A Classification of Binary Tropical Cyclone–Like Vortex Interactions*

Total Page:16

File Type:pdf, Size:1020Kb

A Classification of Binary Tropical Cyclone–Like Vortex Interactions* 2656 MONTHLY WEATHER REVIEW VOLUME 131 A Classi®cation of Binary Tropical Cyclone±Like Vortex Interactions* RICARDO PRIETO Centro de Ciencias de la AtmoÂsfera, Universidad Nacional AutoÂnoma de MeÂxico, Mexico City, Mexico BRIAN D. MCNOLDY Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado SCOTT R. FULTON Department of Mathematics and Computer Science, Clarkson University, Potsdam, New York WAYNE H. SCHUBERT Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado (Manuscript received 3 December 2002, in ®nal form 14 April 2003) ABSTRACT The interaction between two tropical cyclones with different core vorticities and different sizes is studied with the aid of a nondivergent barotropic model, on both the f plane and the sphere. A classi®cation of a wide range of cases is presented, using the Dritschel±Waugh scheme, which subdivides vortex interactions into ®ve types: elastic interaction, partial straining out, complete straining out, partial merger, and complete merger. The type of interaction for a vortex pair on the f plane, and the same pair on the sphere, was the same for 77 out of 80 cases studied. The primary difference between the results on the f plane and those on the sphere is that the vorticity centroid of the pair is ®xed on the f plane but can drift a considerable distance poleward and westward on the sphere. In the spherical case, the interaction between the cyclone pair and the associated b- induced cyclonic and anticyclonic circulations can play an important role. The ``partial merger'' regime is studied in detail. In this regime the interaction between vortices can lead to episodic exchanges of vorticity, with both vortices surviving and entering a stage of continued but weaker interaction. With the aid of passive tracers, it is found that the exchange of vorticity is restricted to the vortex periphery even when the vorticity ®eld within each vortex is ¯at, so that the vortex core is the last region to be eroded. It is hypothesized that some observed interacting tropical cyclones actually do undergo this partial- merger process. 1. Introduction ward but moving 50% faster than Gil. On the morning An interesting tropical cyclone binary interaction oc- of 6 September, Gil had reached hurricane strength, and, curred in the east Paci®c during September 2001. The at about the same time, Henriette had reached tropical event began when Tropical Depression 8 formed on the storm strength. Gil was a relatively compact, intense 21 morning of 4 September. Just 12 h later, it was upgraded circulation (42 m s peak intensity), while Henriette 21 to Tropical Storm Gil and was tracking westward. Lag- was a broader, weaker circulation (22 m s peak in- ging just a few hours and 1500 km behind Gil was tensity). Figure 1a is a GOES-10 visible image of these Tropical Depression 9, which would later become Trop- two storms on 6 September 2001 at 2100 UTC. (GOES- ical Storm Henriette. Henriette was also tracking west- 10 visible loops for 6±9 September are available in a supplement found online at http://ams.allenpress.com/ amsonline/?request5index-html.) * Supplemental information related to this paper is available online By the morning of 8 September, the separation be- (DOI:10.1175/MWR2610Supl1). For current information see http:// dx.doi.org/10.1175/MWR2610Supl1. tween the two vortices had decreased to only 400 km, and signs of vortex interaction began to appear (strong shear aloft and a low-level horizontal convergence Corresponding author address: Dr. Ricardo Prieto, Instituto Mex- band). Also around this time, Henriette had lost icano de Tecnologia del Agua, Paseo Cuauhnahuac 8532, Jiutepec, Mor. 62550, Mexico. strength and was no longer classi®ed as a tropical de- E-mail: [email protected] pression. On the afternoon of 9 September, the centers q 2003 American Meteorological Society NOVEMBER 2003 PRIETO ET AL. 2657 FIG.1.(a)GOES-10 visible image of Hurricane Gil and Tropical Storm Henriette at 2100 UTC 6 Sep 2001. Henriette is to the northeast. Latitude and longitude lines are 58 apart, and Gil is at 158N, 1288W. (b) Tracks of Gil and Henriette based on NHC best-track positions and GOES-10 visible imagery, shown with their geographic centroid (dashed line). 2658 MONTHLY WEATHER REVIEW VOLUME 131 of Gil and Henriette had come to within 85 km of each TABLE 1. Grid parameters at t 5 0: grid number (l), number of grid points in x and y (n ,n), grid origin (x , y ), grid spacing in x other, already having rotated 5408 about their centroid. x y 0 0 and y (h ), and time step (Dt ). By this time, Gil was also no longer a tropical de- l l pression. Finally, by the morning of 10 September, the lnx ny x0 (km) y0 (km) hl (km) Dtl (s) vortices had merged, with the more compact, intense 1 512 512 25223.63 24613.87 20.4048 450.00 one (remnants of Gil) victorious. The storm tracks, 2 512 512 22611.82 22614.19 10.2024 225.00 based on National Hurricane Center (NHC) best-track 3 512 512 21305.91 21308.29 5.1012 112.50 positions and GOES-10 visible imagery, are shown in 4 512 512 2652.95 2655.33 2.5506 56.25 Fig. 1b. This ®gure shows the geographic centroid; the vorticity centroid could be closer to the stronger storm but cannot be computed without the detailed vorticity ®eld. parameter on the interaction between two tropical cy- The binary vortex interaction is also known as the clones, concluding that the development of ``b gyres'' ``Fujiwhara effect'' in honor of the pioneering work can have an important impact on the vortex interaction. of Fujiwhara (1921, 1923, 1931), who performed a The b-gyres are the result of the meridional advection series of laboratory experiments on the interactions of planetary vorticity around a vortex, which induces between pairs of vortices in a water tank. The inter- an asymmetric circulation capable of driving the vortex. action of Gil and Henriette is one example of the many b-gyres of suf®cient intensity can extend the distance cases of binary tropical cyclone interactions that have at which one vortex is able to capture the other, or they been documented in the literature (e.g., see Larson can produce the escape mode discussed by Lander and 1975; Chang 1983; Lander and Holland 1993; Kuo et Holland (1993). al. 2000; Wu et al. 2003). In an early observational From the theoretical point of view, Melander et al. study of the interaction of binary tropical cyclones in (1986) developed a vortex interaction model by con- the western North Paci®c, Brand (1970) found that a sidering the evolution of ®nite-area, uniform-vorticity de®nitive mutual interaction, in the form of a cyclonic regions in an unbounded inviscid ¯uid. Their analysis orbit of the storms about their centroid, occurred when of the two-dimensional Euler equations results in a the cyclone centers came within 1300 km, and that system of ordinary differential equations governing mutual attraction occurred when the cyclone centers the physical-space moments of the individual regions. came within 750 km. Of course, these should be re- Truncation of this in®nite system yields an nth-order garded as rough forecasting rules since tropical cy- moment model. In the second-order model each re- clones vary widely in their sizes and strengths. In the gion is assumed to be elliptical, and the equations of western North Paci®c the frequency of such binary motion conserve local area, global centroid, total an- interactions is approximately 1.5 per year. The fre- gular impulse, and global excess energy. The model quency of actual merger is lower. forms a Hamiltonian system, with the excess energy The interaction of two isolated vortices has been as the Hamiltonian. This model can crudely describe examined in detail in a numerical study by Dritschel the collapse of two vortex centers. However, as the and Waugh (1992) in which the vortices are patches vortex centers approach during merger, the model be- with equal vorticity, and the radius ratio and separation comes increasingly invalid because it assumes that an distance are experimental parameters. The calcula- elliptical shape is maintained throughout the process. tions, performed on the f plane using the contour sur- Another theory of vortex merger has been presented gery algorithm (Dritschel 1988), show that the inter- by Lansky et al. (1997). In their theory, a point vortex action of unequal vortices is much richer than that of and an extended vortex of nearly circular cross section equal vortices. The interactions can be classi®ed into interact. The general behavior of this system involves ®ve different regimes, based upon a quanti®cation of the rotation of the point vortex around the extended the ®nal to initial circulation of each vortex: (i) elastic vortex, together with ®nite-amplitude oscillations in interaction, (ii) partial straining out, (iii) complete the radial direction. The radial motion of the point straining out, (iv) partial merger, and (v) complete vortex is trapped inside a critical layer of characteristic merger. These interactions may result in the total de- width. Lansky et al. (1997) found that if the total cir- struction of one of the vortices (iii and v), the partial culation of the point vortex divided by the total cir- destruction of one vortex (ii and iv), or an interaction culation of the extended vortex exceeds a critical value, in which both vortices survive with their initial cir- there is an overlap of neighboring critical layers around culation (i). These results also imply that the interac- the extended vortex, having as a consequence the cas- tion of same-sign vortices is an essential mechanism cade of the point vortex through a sequence of reso- for vortex growth, as well as an important mechanism nances as it spirals in and merges with the extended for the production of small vortices and for the de- vortex.
Recommended publications
  • Formation of Winter Supertyphoons Haiyan (2013) and Hagupit (2014)
    3800 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55, NO. 7, JULY 2017 Formation of Winter Supertyphoons Haiyan (2013) and Hagupit (2014) Through Interactions With Cold Fronts as Observed by Multifunctional Transport Satellite Yung-Sheng Lee, Member, IEEE, Yuei-An Liou, Senior Member, IEEE, Ji-Chyun Liu, Ching-Tsan Chiang, and Kuan-Dih Yeh Abstract— This paper incorporates remote sensing imagery prevention [1], [2]. The satellite data that provide cloud images and image processing techniques to analyze typhoons’ evolution may be used to analyze the cloud structure and dynamics of into supertyphoons through interactions with cold fronts in the typhoons [3]–[8]. When two tropical cyclones (TCs) are close Western Pacific Ocean. The purpose is to enhance understanding and predictability of the tracks and profiles of supertyphoons. to some extent, they affect and interact with each other. Such Evolutions of typhoons Haiyan (2013) and Hagupit (2014) into cyclone–cyclone interaction is known as “Fujiwhara effect” supertyphoons were studied. The 3-D profiles of weather systems in honor of pioneer Fujiwhara [9]. Several types of cyclone– were reconstructed using multifunctional transport satellite IR cyclone interactions were studied [10]–[12]. The distance cloud images. When interactions between typhoon and cold front between two typhoons, and intensity and translation speeds of happened, enhancements of typhoons were observed causing typhoons Haiyan and Hagupit to strengthen power and evolve the binary typhoons were investigated recently. The impacts into supertyphoons. The origins of typhoons Haiyan and Hagupit of binary typhoons on the upper ocean environments that were are closely located at 152°50E/05°12N and 151°30E/04°19N, explored included physical and biological environments [12].
    [Show full text]
  • Big Data in Geoinformatics
    GIS Karimi Techniques and Technologies Big Data in Geoinformatics Big data has always been a major challenge in geoinformatics as geospatial data come in various types and formats, new geospatial data are acquired very fast, and geospatial Big Data databases are inherently very large. And while there have been advances in hardware and software for handling big data, they often fall short of handling geospatial big data efficiently and effectively. Big Data: Techniques and Technologies in Techniques and Technologies Geoinformatics tackles these challenges head on, integrating coverage of techniques and technologies for storing, managing, and computing geospatial big data. in Geoinformatics Providing a perspective based on analysis of time, applications, and resources, this book familiarizes readers with geospatial applications that fall under the category of big data. It explores new trends in geospatial data collection, such as geo- BIG DATA crowdsourcing and advanced data collection technologies such as LiDAR point clouds. The book features a range of topics on big data techniques and technologies in geoinformatics including distributed computing, geospatial data analytics, social media, and volunteered geographic information. Features Edited by • Explains the challenges and issues of big data in geoinformatics applications • Discusses and analyzes the techniques, technologies, and tools for storing, Hassan A. Karimi managing, and computing geospatial big data • Familiarizes the readers with the advanced techniques and technologies used for geospatial big data research • Provides insight into new opportunities offered by geospatial big data With chapters contributed by experts in geoinformatics and in domains such as computing and engineering, the book provides an understanding of the challenges and issues of big data in geoinformatics applications.
    [Show full text]
  • 1St WMO International Conference on Indian Ocean Tropical Cyclones and Climate Change, Muscat, Sultanate of Oman, 8-11 March 2009
    WWRP 2010 - 2 1st WMO International Conference on Indian Ocean Tropical Cyclones and Climate Change, Muscat, Sultanate of Oman, 8-11 March 2009 For more information, please contact: World Meteorological Organization Research Department Atmospheric Research and Environment Branch 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland Tel.: +41 (0) 22 730 83 14 – Fax: +41 (0) 22 730 80 27 E-mail: [email protected] – Website: http://www.wmo.int/pages/prog/arep/index_en.html WMO/TD - No. 1541 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Opinions expressed in WMO publications are those of the authors and do not necessarily reflect those of WMO.
    [Show full text]
  • Communication: Mass Media and the Science of Disasters
    MONTEMAYOR AND CUSTODIO COMMUNICATING RISKS 39 Kasarinlan: Philippine Journal of Third World Studies 2014 29 (2): 39–74 Communicating Risks, Risking (Mis)communication: Mass Media and the Science of Disasters GARRY JAY S. MONTEMAYOR AND PAMELA A. CUSTODIO ABSTRACT. The experience brought about by super typhoon Yolanda (internationally known as Haiyan) in November 2013 highlights the need to look into how we can improve ways of communicating risks and the science about natural hazards in national and local settings. This paper attempts to highlight the value of risk and science communication in national and local disaster mitigation and management. After analyzing the preparations done before super typhoon Yolanda’s landfall using extant documents from the national government and different government agencies, weather forecast news published in newspapers and broadcasted on TV, and other several post- Haiyan scholarly literatures, we examine emergent communication-related issues to come up with recommendations toward mainstreaming risk and science communication in the country. This study found out that the government as well as the experts engaged in concerted efforts to prepare the citizens for the typhoon; and that the media did attempt to communicate risks and science before the typhoon’s landfall. However, problems involving (1) psychological and social factors; (2) information dissemination through mass media; and (3) institutional mechanisms in disaster risk reduction provided by the government emerged, which have serious implications on how we shall mitigate disasters in the future. KEYWORDS. science communication · risk communication · science and the media · Haiyan · public understanding of science INTRODUCTION One of the most daunting tasks of a communicator involved in disaster preparedness and management is to communicate hazards and its potential risks—including the science behind these—to vulnerable communities.
    [Show full text]
  • National Park Service Assateague Island National Seashore 2019 Hurricane and Coastal Storm Plan
    National Park Service Assateague Island National Seashore 2019 Hurricane and Coastal Storm Plan Updated & Reviewed by: ______________________________ Date: ___6/4/19_____ E. Walter West Incident Commander Updated & Reviewed by: Date: ___6/10/19___ Deborah A. Darden Superintendent TABLE OF CONTENTS SECTION: TITLE PAGE Hurricane and tropical storm forecasts 1 I Introduction and Mission 1 II. Hurricane Plan Distribution and Definitions 2-3 III. Description of conditions 4 IV. Legal Authorities 6 V. Situation discussions 7 VI. Chain of Command 7-8 VII. ICS Operational Objectives 9-23 Appendix A NPS Incident Command Organization 24 Appendix B USFWS Incident Command Organization-Major Response 25 Appendix C USFWS Incident Command Organization-Minor Response 26 Appendix D NPS Delegation of Authority 27-28 Appendix E Useful Links & Contact Numbers 29-37 Appendix F Hurricane Shelter Information 38 Appendix G Division Checklists, Sensitive items 39-40 Appendix H Town of Chincoteague, Causeway closure SOP 41-43 Appendix I Glossary: National Hurricane Center glossary of terms 44-49 Appendix J Operational Charts to 5 days out from storm 50-64 EXTENDED RANGE FORECAST OF ATLANTIC SEASONAL HURRICANE ACTIVITY AND LANDFALL STRIKE PROBABILITY FOR 2019 (CSU Tropical Meteorology Project) We have increased our forecast slightly and now believe that 2019 will have approximately average activity. There remains considerable uncertainty as to whether El Niño conditions will persist through the Atlantic hurricane season. The tropical Atlantic has warmed slightly faster than normal over the past few weeks and now has near average sea surface temperatures. We anticipate a near-average probability for major hurricanes making landfall along the United States coastline and in the Caribbean.
    [Show full text]
  • The Origin of "Fujiwhara Effect": the Typhoons Postponed the End of World War II
    17th History Symposium, 99th American Meteorological Society Annual Meeting, Phoenix, AZ , 7 January 2019 204 The origin of "Fujiwhara effect": The Typhoons Postponed the End of World War II Akira Yamamoto Meteorological Research Institute Japan Meteorological Agency Meteorological Research Institute / Japan Meteorological Agency 気象研究所 17th History Symposium, 99th American Meteorological Society Annual Meeting, Phoenix, AZ , 7 January 2019 2 Summary • The origin of "Fujiwhara effect“ was investigated by bibliographic survey. The following hypothesis suggested. • "Fujiwhara effect“ is NOT the effect suggested by Japanese meteorologist Sakuhei Fujiwhara (1884-1950). – It was theoretically derived initially by Japanese meteorologist Diro Kitao (1853-1907) in his paper Kitao (1889). – Bernhard Haurzitz (1905-1986) analyzed detailed motion of two typhoons in late August 1945 with input from Herbert Riehl (1915-1997) , and confirmed his theory of two cyclone rotation based on Kitao (1889). 2014/5/22 日本気象学会春季大会 Meteorological Research Institute / Japan Meteorological Agency 山本「世界各国における地上気象観測環境基準の現状」 気象研究所 17th History Symposium, 99th American Meteorological Society Annual Meeting, Phoenix, AZ , 7 January 2019 3 Summary(cont.) • The word of "Fujiwhara effect“ was generated very finely timed in the closing days of World War II. – Damage to U.S. forces during WW II by typhoons was a motive that they established a accurate typhoon tracking in North West Pacific. – Kitao’s theory of two cyclone rotation was initially demonstrated by motion of two typhoons (Susan and Ruth in U.S. name) in late August 1945, that progressed slowly in the western Pacific between Okinawa and the main Japanese islands interacting each other. 2014/5/22 日本気象学会春季大会 Meteorological Research Institute / Japan Meteorological Agency 山本「世界各国における地上気象観測環境基準の現状」 気象研究所 17th History Symposium, 99th American Meteorological Society Annual Meeting, Phoenix, AZ , 7 January 2019 4 Summary(cont.) – It was believed that these typhoons postponed McArthur's occupation plan of Japan for 48 hours.
    [Show full text]
  • Report for Typhoon
    Country Report ( 2007 ) For the 40th Session of the Typhoon Committee ESCAP/WMO Macao, China 21–26 November 2007 People’s Republic of China 1 I. Overview of Meteorological and Hydrological Conditions 1. Meteorological Assessment From Oct. 1st 2006 to Sep. 30th 2007, altogether 23 tropical cyclones (including tropical storms, severe tropical storms, typhoons, severe typhoons and super typhoons) formed over the Western North Pacific and the South China Sea (Fig. 1.1). Among them, 8 TCs formed from Oct. 1st to Dec. 31st in 2006 and 4 of them affected China’s coastal waters but didn’t land on China’s coastal areas. They were super typhoon Cimaron (0619), super typhoon Chebi 0620), super typhoon Durian (0621) and severe typhoon Utor (0622). In 2007, 15 tropical cyclones formed over the Western North Pacific and the South China Sea. The number was obviously less than the average (19.7) during the corresponding period from 1949 to 2006. And 9 of them developed into typhoons or beyond, which accounted for 60.0% of the total. The percentage was higher than the average (58.6%). During the same period, 4 TCs formed over the South China Sea. The number was slightly less than the average (4.7). Moreover, 6 TCs made landfalls over China coastal areas, all of them exceed tropical storm category. They were tropical storm Toraji (0703), severe tropical storm Pabuk 0706), tropical storm Wupit 0707), super typhoon Sepat (0708), super typhoon Wipha 0712) and tropical storm Francisco (0713). The total landed TC number was slightly less than the average (about 6.79), but the percentage of landed TCs (40.0%) was obviously above the average (30.8%).
    [Show full text]
  • Tropical Cyclone Motion Due to Environmental Interactions Represented by Empirical Orthogonal Functions of the Vorticity Fields
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1991-06 Tropical cyclone motion due to environmental interactions represented by empirical orthogonal functions of the vorticity fields. Gunzelman, Mark J. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/26819 NAVAL POSTGRADUATE SCHOOL Monterey , California THESIS TROPICAL CYCLONE MOTION DUE TO ENVIRONMENTAL INTERACTIONS REPRESENTED BY EMPIRICAL ORTHOGONAL FUNCTIONS OF THE VORTICITY FIELDS by Mark J. Gunzelman June 1991 Thesis Advisor: Russell L. Elsberry Approved for public release; distribution unlimited T256203 Unclassified SECURITY CLASSIFICATION OF THIS PAGE Form Appiovi '/ REPORT DOCUMENTATION PAGE OMB No 0704 01 fid la HH'OKT SECURITY CI ASSIFK ATION lb RESTRK IIVE MARKIMCiS Unclassified 2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAH ARIliTY OF REPORT Approved for public release; distribution 2b DECLASSIFICATION /DOWNGRADING SCHEDULE is unlimited. 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) 6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION Naval Postgraduate School (If applicable) Naval Postgraduate School 35 6c ADDRESS {City, State, and ZIP Code) 7b ADDRESS (C/fy, State, and IIP Code) Monterey, CA 93943-5000 Monterey, CA 93943-5000 ia NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) 8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROGRAM PROJECT
    [Show full text]
  • Tropical Cyclone Motion
    Tropical Cyclone Motion This information has been summarised from the Introduction to Tropical Meteorology (2nd Edition) which can be accessed, free of charge, on the MetEd/ COMET website (requires free registration). Motion For over a century we have known that a tropical cyclone will move in response to the other weather systems in its environment. This view of tropical cyclone motion pictures it as a passive "cork in a stream" being "steered" by the other weather systems around it. Certainly, environmental steering (advection – the transfer of heat horizontally in the atmosphere) is the dominant contribution to tropical cyclone motion and can be approximated by the average wind through a deep layer of the atmosphere (the deep-layer mean wind). When calculating this wind from standard pressure level data, it is necessary to weight each level by the mass of the layer it represents. For tropical cyclone motion, the average from 850-200 hPa (c1.5–10km altitude) is used most often, however the choice of the averaging layer for the advection has been shown to be weakly related to storm intensity with a shallower (say 850-500 hPa) (c5.5-10km) layer often estimating the steering better for weaker storms. While advection is clearly important, the limited success of forecasts using this approach led scientists to consider other mechanisms that also contribute to the motion of a tropical storm. Visualising the wind field The website https://earth.nullschool.net/ provides a 3D globe that visualises near real-time weather data across Earth. Values measured can be found listed and described on https://earth.nullschool.net/about.html.
    [Show full text]
  • Advances in Dynamical Predictions and Modelling of Tropical Cyclone Motion
    NPS-MR-93-002 NAVAL POSTGRADUATE SCHOOL Monterey, California ADVANCES IN DYNAMICAL PREDICTIONS AND MODELLING OF TROPICAL CYCLONE MOTION Russell L Elsberry March 1993 Approved for Public Release; Distribution Unlimited Prepared for: Office of Naval Research, PedDocs Code 1122MM, Arlington, VA 22217 D 208.14/2 NPS-MR-93-002 Naval Postgraduate School Monterey, California 93943-5000 H.Shull T. A. Mercer Rear Admiral provost Superintendent Code the Office of Naval Research, was prepared for and partially funded by TOs report was provided by the m2MMSon! VA, 22217-5000. The remainder of the funding Research Fund. Naval Postgraduate School Direct report is authorized. Reproduction of all or part of the the direction of: This report was prepared under DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101 UNCLASSIFIED SECURITY CLASSIFICATION OF THISTacTT REPORT DOCUMENTATION PAGE Form Approved OMONo 0701 01 88 la REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb RESTRICTIVE MARKINGS 2a SECURITY CLASSIFICATION AUTHORITY 3 DISTMIBUIION/AVAILAIIIIIIY Of REPORT 2b DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release; distribution unlimited A PERFORMING ORGANIZATION REPORT NUMBER(S)' 5 MONITORING ORGANIZATION REPORT NUMOER(S) NPS-MR-93-003 6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION Naval Postgraduate School (// applicable) MR Office of Naval Research (Code 1122MM) 6c. ADDRESS (City. State, and ZIP Code) 7b ADDRESS {City. State, andZIPCode) Monterey, CA 93943-5000 Arlington, VA 22217-5000 8a NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL ORGANIZATION 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER (II applicable) N0001493 Office of Naval Research Code 1122MM WR 24009 a < ADDRESS (City. State, and ZIP Code) TO SOURCE OF FUNDING NUMBERS Arlington, VA PROGRAM TASK 22217-5000 ELEMENT NO 3- (WORK UNIT noWo 3 NO IACCESSION NO 0601153N 03-01 tl TITLE (Include Security Classification) ADVANCES IN DYNAMICAL PREDICTIONS AND MODELLING OF TROPICAL CYCLONE MOTION 12 PERSONAL AUTHOR(S) Russell L.
    [Show full text]
  • Hurricane Forecasting
    Hot Science – Cool Talks Outreach Lecture Series # 44 Hurricane Forecasting Hurricane Formation There are two distinct phases in hurricane formation: Genesis Stage. This stage includes tropical disturbances and tropical depressions. Several conditions must be met for a disturbance to form a tropical depression. First, the disturbance must be in a trough containing a weak, partial cyclonic rotation. In general, all troughs are located at least 10º from the equator will obtain a partial cyclonic spin due to the earth’s rotation. Second, water temperature must be at least 80ºF (26.67ºC). Energy from the ocean is transferred to the hurricane system by condensation of water vapor. Third, vertical wind shear must be weak in the region. Vertical wind shear is defined as the difference between wind speed and wind direction at 40,000 feet (12,192 meters) and at the surface. This is an important factor because it allows for vertical orientation of thunderstorms and maintains the low-level inflow. Intensification Stage. All requirements mentioned in the genesis stage are prerequisites for a tropical depression to strengthen. As the energy transfer from water vapor continues, it creates faster wind, which in turn enhances the rate of energy transfer and so forth. This is a feedback mechanism that faster cyclonic winds breed more potent thunderstorms, which drop central surface pressure more and create stronger inflow to breed faster cyclonic winds. If the tropical depression has a sustained wind speed of at least 74 mph, it is classified as a hurricane. Factors Affecting Hurricane Motion A strong hurricane can internally change its course.
    [Show full text]
  • A New Look at the Binary Interaction: Potential Vorticity Diagnosis of The
    JULY 2003 WU ET AL. 1289 A New Look at the Binary Interaction: Potential Vorticity Diagnosis of the Unusual Southward Movement of Tropical Storm Bopha (2000) and Its Interaction with Supertyphoon Saomai (2000) CHUN-CHIEH WU,TRENG-SHI HUANG,WEI-PENG HUANG, AND KUN-HSUAN CHOU Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan (Manuscript received 28 June 2002, in ®nal form 22 November 2002) ABSTRACT Tropical Storm Bopha (2000) showed a very unusual southward course parallel to the east coast of Taiwan, mainly steered by the circulation associated with Supertyphoon Saomai (2000) to Bopha's east. The binary interaction between the two typhoons is well demonstrated by the potential vorticity (PV) diagnosis. With the use of the piecewise PV inversion, this paper quantitatively evaluates how Bopha moved southward due to the binary interaction with Saomai. A newly proposed centroid-relative track, with the position weighting based on the steering ¯ow induced by the PV anomaly associated with the other storm, is plotted to highlight such binary interaction processes. Note that the above analysis can be well used to understand the more complicated vortex merging and interacting processes between tropical cyclones either from observational data or numerical ex- periments. The results also shed some light on the prediction of nearby tropical cyclones. 1. Introduction localized vortical disturbances. The mutual rotation of interacting hurricanes was qualitatively demonstrated. The concept of binary interaction has been well de- Observational evidences (Brand 1970) suggested that scribed by tank experiments (Fujiwhara 1921, 1923, there is a correlation between the separation distance 1931), observations (Brand 1970; Dong and Neumann and the angular rotation rate of two tropical cyclones.
    [Show full text]