFGui was employed to generate to the measured XRD pattern of the synthesised graphitic calculated PDFs of the crystal structures using scale and carbon nitride. After narrowing down the possible crystal damp-ing factors that were fitted to the experimental da- structures, the most promising ones are compared with ta. The atomic positions, lattice parameters and isotropic the results from the neutron scattering analysis. It is displacement parameters were inputted as per the crystal found that the material synthesised for this study is best structure data and were kept fixed.25 PDFGui outputs a described by tri-s-triazine layers with an off-set in their residual curve (the difference between the model and the alignment. To the best of our knowledge no report of data) and also the weighted R-factor (Rw) which is a Neutron Scattering on g-C3N4 exists in the literature and measure of how accurately the model represents the data this work brings the structural characterisation of this (the smaller the value the better the fit). active catalyst a step forward. Elemental Analysis and density measurement. The elemental analysis was acquired with Carlo Erba EXPERIMENTAL Flash 2000 Elemental Analyser, configured for wt.% CHN. Material synthesis. Graphitic carbon nitride was syn- Density measurements were carried out with a Mi- thesised by thermal polycondensation of Melamine (Sig- cromeritics, AccuPyc 1340 Gas Pycnometer. ma-Aldrich, 99.9 %) at 500 °C for 15 h. The precursor was placed in a closed alumina crucible and heated to tem- RESULTS perature with a rate of 5 °C/min. After the synthesis it was Photocatalytic performance. Graphitic carbon ni- ground to fine powder. To synthesize the deuterated tride is tested for photocatalytic hydrogen evolution un- g-C3N4 the same synthetic procedures was applied but der visible light. Triethanolamine (TEOA) is employed as Melamine-d6 was employed as the starting material. sacrificial agent to promote the production of hydrogen. Photocatalytic performance evaluation. Meas- The material without the aid of a co-catalyst shows an urement of the photocatalytic hydrogen evolution were evolution rate at the steady state of less than 1 μmol·h-1 performed in a custom-made photocatalytic reactor with under the described conditions. However, after loading of top irradiation through a quartz window. In a typical ex- 1 wt.% of platinum as the co-catalyst the performance periment 0.1 g of catalyst (1 g·L-1) were suspended in reaches a rate of 22 μmol·h-1. This results are consistent 100 mL of a 10 v.% solution of triethanolamine (TEOA)2 with what has been reported in the literature for graphitic employed as sacrificial agent. The inner atmosphere was carbon nitride,2 showing that the material subject of this purged with Argon gas to remove any trace of air. Top study is an active photocatalyst for hydrogen evolution. irradiation was carried out with a 250 W iron-doped met- XRD analysis. The x-ray diffraction pattern of g-C3N4 al halide ultraviolet-visible lamp (≥ 290 nm; UV Light synthesized by thermal polycondensation of melamine is Technology Limited) with a cut-off filter (≥ 420 nm; Boro- illustrated in Figure 2. The characteristic peaks associated 2, 14 silicate Coated Glass, UQG Optics Ltd) to block with g-C3N4 can be identified. The main one at UV-irradiations. Hydrogen evolution was monitored for 2θ = 27.4 ° is reported as the (002) plane, equivalent to a an experimental duration of 20 hours using a gas chro- d-spacing of 0.326 nm. This is usually ascribed to the dis- matograph (Agilent 3000 Micro Gas Chromatograph). tance between the layers of the graphitic material.2, 14 The X-ray diffraction. The microstructure was investigat- peak at 2θ = 13.00 ° is attributed to the (100) plane, with a ed by powder X-Ray Diffraction (XRD) using an Empyre- d-spacing of 0.680 nm. This is due to the intra-layer an PANalytical series 2 diffractometer with a Cu Kα radia- d-spacing.2, 14 tion source (λ = 1.5406 Å). The theoretical patterns of the The measured XRD pattern is initially compared to the modelled structures were generated using the software crystal structure proposed by Teter and Hemley8 in 1996 FullProf. In order to remove all symmetry operators dur- (Figure 2).
Recommended publications
  • Graphitic Carbon Nitride (G-C3N4), an Organic Semiconductor That Proved a Suitable Photocatalyst for Hydrogen Production from Water
    METAL LOADED G-C₃N₄ FOR VISIBLE LIGHT-DRIVEN H₂ PRODUCTION Federica Fina A Thesis Submitted for the Degree of PhD at the University of St Andrews 2014 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/6322 This item is protected by original copyright This item is licensed under a Creative Commons Licence Metal loaded g-C3N4 for visible light-driven H2 production by Federica Fina A thesis submitted in partial fulfilment for the degree of PhD at the University of St Andrews 2014 I, Federica Fina hereby certify that this thesis, which is approximately 50,000 words in length, has been written by me, and that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in January 2011 and as a candidate for the degree of Doctor of Philosophy in August 2014; the higher study for which this is a record was carried out in the University of St Andrews between 2011 and 2014. Date …………….………….. Signature of candidate …………….………….. I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Doctor of Philosophy in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date …………….………….. Signature of supervisor …………….………….. In submitting this thesis to the University of St Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby.
    [Show full text]
  • Ab-Initio Spectroscopic Characterization of Melem-Based Graphitic Carbon Nitride Polymorphs
    nanomaterials Article Ab-Initio Spectroscopic Characterization of Melem-Based Graphitic Carbon Nitride Polymorphs Aldo Ugolotti and Cristiana Di Valentin * Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy * Correspondence: [email protected] Abstract: Polymeric graphitic carbon nitride (gCN) compounds are promising materials in photoacti- vated electrocatalysis thanks to their peculiar structure of periodically spaced voids exposing reactive pyridinic N atoms. These are excellent sites for the adsorption of isolated transition metal atoms or small clusters that can highly enhance the catalytic properties. However, several polymorphs of gCN can be obtained during synthesis, differing for their structural and electronic properties that ultimately drive their potential as catalysts. The accurate characterization of the obtained material is critical for the correct rationalization of the catalytic results; however, an unambiguous experimental identification of the actual polymer is challenging, especially without any reference spectroscopic features for the assignment. In this work, we optimized several models of melem-based gCN, taking into account different degrees of polymerization and arrangement of the monomers, and we present a thorough computational characterization of their simulated XRD, XPS, and NEXAFS spectroscopic properties, based on state-of-the-art density functional theory calculations. Through this detailed study, we could identify the peculiar fingerprints of each model and correlate them with its structural and/or electronic properties. Theoretical predictions were compared with the experimental data Citation: Ugolotti, A.; Di Valentin, C. whenever they were available. Ab-Initio Spectroscopic Characterization of Melem-Based Keywords: graphitic carbon nitride; melon; melem polymerization; XPS; NEXAFS; XRD; DFT; Graphitic Carbon Nitride surface science Polymorphs.
    [Show full text]
  • Triazine-Based Carbon Nitrides for Visible-Light-Driven Hydrogen Evolution
    Triazine-based Carbon Nitrides for Visible-Light-Driven Hydrogen Evolution K. Schwinghammer, B. Tuffy, M. B. Mesch, E. Wirnhier, C. Martineau, F. Taulelle, W. Schnick, J. Senker, and B. V. Lotsch The efficient conversion of solar energy into chemical energy is a major challenge of modern materials chemistry and energy research. One solution to the future’s energy demands will be the generation of hydrogen by photochemical water splitting as an environmentally clean energy carrier with a high energy density. So far the majority of photocatalysts are of an inorganic nature containing heavy metals which increase cost, impede scalability, and add complexity. Therefore, the development of efficient, stable, economically feasible, and environmentally friendly catalysts is required. For many years carbon nitrides (CxNyHz) were famed for their structural variety and potential as precursors for ultra-hard materials. The thermal condensation of simple carbon nitrides (CNs) can form several denser chemical species that differ with respect to their degree of condensation, hydrogen content, crystallinity and morphology. The discovery of extended carbon nitrides with semiconducting properties and band gaps < 3 eV makes them an attractive alternative to metal-rich semiconductors for photocatalysis. In 2009, Wang et al. investigated and determined for the first time the photocatalytic activity of polymeric melon-type CNs based on imide-bridged heptazine units (Fig. 1a).[1] Further publications focused on the modifications of those heptazine based carbon nitrides to improve their photocatalytic activity, e.g. by expanding their surface area, as well as by doping with heteroatoms and organic compounds, which gives rise to an enhanced absorption in the visible light range of the electromagnetic spectrum.
    [Show full text]
  • Crystal Structure of Polymeric Carbon Nitride and Determination of Its Process-Temperature-Induced Modifications T
    Crystal structure of polymeric carbon nitride and determination of its process-temperature-induced modifications T. Tyborski,1, 2 C. Merschjann,1, 3 S. Orthmann,1 F. Yang,1 M.-Ch. Lux-Steiner,1 and Th. Schedel-Niedrig1 1)Helmholtz-Zentrum Berlin f¨urMaterialien und Energie GmbH, D-14109 Berlin, Germany 2)Max-Born-Institut f¨ur Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germanya) 3)Universit¨atRostock, D-18055 Rostock, Germany Based on the arrangement of two-dimensional melon, we construct a unit cell for polymeric carbon nitride (PCN) synthesized via thermal polycondensation whose theoretical diffraction powder pattern includes all major features measured in X-ray diffraction. With the help of that unit cell, we describe the process- temperature-induced crystallographic changes in PCN that occur within a temperature interval between 510 ◦C and 610 ◦C. We also discuss further potential modifications of the unit cell for PCN. It is found that both triazine and heptazine-based g-C3N4 can only account for minor phases within the investigated synthesis products. Keywords: polymeric carbon nitride, g-C3N4, thermal polycondensation, crystal structure Polymeric carbon nitride (PCN) stands for a very re- group for PCN that combines the listed structural as- markable class of materials. It reveals photocatalytic ac- pects and is in good agreement with the measured XRD tivity, both as pristine powder and as a nanocrystalline powder patterns has not been identified. film in a heterojunction photocathode.1{3 Furthermore, The usual way to determine the crystal structure of a PCN only consists of abundant elements, can be synthe- certain material on the basis of its powder pattern is ex- sized via a straightforward, scalable process and offers a ecuted as follows.14{16 (1) The unit cell is determined high chemical and thermal stability.4 Light-induced hy- by indexing the peaks of the powder pattern.
    [Show full text]
  • 2,5,8-Trihydrazino-S-Heptazine
    2,5,8-Trihydrazino-s-heptazine: a precursor for heptazine-based iminophosphoranes Edwin Kroke, Tatyana Saplinova, Vadym Bakumov, Tobias Gmeiner, Jörg Wagler, Marcus Schwarz To cite this version: Edwin Kroke, Tatyana Saplinova, Vadym Bakumov, Tobias Gmeiner, Jörg Wagler, et al.. 2,5,8- Trihydrazino-s-heptazine: a precursor for heptazine-based iminophosphoranes. Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, Wiley-VCH Verlag, 2009, 10.1002/zaac.200900311. hal-00518304 HAL Id: hal-00518304 https://hal.archives-ouvertes.fr/hal-00518304 Submitted on 17 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ZAAC 2,5,8-Trihydrazino-s-heptazine: a precursor for heptazine- based iminophosphoranes Journal: Zeitschrift für Anorganische und Allgemeine Chemie Manuscript ID: zaac.200900311.R1 Wiley - Manuscript type: Article Date Submitted by the 17-Jul-2009 Author: Complete List of Authors: Kroke, Edwin; TU Bergakademie Freiberg, Institut fuer Anorganische Chemie Saplinova, Tatyana; TU Bergakademie Freiberg,
    [Show full text]
  • Investigations Into S-Heptazine-Based Carbon Nitride Precursors
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Investigations into s-Heptazine-Based Carbon Nitride Precursors Andreas Sattler aus Augsburg 2010 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Wolfgang Schnick betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbstständig, ohne unerlaubte Hilfe erarbeitet. München, den 12.02.2010 Andreas Sattler Dissertation eingereicht am 15.02.2010 1. Gutachter: Prof. Dr. Wolfgang Schnick 2. Gutachter: Prof. Dr. Dirk Johrendt Mündliche Prüfung am 20. April 2010 ii Für meine Familie und Freunde Und für alle denen dies Information und Hilfe sein mag iii iv Acknowledgements First of all, I would like to express my gratitude to Prof. Dr. Wolfgang Schnick for hav- ing granted me the opportunity to work in his research group. His guidance and expertise have been invaluable for the present work. I am most grateful to Prof. Dr. Dirk Johrendt for his willingness to be the co-referee of this thesis. I thank Prof. Dr. Bettina V. Lotsch, Prof. Dr. Jürgen Senker, Prof. Dr. Konstantin Karaghiosoff and Priv. Doz. Dr. Klaus Müller-Buschbaum for being available as examiners in my viva-voce. The past and present members of the work group and other members of the department, whose company I have had the honor to enjoy, have helped and supported me in a multitude of ways. Working with these fine colleagues has become a part of my life that I will look back upon often and happily. I would like to address special thanks and gratitude to: My predecessors Dr.
    [Show full text]
  • What Does Graphitic Carbon Nitride Really Look Like?†
    What Does Graphitic Carbon Nitride Really Look Like?† Sigismund T.A.G. Melissen,a Tangui Le Bahers,b, Philippe Sautet,c;d, and Stephan N. Steinmann,∗b Graphitic Carbon Nitrides (g-CNs) have become popular light absorbers in photocatalytic water splitting cells. Early theoretical work on these structures focused on fully polymerized g-C3N4. Experimentally, it is known that the typically employed melamine polycondensation does not go toward completion, yielding structures with ∼15 at.% hydrogen. Here, we study the conformational stability of “melon”, with the [C6N9H3]n structural formula using DFT. Referencing to a 2D melon sheet, B3LYP-dDsC and PBE-MBD computations revealed the same qualitative trend in stability of the 3D structures, with several of them within 5 kJ/mol per tecton. Fina’s orthorhombic melon is the most stable of the studied conformers, with Lotsch’ monoclinic melon taking an intermediate value. Invoking a simple Wannier-Mott-type approach, Fina’s and Lotsch’ structures exhibited the lowest optical gaps (2.8 eV), within the error margin of the experimental value (2.7 eV). All conformers yielded gaps below that of the monolayer’s (3.2 eV), suggesting Jelley-type (“J”) aggregation effects. 1 Introduction provided. 13 As an alternative to photovoltaics, solar energy can be stored in n n n CN2H2 (l) ! C2N4H4 (l) ! C3N6H6 (l) (1a) the form of chemical bonds, counteracting the diurnal variation in 2 3 solar power. To design chemical schemes allowing such storage, 1 n ! [C N H ] (s) + NH (g) (1b) inspiration can be drawn from the photosynthetic process found 6 6 9 3 n 2 3 in nature.
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns: Section 10
    standard X-ray Diffraction Powder Patterns ^v^iSection 10-Data for 84 Substances ^•2. — Howard E. Swanson, Howard F. McMurdie, Marlene C. Morris lliloise H. Evans, and Boris Paretzkin Assisted by Johan H. deGroot and Simon J. Carmel Institute for Materials Research -y.J National Bureau of Standards ' Washington, D.C. 20234 U.S. DEPARTMENT OF COMMERCE, Refer G. Peterson, Secretary NATIONAL BUREAU OF STANDARDS, Lawrence M. Kushner, AcUng Director, Issued November 1972 Library of Congress Catalog Card Number: 53—61386 National Bureau of Standards Monograph 25 Section 10—Data for 84 Substances Nat. Bur. Stand. (U.S.), Monogr. 25— Sec. 10,161 pages (Nov. 1972) CODEN: NBSMA6 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13.44: 25/Sec. 10). Price $2.00 CONTENTS Page Page Introduction 1 Zinc manganese oxide (hetaerolite), ZnMn20^ 61 Experimental patterns: Zinc tin oxide, Zn2Sn04 62 Ammonium aluminum sulfate, NH^AKSO^)^ 5 Calculated patterns: Ammonium copper bromide hydrate, (NH^)2CuBr^"2H20 .. 6 Barium bromide, BaBr2 63 Ammonium iodate, NH^IOj 7 Barium iodide, Bal2 66 Ammonium iron sulfate, NH^Fe(S0^)2 8 Boron oxide, B2O3 phase 1 70 Ammonium magnesium aluminum fluoride, NH^IVIgAIFg ... 9 Calcium iron silicate hydroxide, julgoldite, Barium bromide fluoride, BaBrF 10 Ca2Fe3Si30jo(OH,0)2(OH)2 72 Barium chloride fluoride, BaCIF 11 Calcium malate hydrate, CaC4H405-2H20 76 Barium sulfate (barite), BaSO^ (revised). 12 Cesium lithium cobalt cyanide, CsLiCo(CN)g 79 Cadmium
    [Show full text]
  • Bioinspired Hollow Semiconductor Nanospheres As Photosynthetic Nanoparticles
    ARTICLE Received 31 May 2012 | Accepted 20 Sep 2012 | Published 16 Oct 2012 DOI: 10.1038/ncomms2152 Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles Jianhua Sun1, Jinshui Zhang1, Mingwen Zhang1, Markus Antonietti2, Xianzhi Fu1 & Xinchen Wang1 Natural photosynthesis occurs in the thylakoid membrane where functional proteins and electron carriers are precisely arranged to efficiently convert sunlight into a chemical potential between the two membrane sides, via charge separation and electron transport chains, for use in oxygen generation and CO2 fixation. These light-harvesting complexes and cofactors have been actively mimicked using dyes, semiconductors and catalytic nanoparticles. However, the photosynthetic scaffold that optimizes both the capture and distribution of light and separates both the oxidative and reductive species has been mimicked much less often, especially using polymer substances. Here we report the synthesis of hollow nanospheres sized in the optical range and made of a robust semiconductor, melon or carbon-nitride polymer. These hollow nanospheres are shown to function as both light-harvesting antennae and nanostructured scaffolds that improve photoredox catalysis, which was determined to have a 7.5% apparent quantum yield via a hydrogen-generation assay. 1 Research Institute of Photocatalysis, Fujian Provincial Key Laboratory of Photocatalysis, State Key Laboratory Breeding Base, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, PR China. 2 Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany. Correspondence and requests for materials should be addressed to X.W. (email: [email protected]). NATURE COMMUNICATIONS | 3:1139 | DOI: 10.1038/ncomms2152 | www.nature.com/naturecommunications © 2012 Macmillan Publishers Limited.
    [Show full text]
  • Transgenic Approach to Improve Quality Traits of Melon Fruit
    Scientia Horticulturae 108 (2006) 268–277 www.elsevier.com/locate/scihorti Transgenic approach to improve quality traits of melon fruit Zhengguo Li a,*, Lihu Yao b, Yingwu Yang a, Aidong Li a a Genetic Engineering Research Center, Chongqing University, Chongqing 400030, China b Imperial Flavours Inc., Mississauga, Ont., Canada L4T 3L8 Received 31 January 2005; received in revised form 12 January 2006; accepted 2 February 2006 Abstract Melon is one of the economically important and widely cultivated vegetable crops in the world. There is a wide genetic diversity in the cultivated and wild species of melon. Melon as one of the most consumed fruits, the development and ripening of fruit is known to be a complex developmental process that involves many biochemical and physiological changes including the breakdown of chlorophyll, degradation of the cell wall, increase in sugars content, alteration in pigment biosynthesis, and the accumulation of flavour and aromatic compounds. However, the information on genetic engineering and molecular biology of melon is very limited. With the development of genetics and molecular biology, a large number of quality/ripening-regulated genes involved in pigmentation, vitamin, soluble carbohydrate metabolism, cell wall metabolism and ethylene biosynthesis have been identified in melons. Some genetic manipulations of melons have been proved to be useful technology to improve quality, sensory attributes, shelf life and other agronomic traits of melon fruit. This paper reviewed some progresses in the trangenic approach to improve quality traits of melon fruit. # 2006 Elsevier B.V. All rights reserved. Keywords: Melon (Cucumis melo L.); Genetic engineering; Fruit; Quality trait; Ethylene 1.
    [Show full text]
  • Towards Rational Design of Carbon Nitride Photocatalysts: Identification of Cyanamide “Defects” As Catalytically Relevant Sites
    Towards rational design of carbon nitride photocatalysts: Identification of cyanamide “defects” as catalytically relevant sites Vincent Wing-hei Lau, Igor Moudrakovski, Tiago Botari, Simon Weinburger, Maria B. Mesch, Viola Duppel, Jürgen Senker, Volker Blum, Bettina V. Lotsch Abstract The heptazine-based polymer melon (also known as graphitic carbon nitride, g-C3N4), is a promising photocatalyst for hydrogen evolution. Nonetheless, attempts to improve its inherently low activity are rarely based on rational approaches due to a lack of fundamental understanding of its mechanistic operation. Here, we employ molecular heptazine-based model catalysts to identify the cyanamide moiety as a photocatalytically relevant "defect". We exploit this knowledge for the rational design of a carbon nitride polymer populated with cyanamide groups, yielding a material with 12- and 16-times the hydrogen evolution rate and apparent quantum efficiency (400 nm), respectively, compared to the benchmark melon. Computational modelling and material characterization suggest this moiety improves co-ordination (and, in turn, charge transfer kinetics) to the platinum co-catalyst and enhances the separation of the photo-generated charge carriers. The demonstrated knowledge transfer for rational catalyst design presented here provides the conceptual framework for engineering high performance heptazine-based photocatalysts. Introduction Photocatalytic hydrogen evolution is considered to be a promising technology for the direct capture and storage of solar energy, since the energy stored in the hydrogen-hydrogen bond can be extracted in high efficiency without producing environmentally harmful by-products.1 Numerous materials2 have been reported since Honda’s and Fujishima’s seminal report3 on water splitting photocatalyzed by titanium dioxide, yet none of them are at a stage for industrial deployment.
    [Show full text]
  • Ep 1 854 797 A1
    (19) & (11) EP 1 854 797 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 14.11.2007 Bulletin 2007/46 C07D 487/16 (2006.01) (21) Application number: 06384011.0 (22) Date of filing: 02.05.2006 (84) Designated Contracting States: • Jiménez Alonso, Oscar AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 08006 Barcelona (ES) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI •Holenz, Jörg SK TR Lab. del Dr. Esteve, S.A. Designated Extension States: 08041 Barcelona (ES) AL BA HR MK YU • Corbera Arjona, Jordi Lab. del Dr. Esteve, S.A. (71) Applicant: ISDIN, S.A. 08041 Barcelona (ES) 08006 Barcelona (ES) • Payella, David 08030 Barcelona (ES) (72) Inventors: • Pelejero, Carles • Schwarz, Marcus 08030 Barcelona (ES) Leipzigerstr. 29 • Trullas, Carles Ramón 09596 Freiberg (ES) 08030 Barcelona (ES) • Buschmann, Helmut H. Lab. del Dr. Esteve, S.A. (74) Representative: Barlocci, Anna et al 08041 Barcelona (ES) ZBM Patents • Kroke, Edwin Zea, Barlocci & Markvardsen Leipziger Str. 29, 09596 Freiberg (DE) C/ Balmes, 114 - 4T 08008 Barcelona (ES) (54) Process for preparing cyameluric chloride (57) The present invention concerns an improved process for obtaining larger quantities (several 10 grams up to kilograms) of pure cyameluric chloride (I) by chlo- rination of cyameluric acid (C6N7(OH)3) or its alkaline salts followed by fractioned vacuum sublimation. EP 1 854 797 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 1 854 797 A1 2 Description tives for rocket propellants (see US 3,202,659), stabiliz- ers for photographic emulsions (see US 2,704,716 and FIELD OF THE INVENTION US 2,801,172), dyes (see DE 1,102,321), graphitic C3N4 structures as a suitable precursors of superhard C3N4 [0001] The present invention concerns an improved 5 phases (see Kroke,E.; New J.
    [Show full text]