Model Theoretic Perspectives on the Philosophy of Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Model Theoretic Perspectives on the Philosophy of Mathematics Model Theoretic Perspectives on the Philosophy of Mathematics John T. Baldwin∗ Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago February 10, 2010 And some infinites are larger than other infinites and some are smaller. Robert Grosseteste 13th century [Fre54] We approach the `practice based philosophy of logic' by examining the practice in one specific area of logic, model theory, over the last century. From this we try to draw lessons not for the philosophy of logic but for the philosophy of mathematics. We argue in fact that the philosophical impact of the developments in mathematical logic during the last half of the twentieth century were obscured by their mathematical depth and by the intertwining with mathematics. That is, that concepts which are normally regarded by both mathematicians and philosophers as `simply mathematics' have philosophical importance. We make two claims. First is that the mere fact that logical methods have had mathematical impact is important for any investigation of mathematical methodology. Twentieth century logic introduced techniques that were important not just for the problems they were originally designed to solve (arising out of Hilbert's program) but across broad areas of mathematics. But, from a philosophical standpoint, there is a further impact. These methods actually provide tools for the analysis of mathematical methodology. We view the practice-based philosophy of `Subject X' as a broad inquiry into and critical analysis of the conceptual foundations of actual work in subject X1. The topic of this workshop was the (practice-based) philosophy of logic and mathematics. These are clearly different areas2; there is a substantial overlap in mathematical logic. By mathematical logic we mean the use of formalization of mathematical arguments and concepts to investigate both mathematics and philosophical questions about mathematics. Emphasizing 20th century model theory, we describe below some aspects of the development of mathematical logic since its foundation by such as Boole, Frege, Pierce, and Shr¨oderin the late 19th century. Thus we restrict to the study of formalization of declarative sentences about mathematical objects3. Other areas of logic, which study more complex natural language sentences (tense, deontic, modal, etc.) and often use mathematical tools, are not discussed here. The longtime standard definition of logic is `the analysis of methods of reasoning'. This does not describe the perspective of a contemporary model theorist. A model theorist is a self-conscious mathematician. A model theorist uses various formal languages and semantics to prove mathematical theorems. But there is an inherently ∗We give special thanks to the Mittag-Leffler Institute where we were able to rethink and focus the ideas of this talk. Baldwin was partially supported by NSF-0500841. The paper builds on a presentation at Notre Dame in Fall of 2008. 1This is a paraphrase of part of Dutilh-Novaes presentation. 2Even if some form of the logicism program had succeeded, as we argue below the logical foundations of mathematics do not exhaust the philosophy of mathematics. 3The ontological status of these objects is not relevant to our analysis. 1 metamathematical aspect. The very notion of model theory involves seeking common patterns across distinct areas of mathematical investigation. One of our goals below is to make this notion of `distinct area' more precise. In particular, we view the practice-based philosophy of mathematics as a broad inquiry into and critical analysis of the conceptual foundations of actual mathematical work. This investigation also includes a study of the basic methodologies and proof techniques of the subject4. The foundationalist goal of justifying mathematics is a part of this study. But the study we envision cannot be carried out by interpreting the theory into an ¨uber theory such as ZFC; too much information is lost. The coding does not reflect the ethos of the particular subject area of mathematics. The intuition behind fundamental ideas such as homomorphism or manifold disappears when looking at a complicated definition of the notion in a language whose only symbol is . Tools must be developed for the analysis and comparison of distinct areas of mathematics in a way that maintains meaning; a simple truth preserving transformation into statements of set theory is inherently inadequate. The traditional foundationalist approach sacrifices explanation on the altar of justification. The discussion below has both a sociological and a philosophical aspect. Sociologically, in this introduction, we describe recent examples illustrating model theoretic practice. Philosophically, in the two main sections of the paper we propose some tools for studying the methodology of mathematics. We outline a program for using model theoretic concepts for a) formalizing a notion of `area of mathematics' and b) analyzing basic concepts of mathematics. In Section 1) we sketch the history of model theory in the twentieth century and in particular the development of the notion of a complete theory. We argue for the notion of a first order complete theory as a useful unit of analysis for describing `an area of mathematics'. We conclude the historical discussion with an introduction to the sophisticated model theoretic methods developed in the last 40 years. In Section 2) we discuss how these methods can provide insight into the way fundamental notions are specified in different areas of mathematics. We glimpse the use of model theoretic notions to analyze one particular mathematical notion: dimension. In both cases a) and b) , our main point is that model theoretic tools can be brought to bear. We are simply giving introductory sketches of illustrations of that thesis. In the sociological mode, we now describe some papers at the Mid-Atlantic Model Theory conference held in the Fall of 2008 at Rutgers. In the late 70's a large gap was seen between EC `East Coast' and WC `West Coast' model theory: a) EC used model theory in various parts of mathematics and b) WC developed an independent subject area of `model theory'. We elaborate this contrast below. But the current situation is best summed up by Pillay's affirmation at the 2000 ASL panel on the future of logic { `there is only one model theory.'5 At least seven of the ten papers at the Rutgers conference, even those focused on algebraic notions such as non- archimedean geometry, semi-abelian varieties, or difference fields integrate the deep concepts developed in the pure theory since 1970. For example, one paper concerned a conjecture of Cherlin which uses model theoretic concepts to lift the program of the classification of finite simple groups to the classification of simple groups of finite Morley rank. Even the statement of the problem is posed in model theoretic terms that provide a way to organize topics that were already in the mathematical air. The investigation involves significant techniques from model theory, finite group theory, and algebraic groups. Even the relatively few papers at this conference that were `pure' developed concepts central to current research in e.g. the model theory of valued fields6. Our summary of this conference has focused on `main-stream' contemporary model theory7 which develops logical 4For a broad investigation in the philosophy of mathematics including a study of leading contemporary mathematicians (e.g. Grothendieck, Langlands, Shelah, Zilber) see [Zal09] 5This is my recollection of Pillay's oral statement. He describes the ‘unification’ at considerable length in his contribution to [BKPS01]. 6Shelah's concept of theories without the independence property (nip or dependent depending on the author) were expounded in the least-applied talk. Hrushovski's paper `Stable groups and approximate group theory'[Hru09], which uses the model theoretic analysis of these theories as a tool for the study of groups, was the subject of semester-long seminars at UCLA, Berkeley, Urbana, and Leeds in the Fall of 2009. Fields medalist Terrence Tao discusses the progress of the UCLA seminar in the blog at http: //terrytao.wordpress.com/. 7It does not encompass a number of other areas of model theory such as models of arithmetic, finite model theory, model theory in computer science, higher order and other extensions of first order logic, and universal algebra. 2 techniques of model theory and integrates them in the investigation of problems across mathematics. 1 Historical Survey of model theory The integral connections of model theory with modern mathematics as described in the introduction are often (and often correctly) seen as a falling away from philosophical concerns. But as we'll see below, many of these interactions do stem from concerns about explanation and coherence of mathematical ideas that have a philosophical basis. The divorce is from narrow concern with the formal justification of results. Moreover, natural philosophical issues arise from some technical results. For example, there are vast differences between the role of @0 and any uncountable cardinal in the study of categoricity. What is so different about countability? After a survey of the history of model theory I expound the use of model theoretic concepts as a tool for such an analysis of the foundations of mathematics. We review this history from a standpoint similar to this paper but with an emphasis on the mathematical applications in [Bal10]. For lack of space, I concentrate on first order logic; recent work in infinitary logic [Bal09, She09, Zil04] contributes new problems and methods to our analysis. We distinguish three types of analysis in first order model theory: 1. Properties of first order logic (1930-1965) 2. Properties of complete theories (1950-present) 3. Properties of classes of theories (1970-present) 1.1 Properties of first order logic (1930-1965) The essence of model theory is a clear distinction between syntax and semantics. Sentences in a formal lan- guage for a vocabulary τ are true or false in structures for τ.
Recommended publications
  • Mathematics 1
    Mathematics 1 Mathematics Department Information • Department Chair: Friedrich Littmann, Ph.D. • Graduate Coordinator: Indranil Sengupta, Ph.D. • Department Location: 412 Minard Hall • Department Phone: (701) 231-8171 • Department Web Site: www.ndsu.edu/math (http://www.ndsu.edu/math/) • Application Deadline: March 1 to be considered for assistantships for fall. Openings may be very limited for spring. • Credential Offered: Ph.D., M.S. • English Proficiency Requirements: TOEFL iBT 71; IELTS 6 Program Description The Department of Mathematics offers graduate study leading to the degrees of Master of Science (M.S.) and Doctor of Philosophy (Ph.D.). Advanced work may be specialized among the following areas: • algebra, including algebraic number theory, commutative algebra, and homological algebra • analysis, including analytic number theory, approximation theory, ergodic theory, harmonic analysis, and operator algebras • applied mathematics, mathematical finance, mathematical biology, differential equations, dynamical systems, • combinatorics and graph theory • geometry/topology, including differential geometry, geometric group theory, and symplectic topology Beginning with their first year in residence, students are strongly urged to attend research seminars and discuss research opportunities with faculty members. By the end of their second semester, students select an advisory committee and develop a plan of study specifying how all degree requirements are to be met. One philosophical tenet of the Department of Mathematics graduate program is that each mathematics graduate student will be well grounded in at least two foundational areas of mathematics. To this end, each student's background will be assessed, and the student will be directed to the appropriate level of study. The Department of Mathematics graduate program is open to all qualified graduates of universities and colleges of recognized standing.
    [Show full text]
  • Mathematics (MATH)
    Course Descriptions MATH 1080 QL MATH 1210 QL Mathematics (MATH) Precalculus Calculus I 5 5 MATH 100R * Prerequisite(s): Within the past two years, * Prerequisite(s): One of the following within Math Leap one of the following: MAT 1000 or MAT 1010 the past two years: (MATH 1050 or MATH 1 with a grade of B or better or an appropriate 1055) and MATH 1060, each with a grade of Is part of UVU’s math placement process; for math placement score. C or higher; OR MATH 1080 with a grade of C students who desire to review math topics Is an accelerated version of MATH 1050 or higher; OR appropriate placement by math in order to improve placement level before and MATH 1060. Includes functions and placement test. beginning a math course. Addresses unique their graphs including polynomial, rational, Covers limits, continuity, differentiation, strengths and weaknesses of students, by exponential, logarithmic, trigonometric, and applications of differentiation, integration, providing group problem solving activities along inverse trigonometric functions. Covers and applications of integration, including with an individual assessment and study inequalities, systems of linear and derivatives and integrals of polynomial plan for mastering target material. Requires nonlinear equations, matrices, determinants, functions, rational functions, exponential mandatory class attendance and a minimum arithmetic and geometric sequences, the functions, logarithmic functions, trigonometric number of hours per week logged into a Binomial Theorem, the unit circle, right functions, inverse trigonometric functions, and preparation module, with progress monitored triangle trigonometry, trigonometric equations, hyperbolic functions. Is a prerequisite for by a mentor. May be repeated for a maximum trigonometric identities, the Law of Sines, the calculus-based sciences.
    [Show full text]
  • Mathematics: the Science of Patterns
    _RE The Science of Patterns LYNNARTHUR STEEN forcesoutside mathematics while contributingto humancivilization The rapid growth of computing and applicationshas a rich and ever-changingvariety of intellectualflora and fauna. helpedcross-fertilize the mathematicalsciences, yielding These differencesin perceptionare due primarilyto the steep and an unprecedentedabundance of new methods,theories, harshterrain of abstractlanguage that separatesthe mathematical andmodels. Examples from statisiicalscienceX core math- rainforest from the domainof ordinaryhuman activity. ematics,and applied mathematics illustrate these changes, The densejungle of mathematicshas beennourished for millennia which have both broadenedand enrichedthe relation by challengesof practicalapplications. In recentyears, computers between mathematicsand science. No longer just the have amplifiedthe impact of applications;together, computation study of number and space, mathematicalscience has and applicationshave swept like a cyclone across the terrainof become the science of patterlls, with theory built on mathematics.Forces -unleashed by the interactionof theseintellectu- relations among patterns and on applicationsderived al stormshave changed forever and for the better the morpholo- from the fit betweenpattern and observation. gy of mathematics.In their wake have emergednew openingsthat link diverseparts of the mathematicalforest, making possible cross- fertilizationof isolatedparts that has immeasurablystrengthened the whole. MODERN MATHEMATICSJUST MARKED ITS 300TH BIRTH-
    [Show full text]
  • History of Mathematics
    History of Mathematics James Tattersall, Providence College (Chair) Janet Beery, University of Redlands Robert E. Bradley, Adelphi University V. Frederick Rickey, United States Military Academy Lawrence Shirley, Towson University Introduction. There are many excellent reasons to study the history of mathematics. It helps students develop a deeper understanding of the mathematics they have already studied by seeing how it was developed over time and in various places. It encourages creative and flexible thinking by allowing students to see historical evidence that there are different and perfectly valid ways to view concepts and to carry out computations. Ideally, a History of Mathematics course should be a part of every mathematics major program. A course taught at the sophomore-level allows mathematics students to see the great wealth of mathematics that lies before them and encourages them to continue studying the subject. A one- or two-semester course taught at the senior level can dig deeper into the history of mathematics, incorporating many ideas from the 19th and 20th centuries that could only be approached with difficulty by less prepared students. Such a senior-level course might be a capstone experience taught in a seminar format. It would be wonderful for students, especially those planning to become middle school or high school mathematics teachers, to have the opportunity to take advantage of both options. We also encourage History of Mathematics courses taught to entering students interested in mathematics, perhaps as First Year or Honors Seminars; to general education students at any level; and to junior and senior mathematics majors and minors. Ideally, mathematics history would be incorporated seamlessly into all courses in the undergraduate mathematics curriculum in addition to being addressed in a few courses of the type we have listed.
    [Show full text]
  • History and Pedagogy of Mathematics in Mathematics Education: History of the Field, the Potential of Current Examples, and Directions for the Future Kathleen Clark
    History and pedagogy of mathematics in mathematics education: History of the field, the potential of current examples, and directions for the future Kathleen Clark To cite this version: Kathleen Clark. History and pedagogy of mathematics in mathematics education: History of the field, the potential of current examples, and directions for the future. Eleventh Congress of the European Society for Research in Mathematics Education, Utrecht University, Feb 2019, Utrecht, Netherlands. hal-02436281 HAL Id: hal-02436281 https://hal.archives-ouvertes.fr/hal-02436281 Submitted on 12 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. History and pedagogy of mathematics in mathematics education: History of the field, the potential of current examples, and directions for the future Kathleen M. Clark Florida State University, School of Teacher Education, Tallahassee, Florida USA; [email protected] The field of history of mathematics in mathematics education—often referred to as the history and pedagogy of mathematics domain (or, HPM domain)—can be characterized by an interesting and rich past and a vibrant and promising future. In this plenary, I describe highlights from the development of the field, and in doing so, I focus on several ways in which research in the field of history of mathematics in mathematics education offers important connections to frameworks and areas of long-standing interest within mathematics education research, with a particular emphasis on student learning.
    [Show full text]
  • Lecture 1: Mathematical Roots
    E-320: Teaching Math with a Historical Perspective O. Knill, 2010-2017 Lecture 1: Mathematical roots Similarly, as one has distinguished the canons of rhetorics: memory, invention, delivery, style, and arrangement, or combined the trivium: grammar, logic and rhetorics, with the quadrivium: arithmetic, geometry, music, and astronomy, to obtain the seven liberal arts and sciences, one has tried to organize all mathematical activities. counting and sorting arithmetic Historically, one has dis- spacing and distancing geometry tinguished eight ancient positioning and locating topology roots of mathematics. surveying and angulating trigonometry Each of these 8 activities in balancing and weighing statics turn suggest a key area in moving and hitting dynamics mathematics: guessing and judging probability collecting and ordering algorithms To morph these 8 roots to the 12 mathematical areas covered in this class, we complemented the ancient roots with calculus, numerics and computer science, merge trigonometry with geometry, separate arithmetic into number theory, algebra and arithmetic and turn statics into analysis. counting and sorting arithmetic spacing and distancing geometry positioning and locating topology Lets call this modern adap- dividing and comparing number theory tation the balancing and weighing analysis moving and hitting dynamics 12 modern roots of guessing and judging probability Mathematics: collecting and ordering algorithms slicing and stacking calculus operating and memorizing computer science optimizing and planning numerics manipulating and solving algebra Arithmetic numbers and number systems Geometry invariance, symmetries, measurement, maps While relating math- Number theory Diophantine equations, factorizations ematical areas with Algebra algebraic and discrete structures human activities is Calculus limits, derivatives, integrals useful, it makes sense Set Theory set theory, foundations and formalisms to select specific top- Probability combinatorics, measure theory and statistics ics in each of this area.
    [Show full text]
  • Notes on Mathematical Logic David W. Kueker
    Notes on Mathematical Logic David W. Kueker University of Maryland, College Park E-mail address: [email protected] URL: http://www-users.math.umd.edu/~dwk/ Contents Chapter 0. Introduction: What Is Logic? 1 Part 1. Elementary Logic 5 Chapter 1. Sentential Logic 7 0. Introduction 7 1. Sentences of Sentential Logic 8 2. Truth Assignments 11 3. Logical Consequence 13 4. Compactness 17 5. Formal Deductions 19 6. Exercises 20 20 Chapter 2. First-Order Logic 23 0. Introduction 23 1. Formulas of First Order Logic 24 2. Structures for First Order Logic 28 3. Logical Consequence and Validity 33 4. Formal Deductions 37 5. Theories and Their Models 42 6. Exercises 46 46 Chapter 3. The Completeness Theorem 49 0. Introduction 49 1. Henkin Sets and Their Models 49 2. Constructing Henkin Sets 52 3. Consequences of the Completeness Theorem 54 4. Completeness Categoricity, Quantifier Elimination 57 5. Exercises 58 58 Part 2. Model Theory 59 Chapter 4. Some Methods in Model Theory 61 0. Introduction 61 1. Realizing and Omitting Types 61 2. Elementary Extensions and Chains 66 3. The Back-and-Forth Method 69 i ii CONTENTS 4. Exercises 71 71 Chapter 5. Countable Models of Complete Theories 73 0. Introduction 73 1. Prime Models 73 2. Universal and Saturated Models 75 3. Theories with Just Finitely Many Countable Models 77 4. Exercises 79 79 Chapter 6. Further Topics in Model Theory 81 0. Introduction 81 1. Interpolation and Definability 81 2. Saturated Models 84 3. Skolem Functions and Indescernables 87 4. Some Applications 91 5.
    [Show full text]
  • Infinite Time Computable Model Theory
    INFINITE TIME COMPUTABLE MODEL THEORY JOEL DAVID HAMKINS, RUSSELL MILLER, DANIEL SEABOLD, AND STEVE WARNER Abstract. We introduce infinite time computable model theory, the com- putable model theory arising with infinite time Turing machines, which provide infinitary notions of computability for structures built on the reals R. Much of the finite time theory generalizes to the infinite time context, but several fundamental questions, including the infinite time computable analogue of the Completeness Theorem, turn out to be independent of ZFC. 1. Introduction Computable model theory is model theory with a view to the computability of the structures and theories that arise (for a standard reference, see [EGNR98]). Infinite time computable model theory, which we introduce here, carries out this program with the infinitary notions of computability provided by infinite time Turing ma- chines. The motivation for a broader context is that, while finite time computable model theory is necessarily limited to countable models and theories, the infinitary context naturally allows for uncountable models and theories, while retaining the computational nature of the undertaking. Many constructions generalize from finite time computable model theory, with structures built on N, to the infinitary theory, with structures built on R. In this article, we introduce the basic theory and con- sider the infinitary analogues of the completeness theorem, the L¨owenheim-Skolem Theorem, Myhill’s theorem and others. It turns out that, when stated in their fully general infinitary forms, several of these fundamental questions are independent of ZFC. The analysis makes use of techniques both from computability theory and set theory. This article follows up [Ham05].
    [Show full text]
  • MATH 531.01: Topology
    University of Montana ScholarWorks at University of Montana Syllabi Course Syllabi Fall 9-1-2000 MATH 531.01: Topology Karel M. Stroethoff University of Montana, Missoula, [email protected] Follow this and additional works at: https://scholarworks.umt.edu/syllabi Let us know how access to this document benefits ou.y Recommended Citation Stroethoff, Karel M., "MATH 531.01: Topology" (2000). Syllabi. 5961. https://scholarworks.umt.edu/syllabi/5961 This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. M ath 531 — Topology Fall Semester 2000 Class: MWF: 11:10 pm - 12:00 noon; MA 211; CRN: 73628 Class website: http://www.math.umt.edu/~stroet/531.htinl Instructor: Karel Stroethoff Contact Coordinates: Office: MA 309 Phone: 243-4082 or 243-5311 (secretaries) E-mail: [email protected] Homepage: h ttp ://www.math.umt.edu/~stroet/ Office H ours: See webpage. Description: One of the most important developments in twentieth century mathematics has been the formation of topology as an independent field of study and the systematic application of topological ideas to other fields of mathematics. The beginnings of algebraic and geometric topology can be traced, to the results of Leonhard Euler (1707-1783) on polyhedra and graph theory. Point-set topology or general topology has its origin in nine­ teenthcentury works establishing a rigorous basis for the Calculus. Currently topological ideas are prevalent in many areas of mathematics, not only in pure subject areas, but even in the most applied fields.
    [Show full text]
  • An Introduction to Ramsey Theory Fast Functions, Infinity, and Metamathematics
    STUDENT MATHEMATICAL LIBRARY Volume 87 An Introduction to Ramsey Theory Fast Functions, Infinity, and Metamathematics Matthew Katz Jan Reimann Mathematics Advanced Study Semesters 10.1090/stml/087 An Introduction to Ramsey Theory STUDENT MATHEMATICAL LIBRARY Volume 87 An Introduction to Ramsey Theory Fast Functions, Infinity, and Metamathematics Matthew Katz Jan Reimann Mathematics Advanced Study Semesters Editorial Board Satyan L. Devadoss John Stillwell (Chair) Rosa Orellana Serge Tabachnikov 2010 Mathematics Subject Classification. Primary 05D10, 03-01, 03E10, 03B10, 03B25, 03D20, 03H15. Jan Reimann was partially supported by NSF Grant DMS-1201263. For additional information and updates on this book, visit www.ams.org/bookpages/stml-87 Library of Congress Cataloging-in-Publication Data Names: Katz, Matthew, 1986– author. | Reimann, Jan, 1971– author. | Pennsylvania State University. Mathematics Advanced Study Semesters. Title: An introduction to Ramsey theory: Fast functions, infinity, and metamathemat- ics / Matthew Katz, Jan Reimann. Description: Providence, Rhode Island: American Mathematical Society, [2018] | Series: Student mathematical library; 87 | “Mathematics Advanced Study Semesters.” | Includes bibliographical references and index. Identifiers: LCCN 2018024651 | ISBN 9781470442903 (alk. paper) Subjects: LCSH: Ramsey theory. | Combinatorial analysis. | AMS: Combinatorics – Extremal combinatorics – Ramsey theory. msc | Mathematical logic and foundations – Instructional exposition (textbooks, tutorial papers, etc.). msc | Mathematical
    [Show full text]
  • Model Completeness and Relative Decidability
    Model Completeness and Relative Decidability Jennifer Chubb, Russell Miller,∗ & Reed Solomon March 5, 2019 Abstract We study the implications of model completeness of a theory for the effectiveness of presentations of models of that theory. It is im- mediate that for a computable model A of a computably enumerable, model complete theory, the entire elementary diagram E(A) must be decidable. We prove that indeed a c.e. theory T is model complete if and only if there is a uniform procedure that succeeds in deciding E(A) from the atomic diagram ∆(A) for all countable models A of T . Moreover, if every presentation of a single isomorphism type A has this property of relative decidability, then there must be a procedure with succeeds uniformly for all presentations of an expansion (A,~a) by finitely many new constants. We end with a conjecture about the situation when all models of a theory are relatively decidable. 1 Introduction The broad goal of computable model theory is to investigate the effective arXiv:1903.00734v1 [math.LO] 2 Mar 2019 aspects of model theory. Here we will carry out exactly this process with the model-theoretic concept of model completeness. This notion is well-known and has been widely studied in model theory, but to our knowledge there has never been any thorough examination of its implications for computability in structures with the domain ω. We now rectify this omission, and find natural and satisfactory equivalents for the basic notion of model completeness of a first-order theory. Our two principal results are each readily stated: that a ∗The second author was supported by NSF grant # DMS-1362206, Simons Foundation grant # 581896, and several PSC-CUNY research awards.
    [Show full text]
  • More Model Theory Notes Miscellaneous Information, Loosely Organized
    More Model Theory Notes Miscellaneous information, loosely organized. 1. Kinds of Models A countable homogeneous model M is one such that, for any partial elementary map f : A ! M with A ⊆ M finite, and any a 2 M, f extends to a partial elementary map A [ fag ! M. As a consequence, any partial elementary map to M is extendible to an automorphism of M. Atomic models (see below) are homogeneous. A prime model of T is one that elementarily embeds into every other model of T of the same cardinality. Any theory with fewer than continuum-many types has a prime model, and if a theory has a prime model, it is unique up to isomorphism. Prime models are homogeneous. On the other end, a model is universal if every other model of its size elementarily embeds into it. Recall a type is a set of formulas with the same tuple of free variables; generally to be called a type we require consistency. The type of an element or tuple from a model is all the formulas it satisfies. One might think of the type of an element as a sort of identity card for automorphisms: automorphisms of a model preserve types. A complete type is the analogue of a complete theory, one where every formula of the appropriate free variables or its negation appears. Types of elements and tuples are always complete. A type is principal if there is one formula in the type that implies all the rest; principal complete types are often called isolated. A trivial example of an isolated type is that generated by the formula x = c where c is any constant in the language, or x = t(¯c) where t is any composition of appropriate-arity functions andc ¯ is a tuple of constants.
    [Show full text]