What Does Graphitic Carbon Nitride Really Look Like?†

Total Page:16

File Type:pdf, Size:1020Kb

What Does Graphitic Carbon Nitride Really Look Like?† What Does Graphitic Carbon Nitride Really Look Like?† Sigismund T.A.G. Melissen,a Tangui Le Bahers,b, Philippe Sautet,c;d, and Stephan N. Steinmann,∗b Graphitic Carbon Nitrides (g-CNs) have become popular light absorbers in photocatalytic water splitting cells. Early theoretical work on these structures focused on fully polymerized g-C3N4. Experimentally, it is known that the typically employed melamine polycondensation does not go toward completion, yielding structures with ∼15 at.% hydrogen. Here, we study the conformational stability of “melon”, with the [C6N9H3]n structural formula using DFT. Referencing to a 2D melon sheet, B3LYP-dDsC and PBE-MBD computations revealed the same qualitative trend in stability of the 3D structures, with several of them within 5 kJ/mol per tecton. Fina’s orthorhombic melon is the most stable of the studied conformers, with Lotsch’ monoclinic melon taking an intermediate value. Invoking a simple Wannier-Mott-type approach, Fina’s and Lotsch’ structures exhibited the lowest optical gaps (2.8 eV), within the error margin of the experimental value (2.7 eV). All conformers yielded gaps below that of the monolayer’s (3.2 eV), suggesting Jelley-type (“J”) aggregation effects. 1 Introduction provided. 13 As an alternative to photovoltaics, solar energy can be stored in n n n CN2H2 (l) ! C2N4H4 (l) ! C3N6H6 (l) (1a) the form of chemical bonds, counteracting the diurnal variation in 2 3 solar power. To design chemical schemes allowing such storage, 1 n ! [C N H ] (s) + NH (g) (1b) inspiration can be drawn from the photosynthetic process found 6 6 9 3 n 2 3 in nature. Such schemes are commonly referred to as “artificial 1 n photosynthesis”. 1 ! [C N ] (s) + NH (g) (1c) 3 3 4 n 6 3 An elegant route to perform artificial photosynthesis is by us- ing graphitic (g-) carbon nitride (CN), with general formula g- In Fig. 1 the key species discussed in this study are depicted. 2–8 CxNyHz, as photoharvester in photocatalytic water splitting The melamine core can be integrated directly as a tecton yielding cells. 9,10 Its synthesis from basic petrochemicals is cheap and gt-CNs (t for triazine). The melem core, however, yields the more straightforward, while allowing a wide structural variety. 11 Fur- stable gh-CNs (h for heptazine). thermore, putting such compounds to use in renewable energy Following pioneering theoretical work by Liu and Prewitt in the sources, instead of in fuels, is environmentally beneficial. 12 late 1980s, 14,15 many computational studies have been devoted 16 17–19 In Eq. 1 the formal reaction scheme from cyanamide to g-C3N4 is to fully deaminated CN. gt-C3N4, gh-C3N4, and other polymorphs 20,21 have been extensively studied, even though it is well known that these species are unstable, 22 decomposing at the a Université de Lyon, Université Claude Bernard Lyon 1, synthesis temperature that would typically be required to produce 23 CNRS, Institut Lumière Matière, F-69622 Lyon, France them. Furthermore, frequent presentation of these fully deam- b Université de Lyon, Université Claude Bernard Lyon 1, inated structures as flat, 18,24 rather than corrugated, 3,25 added Ecole Normale Supérieure de Lyon, CNRS, further confusion to the research field. Finally, the community in- 46 allée d’Italie, F-69007 Lyon Cedex. E-mail: [email protected] c Department of Chemical and Biomolecular engineering, University of California, Los vestigating the photocatalytic activity of these structures doubts Angeles, Los Angeles, CA 90095, USA that by increasing the degree of polycondensation, increasing d Department of Chemistry and Biochemistry, University of California, Los Angeles, Los photocatalytic activity should always be found: participation of Angeles, CA 90095, USA N lone pairs in denser p-aromatic networks reduces their ability † Electronic Supplementary Information (ESI) available: Energies for additional to bond to the noble metal cocatalyst that enables the half re- functionals and a comparison of computational unit cells to the experimental ones is provided. All structures are provided in POSCAR (Vienna Ab Initio Simulation Pack- action leading to H2, and defects - rather than always trapping 7,26–34 age (VASP)) format; subsequently in .gui (CRYSTAL14 format) and finally, for the 3D electrons or holes - possibly enhance the reaction. We re- structures only, in .cif (Crystallographic) format. See DOI: 10.1039/cXCP00000x/ Journal Name, [year], [vol.], 1–9 | 1 N NH 2 N N N N N N Cyanamide, CN2H2 H NN N N N N N N N N N H a H N N N N NH2 NNN N N N N N N N N N H N N H N N N N N N N N N N N N N H H N N H2N N NH2 N N N N N N N N N N N H Melamine, C3N6H6 N N N H N N N N N N N N N N N N H NH2 N N N H N N N N a N N N N N N N N H b b N N N N N N N NC N N N N N N H2N N N NH2 Melem, C6N10H6 Melon (gh-C6N9H3) gh-C3N4 Fig. 1 Overview of structures involved in the CN synthesis process. Melem’s core N atom is indexed C. ported earlier 22 that among the different polymeric species that sealed ampoule (Fina) or under ammonia (Lotsch). The influence 35 form during CN synthesis, gh-C6N9H3, known as “melon” is the of the synthesis conditions on the obtained polymorph and the most stable one. significant impact that it can have on photoactivity, has been de- 44 Melon can be synthesized using starting materials comprising a scribed before for other organic semiconductors. Furthermore, wider range of chemical elements than C, N and H alone, such as the structure analysis temperature could also affect the particular 36 37 crystal structure observed. 45 urea (CO(NH2)2) and thiourea (CS(NH2)2). Lotsch and co- workers 23,28,35 established the synthesis temperature range for In Fig. 2, the possible variations in stacking patterns studied here the typical melamine precursor. Polymerization onset 28,38 occurs are provided. Essentially (Fig. 2a), the shaded layer below the at 380 °C (in an open vessel). At the high end of this range crys- reference layer can shift in the hydrogen bonding direction (cor- talline 35 melon is produced (630 °C, closed vessel conditions). responding to b) by dH, and/or in the covalent bonding direction At higher temperatures the onset of material degradation is ob- by dCov. Second (Fig. 2b,c), the stacking pattern can be ABAB, served. 23,38 In practice, the experimental parameters are often or AAAA. In the latter case, AA-stacking does not mean that the compromises between these extremes. 38–40 layers are sandwich stacked. Rather, p-aromatic systems such as The stability of g-CN is largely due to the specific balance be- those discussed here tend to shift slightly with respect to each 46 tween steric repulsion, hydrogen bonding and the formation of other. Finally, variations in interaromatic distances (dAr-Ar), as a p-conjugated network. As can be understood from Fig. 1, the well as in the lattice vectors within the aromatic plane are possi- ble (arbitrarily referred to here as a, b), although these variations lone pairs in the hypothetical gh-C3N4 repel each other forcing a (partial) breaking of the overall p-conjugation, and causing the are typically smaller. We study four important conformers reported in the literature. material to be corrugated. The hydrogen atoms in gh-C6N9H3 stabilize several of these lone pairs, spatially separate others, and The first conformer is named “Lotsch”, representing the first allow the formation of a flat, aromatic network overall. 22 The melon characterized. It has an AA stacking pattern and dH = flat laminae themselves are interesting and can be integrated into 0. The structure determined from the aforementioned neutron other structures. Indeed, the Van der Waals structures they can scattering study is named “Fina”, with dH 6= dCov 6= 0 and AB- form are not just those that are created by stacking with itself, stacking. The third and fourth structures are included in Fina’s but also by interleaving other species. 41 Within this strategy, in- comparison and here the same labels are adopted, namely S1 for terleaving with molybdenum dichalcogenides to allow fast charge the alternative monoclinic structure and S2 for the alternative tri- separation is of particular experimental 42 and theoretical inter- clinic structure. S1 has an AA stacking pattern and dCov = 0. For est 43. Here, we focus on the question what particular lamination S2, like Fina, dH 6= dCov 6= 0, but the stacking pattern is AA. In- 22 pattern between gh-C N H layers yields the most stable form of cluded in the comparison are lastly 1D and 2D melon. 6 9 3 47 melon. A 2010 study that combined combined theory (molecular me- chanics level of theory 48) and dedicated Nuclear Magnetic Reso- In 2015, Fina et al. 40 published a neutron-scattering study of a nance (NMR) experiments 49 of melon conformers suggested that melon conformer with a different packing structure from the one configurations resembling Lotsch’ – with d = 0 – and Fina’s determined by Lotsch et al. in 2007. 35 Both Fina and Lotsch syn- Cov – with d >> d > 0 – to be the two prevalent ones within thesized the conformers studied here from melamine in a sealed H Cov melon macrostructures. These authors further proposed that the environment, the main differences in protocol being the temper- proximity in energies of the structures was the reason that ex- ature, 500 °C in Fina’s case and 630°C in Lotsch’ and working in a 2 | 1–9 Journal Name, [year], [vol.], Fig.
Recommended publications
  • Graphitic Carbon Nitride-Based Composite in Advanced Oxidation Processes for Aqueous Organic Pollutants Removal: a Review
    processes Review Graphitic Carbon Nitride-Based Composite in Advanced Oxidation Processes for Aqueous Organic Pollutants Removal: A Review Yu Shen, Antonio J. Dos santos-Garcia and María José Martín de Vidales * Department of Mechanical, Chemical and Industrial Design Engineering, ETSIDI, Universidad Politécnica de Madrid (UPM), 28012 Madrid, Spain; [email protected] (Y.S.); [email protected] (A.J.D.s.-G.) * Correspondence: [email protected]; Tel.: +34-91-067-7722 Abstract: In recent decades, a growing number of organic pollutants released have raised world- wide concern. Graphitic carbon nitride (g-C3N4) has drawn increasing attention in environmental pollutants removal thanks to its unique electronic band structure and excellent physicochemical stability. This paper reviews the recent progress of g-C3N4-based composites as catalysts in various advanced oxidation processes (AOPs), including chemical, photochemical, and electrochemical AOPs. Strategies for enhancing catalytic performance such as element-doping, nanostructure design, and heterojunction construction are summarized in detail. The catalytic degradation mechanisms are also discussed briefly. Keywords: graphitic carbon nitride; aqueous organic pollutants removal; advanced oxidation pro- cesses 1. Introduction In recent years, environmental pollution, especially water pollution, is increasingly Citation: Shen, Y.; Dos santos-Garcia, becoming a major concern worldwide. Many organic pollutions, such as pharmaceuticals and A.J.; Martín de Vidales, M.J. Graphitic personal care products (PPCPs), pesticides, and organic dyes are toxic and refractory [1–4]. Carbon Nitride-Based Composite in Various techniques have been developed to eliminate aqueous organic pollutants (e.g., Advanced Oxidation Processes for extraction, adsorption, biological treatment, and advanced oxidation processes) [5–9].
    [Show full text]
  • Graphitic Carbon Nitride: a Highly Electroactive Nanomaterial for Environmental and Clinical Sensing
    sensors Review Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing Azeez O. Idris * , Ekemena O. Oseghe, Titus A. M. Msagati , Alex T. Kuvarega, Usisipho Feleni and Bhekie Mamba Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; [email protected] (E.O.O.); [email protected] (T.A.M.M.); [email protected] (A.T.K.); [email protected] (U.F.); [email protected] (B.M.) * Correspondence: [email protected] Received: 12 August 2020; Accepted: 23 September 2020; Published: 10 October 2020 Abstract: Graphitic carbon nitride (g-C3N4) is a two-dimensional conjugated polymer that has attracted the interest of researchers and industrial communities owing to its outstanding analytical merits such as low-cost synthesis, high stability, unique electronic properties, catalytic ability, high quantum yield, nontoxicity, metal-free, low bandgap energy, and electron-rich properties. Notably, graphitic carbon nitride (g-C3N4) is the most stable allotrope of carbon nitrides. It has been explored in various analytical fields due to its excellent biocompatibility properties, including ease of surface functionalization and hydrogen-bonding. Graphitic carbon nitride (g-C3N4) acts as a nanomediator and serves as an immobilization layer to detect various biomolecules. Numerous reports have been presented in the literature on applying graphitic carbon nitride (g-C3N4) for the construction of electrochemical sensors and biosensors. Different electrochemical techniques such as cyclic voltammetry, electrochemiluminescence, electrochemical impedance spectroscopy, square wave anodic stripping voltammetry, and amperometry techniques have been extensively used for the detection of biologic molecules and heavy metals, with high sensitivity and good selectivity.
    [Show full text]
  • Comparison of Graphitic Carbon Nitrides Synthetized from Melamine
    materials Article Comparison of Graphitic Carbon Nitrides Synthetized from Melamine and Melamine-Cyanurate Complex: Characterization and Photocatalytic Decomposition of Ofloxacin and Ampicillin Petr Praus 1,2,* , Aneta Smýkalová 1,2 and Kryštof Foniok 1 1 Department of Chemistry VŠB-Technical, University of Ostrava, 17. listopadu 15, 708 00 Ostrava-Poruba, Czech Republic; [email protected] (A.S.); [email protected] (K.F.) 2 Institute of Environmental Technology, VŠB-Technical, University of Ostrava, 17. listopadu 15, 708 00 Ostrava-Poruba, Czech Republic * Correspondence: [email protected] Abstract: Graphitic carbon nitride (g-C3N4, hereafter abbreviated as CN) was prepared by the heating of melamine (CN-M) and melamine-cyanurate complex (CN-MCA), respectively, in air at 550 ◦C for 4 h. The specific surface area (SSA) of CN-M and CN-MCA was 12 m2 g−1 and 225 m2g−1 and the content of oxygen was 0.62 wt.% and 1.88 wt.%, respectively. The band gap energy (Eg) of CN-M was 2.64 eV and Eg of CN-MCA was 2.73 eV. The photocatalytic activity of the CN materials was tested by means of the decomposition of antibiotics ofloxacin and ampicillin under LED irradiation of 420 nm. The activity of CN-MCA was higher due to its high SSA, which was determined based on the physisorption of nitrogen. Ofloxacin was decomposed more efficiently than ampicillin in the presence of both photocatalysts. Citation: Praus, P.; Smýkalová, A.; Foniok, K. Comparison of Graphitic Keywords: graphitic carbon nitride; melamine; melamine-cyanurate complex; photocatalysis; Carbon Nitrides Synthetized from ofloxacin; ampicillin Melamine and Melamine-Cyanurate Complex: Characterization and Photocatalytic Decomposition of Ofloxacin and Ampicillin.
    [Show full text]
  • Simple Synthesis of High Specific Surface Carbon Nitride For
    Wang et al. Nanoscale Research Letters (2018) 13:248 https://doi.org/10.1186/s11671-018-2654-7 NANOEXPRESS Open Access Simple Synthesis of High Specific Surface Carbon Nitride for Adsorption-Enhanced Photocatalytic Performance Jie Wang1,2, Meisheng Li1*, Ming Qian1, Shouyong Zhou1, Ailian Xue1, Lili Zhang1, Yijiang Zhao1* and Weihong Xing2 Abstract TMC-incorporated carbon nitride (CN) with hexagonal and quadrangle honeycomb-like structure and having periodic lattice defects linked by –CONH– bond was synthesized through combining the high calcination with the chemical condensation of melamine and 1,3,5-benzenetricarbonyl trichloride. The obtained CN has a tri-s-triazine ring and benzene ring skeleton, which makes it have excellent mechanical and thermal stability. The BET specific surface area was enhanced to about 125.6 m2/g, and the mean pore size is about 3.43 nm. This CN exhibited an excellent adsorption-enhanced photocatalytic performance. Keywords: Carbon nitride materials, Melamine, Nanoparticles, Sintering Background [4]. Then, the enhancement of specific BET surface for Graphite carbon nitride (g-C3N4), possessing a two-di- g-C3N4 was very important. mensional (2D) nanosheet structure like graphene, has Inspired by the structures of covalent organic frame- attracted much attention recently. The basic skeleton work materials (COFs) [11–16] and their preparation structure of g-C3N4 consists of tri-s-triazine units con- methods [17], we try to combine the high calcination nected with tertiary amino groups, which owns regularly with the chemical condensation to prepare a new kind distributed triangular water-selective permeation nano- of porous TMC-incorporated carbon nitride (CN) linked pores throughout the entire laminar structure.
    [Show full text]
  • Sustainable Applications of Magnetic Nano-Catalysts and Graphitic Carbon Nitrides
    Sustainable Applications of Magnetic Nano-Catalysts and Graphitic Carbon Nitrides Rajender S. Varma Sustainable Technology Division National Risk Management Research Laboratory U. S. Environmental Protection Agency 26 West Martin Luther King Drive, MS 443 Cincinnati, OH-45268 Fax: 513- 569-7677; Tel: 513-487-2701 E-mail: [email protected] •Sustainable synthesis of chemical entities by microwave heating with nano-catalysis in water •Green Chemistry principles are accommodated via multi-faceted approach Minimum Chemical Energy Waste Efficiency Benign Solvents Atom Economy Green Organic Efficient Isolation Chemistry Processes Renewable Feedstock Sustainable Synthetic Safer Method Catalysts & Reagents Microwave Assisted Green Organic Chemistry in Aqueous Medium Seminal Review Articles on these themes summarizing our in-house research: Acc. Chem. Res., 2008, 41, 629; Acc. Chem. Res., 2011, 44, 469-478; Acc. Chem. Res., 2014, 47, 1338-1348 Chem. Soc. Rev., 2008, 37, 1546-1557; Chem. Soc. Rev., 2012, 41, 1559-1584 Chem. Rev., 2016,116, 3722-3811; ACS Sustain. Chem. & Eng., 2016, 4, 5866-5878 Pure App. Chem., 2008, 80, 777-790; Pure App. Chem., 2013, 85, 1703-1710. Curr. Opin. Drug Disc., 2007, 10, 723-737. Green Chem., 1999, 1, 43-55; Green Chem., 2010, 12, 743-754; Green Chem., 2014, 16, 2027-2041. Coord. Chem. Rev., 2015, 291, 68-94; Coord. Chem. Rev., 2015, 287, 137-156. Work During March 2008 to May 2010…. Sugar Plant Extract Vitamins Tea Tea Microwave Wine Water Green Synthesis of Nanomaterials •PROBLEM: Synthesize nanomaterials in a sustainable fashion. •TECHNOLOGY SOLUTION: Learning from Nature- Use the elegance of Riboflavin (Vitamin B2) for redox chemistry. •CURRENT STATUS: Self-assembly of nanoparticles demonstrated Nadagouda & Varma: Green Chemistry, 8, 516, (2006) Green Synthesis of Nanomaterials PROBLEM: Synthesize nanomaterials in a sustainable manner.
    [Show full text]
  • Graphitic Carbon Nitride (G-C3N4), an Organic Semiconductor That Proved a Suitable Photocatalyst for Hydrogen Production from Water
    METAL LOADED G-C₃N₄ FOR VISIBLE LIGHT-DRIVEN H₂ PRODUCTION Federica Fina A Thesis Submitted for the Degree of PhD at the University of St Andrews 2014 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/6322 This item is protected by original copyright This item is licensed under a Creative Commons Licence Metal loaded g-C3N4 for visible light-driven H2 production by Federica Fina A thesis submitted in partial fulfilment for the degree of PhD at the University of St Andrews 2014 I, Federica Fina hereby certify that this thesis, which is approximately 50,000 words in length, has been written by me, and that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in January 2011 and as a candidate for the degree of Doctor of Philosophy in August 2014; the higher study for which this is a record was carried out in the University of St Andrews between 2011 and 2014. Date …………….………….. Signature of candidate …………….………….. I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Doctor of Philosophy in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date …………….………….. Signature of supervisor …………….………….. In submitting this thesis to the University of St Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby.
    [Show full text]
  • Ab-Initio Spectroscopic Characterization of Melem-Based Graphitic Carbon Nitride Polymorphs
    nanomaterials Article Ab-Initio Spectroscopic Characterization of Melem-Based Graphitic Carbon Nitride Polymorphs Aldo Ugolotti and Cristiana Di Valentin * Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy * Correspondence: [email protected] Abstract: Polymeric graphitic carbon nitride (gCN) compounds are promising materials in photoacti- vated electrocatalysis thanks to their peculiar structure of periodically spaced voids exposing reactive pyridinic N atoms. These are excellent sites for the adsorption of isolated transition metal atoms or small clusters that can highly enhance the catalytic properties. However, several polymorphs of gCN can be obtained during synthesis, differing for their structural and electronic properties that ultimately drive their potential as catalysts. The accurate characterization of the obtained material is critical for the correct rationalization of the catalytic results; however, an unambiguous experimental identification of the actual polymer is challenging, especially without any reference spectroscopic features for the assignment. In this work, we optimized several models of melem-based gCN, taking into account different degrees of polymerization and arrangement of the monomers, and we present a thorough computational characterization of their simulated XRD, XPS, and NEXAFS spectroscopic properties, based on state-of-the-art density functional theory calculations. Through this detailed study, we could identify the peculiar fingerprints of each model and correlate them with its structural and/or electronic properties. Theoretical predictions were compared with the experimental data Citation: Ugolotti, A.; Di Valentin, C. whenever they were available. Ab-Initio Spectroscopic Characterization of Melem-Based Keywords: graphitic carbon nitride; melon; melem polymerization; XPS; NEXAFS; XRD; DFT; Graphitic Carbon Nitride surface science Polymorphs.
    [Show full text]
  • Photocatalysis), and Preparation Techniques of Graphitic Carbon Nitride Nano-Based Particle, and Its Applications Williams Kweku Darkwah and Yanhui Ao*
    Darkwah and Ao Nanoscale Research Letters (2018) 13:388 https://doi.org/10.1186/s11671-018-2702-3 NANO REVIEW Open Access Mini Review on the Structure and Properties (Photocatalysis), and Preparation Techniques of Graphitic Carbon Nitride Nano-Based Particle, and Its Applications Williams Kweku Darkwah and Yanhui Ao* Abstract Graphite carbon nitride (g-C3N4) is well known as one of the most promising materials for photocatalytic activities, such as CO2 reduction and water splitting, and environmental remediation through the removal of organic pollutants. On the other hand, carbon nitride also pose outstanding properties and extensive application forecasts in the aspect of field emission properties. In this mini review, the novel structure, synthesis and preparation techniques of full-bodied g-C3N4-based composite and films were revealed. This mini review discussed contemporary advancement in the structure, synthesis, and diverse methods used for preparing g-C3N4 nanostructured materials. The present study gives an account of full knowledge of the use of the exceptional structural and properties, and the preparation techniques of graphite carbon nitride (g-C3N4) and its applications. Keywords: Photocatalysis, Graphite carbon nitride (g-C3N4), Carbon nitride nano-based particle Introduction Predominantly, wastewater is the major source of pol- The central energy source elated from the extraterrestrial lution, specifically, wastewater produced due to chemical space, solar energy capacities to surpass the almanac industrialization, because this wastewater contains pro- world’s energy request by a large border [1]. Given the nounced concentration of large organic fragments which long forecast era of the Sun, solar energy is also consid- are tremendously poisonous and carcinogenic in nature ered the ultimate renewable source that can be harvested [3].
    [Show full text]
  • Graphitic Carbon Nitride “
    Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Graphitic carbon nitride ‘‘reloaded’’: emerging applications beyond (photo)catalysis Cite this: Chem. Soc. Rev., 2016, 45,2308 Jian Liu,*ab Hongqiang Wang*cd and Markus Antoniettia Despite being one of the oldest materials described in the chemical literature, graphitic carbon nitride (g-C3N4) has just recently experienced a renaissance as a highly active photocatalyst, and the metal-free polymer was shown to be able to generate hydrogen under visible light. The semiconductor nature of g-C3N4 has triggered tremendous endeavors on its structural manipulation for enhanced photo(electro)chemical performance, aiming at an affordable clean energy future. While pursuing the stem of g-C3N4 related catalysis (photocatalysis, electrocatalysis and photoelectrocatalysis), a number of emerging intrinsic properties of g-C3N4 are certainly interesting, but less well covered, and we believe that these novel applications outside of conventional catalysis can be favorably exploited as well. Thanks to the general efforts devoted to the exploration and enrichment of g-C3N4 based chemistry, the boundaries of this area have Creative Commons Attribution 3.0 Unported Licence. been possibly pushed far beyond what people could imagine in the beginning. This review strives to cover the achievements of g-C3N4 related materials in these unconventional application fields for depicting the broader future of these metal-free and fully stable semiconductors. This review starts with Received 13th October 2015 the general protocols to engineer g-C3N4 micro/nanostructures for practical use, and then discusses the DOI: 10.1039/c5cs00767d newly disclosed applications in sensing, bioimaging, novel solar energy exploitation including photocatalytic coenzyme regeneration, templating, and carbon nitride based devices.
    [Show full text]
  • Preparation and Characterization of Metal-Free Graphitic Carbon Nitride Film Photocathodes for Light-Induced Hydrogen Evolution
    Preparation and characterization of Metal-free graphitic Carbon Nitride Film Photocathodes for Light-induced Hydrogen Evolution F. Yang[a], M. Lublow[a], S. Orthmann[a], C. Merschjann[a], T. Tyborski[a], M. Rusu[a], M. Kanis[a], A. Thomas[b], R. Arrigo[c], M. Hävecker[c], Th. Schedel-Niedrig*[a] Very recently, it has been shown that an abundant material, polymeric nanocrystallites. Photo-electrochemical investigations show upon carbon nitride, can produce hydrogen from water under visible-light cathodic polarization light-induced hydrogen evolution for a wide irradiation in the presence of a sacrificial donor [1]. We will present range of proton concentrations in the aqueous electrolyte. here the preparation and characterization of graphitic carbon nitride Additionally, Synchrotron radiation based photoelectron spectroscopy has been applied to study the surface/near-surface chemical (g-C3N4) films on semiconducting substrates by thermal condensation of dicyandiamide precursor under inert gas conditions. Structural and composition of the utilized g-C3N4 film photocathodes. For the first surface morphological studies of the carbon nitride films suggest a time it is shown that g-C3N4 films can be successfully applied as photoelectrochemical material for light induced hydrogen evolution. high porosity of g-C3N4 thin film consisting of a network of -g-C3N4- via thermal polycondensation reaction of cyanamide, dicyandiamide or melamine used as precursors is thoroughly Introduction described in refs. 1 and 19. In the past 3 decades, a variety of inorganic semiconducting, In the present work g-C3N4 films have been deposited onto polymeric and molecular materials have been synthesized as semiconducting substrates by thermal polycondensation of an catalytically active material for hydrogen evolution from water [2-13] organic dicyandiamide precursor.
    [Show full text]
  • Enhanced Dispersibility of Graphitic Carbon Nitride Particles in Aqueous and Organic Media Via a One Pot Grafting Approach
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MPG.PuRe MPIKG Public Access Author Manuscript Published in final edited form as: Kumru, B., Antonietti, M., & Schmidt, B. V. K. J. (2017). Enhanced Dispersibility of Graphitic Carbon Nitride Particles in Aqueous and Organic Media via a One Pot Grafting Approach. Langmuir, 33(38), 9897-9906. doi:10.1021/acs.langmuir.7b02441. Enhanced Dispersibility of Graphitic Carbon Nitride Particles in Aqueous and Organic Media via a One Pot Grafting Approach Baris Kumru, Markus Antonietti, Bernhard V.K.J. Schmidt ipt Enhanced Dispersibility of Graphitic Carbon Nitride Manuscr · Author · Particles in Aqueous and Organic Media via a One Pot Grafting Approach Baris Kumru, Markus Antonietti, Bernhard V.K.J. Schmidt* Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam (Germany) Max Planck Institute of Colloids and Interfaces Interfaces and Colloids of Institute MaxPlanck KEYWORDS Carbon Nitride, Dispersibility, Grafting ABSTRACT A facile route to synthesize hydrophilically or hydrophobically grafted graphitic carbon nitride (g1CN) is reported. 3or this purpose, functionali0ed olefinic olecules with low poly eri0ation tendency are utili0ed for grafting onto the surface in order to preserve the features of g1CN while i proving its dispersibility. One pot, visible light induced grafting yields highly dispersible g1CNs either in aqueous or organic edia. Moreover, functional groups such as a ine can be introduced, which yields p5 dependent dispersibility in aqueous edia. Co pared with unfunctionali0ed g1CN low sonication ti es are sufficient to redisperse g1CN. In addition, due to increased dispersion stability, higher a ounts of functionali0ed g1CN can be dispersed (up to 107 in aqueous dispersion and 27 in organic dispersion), when co pared to unfunctionali0ed g1CN.
    [Show full text]
  • Dual-Defect-Modified Graphitic Carbon Nitride with Boosted Photocatalytic
    www.nature.com/scientificreports OPEN Dual-defect-modifed graphitic carbon nitride with boosted photocatalytic activity under visible light Hideyuki Katsumata1*, Fumiya Higashi1, Yuya Kobayashi1, Ikki Tateishi2, Mai Furukawa1 & Satoshi Kaneco1,2 The development of photocatalysts that efciently degrade organic pollutants is an important environmental-remediation objective. To that end, we report a strategy for the ready fabrication of oxygen-doped graphitic carbon nitride (CN) with engendered nitrogen defciencies. The addition of KOH and oxalic acid during the thermal condensation of urea led to a material that exhibits a signifcantly higher pseudo-frst-order rate constant for the degradation of bisphenol A (BPA) (0.0225 min−1) compared to that of CN (0.00222 min−1). The enhanced photocatalytic activity for the degradation of BPA exhibited by the dual-defect-modifed CN (Bt-OA-CN) is ascribable to a considerable red-shift in its light absorption compared to that of CN, as well as its modulated energy band structure and more-efcient charge separation. Furthermore, we confrmed that the in-situ-formed cyano groups in the Bt-OA-CN photocatalyst act as strong electron-withdrawing groups that efciently separate and transfer photo-generated charge carriers to the surface of the photocatalyst. This study provides novel insight into the in-situ dual-defect strategy for g-C3N4, which is extendable to the modifcation of other photocatalysts; it also introduces Bt-OA-CN as a potential highly efcient visible-light-responsive photocatalyst for use in environmental-remediation applications. Photocatalytic semiconductor technology is considered to be useful and promising for the remediation of envi- ronmental organic contaminants, because it can efectively decompose pollutants into inorganic compounds, such as CO2 and H2O.
    [Show full text]