Biopolymeric Materials for Tissue Regeneration, Cell Manufacturing, and Drug Delivery
Total Page:16
File Type:pdf, Size:1020Kb
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2021 Biopolymeric Materials for Tissue Regeneration, Cell Manufacturing, and Drug Delivery David Alfonso Castilla-Casadiego University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Polymer and Organic Materials Commons, and the Polymer Science Commons Citation Castilla-Casadiego, D. A. (2021). Biopolymeric Materials for Tissue Regeneration, Cell Manufacturing, and Drug Delivery. Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3964 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. Biopolymeric Materials for Tissue Regeneration, Cell Manufacturing, and Drug Delivery A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering with a concentration in Chemical Engineering by David Alfonso Castilla-Casadiego Atlantic University Bachelor of Science in Chemical Engineering, 2011 University of Puerto Rico – Mayagüez Campus Master of Science in Chemical Engineering, 2016 May 2021 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ____________________________________ Jorge L. Almodóvar-Montañez, Ph.D. Dissertation Director ____________________________________ _________________________________ Lauren F. Greenlee, Ph.D. Jeremy G. Powell, ovm, Ph.D. Committee Member Committee Member ____________________________________ _________________________________ Sumith Ranil Wickramasinghe, Ph.D. Raj Raghavendra Rao, Ph.D. Committee Member Committee Member ABSTRACT The development of materials for tissue regeneration, cell manufacturing, and drug delivery is possible by the manipulation of polymer properties and the use of three different techniques including layer-by-layer, electrospinning, and molding technique. By applying the layer-by-layer technique over biomaterials, it is possible to develop polymeric multilayers that promote a more favorable environment for cellular functionality, increasing the possibility of improving their acceptance in the area of implantation. IRVASE demonstrated being a powerful technique that allows for a reliable characterization of the physical-chemical and thermal properties of the fabricated surfaces. This opens the possibility to monitor the design of surfaces with specific characteristics, with the use of different polymeric combinations or the number of formed multilayers over the surface. In addition, other results presented here have demonstrated that the multilayers could be a platform to induce signals to cells and improve their cellular activities, promoting the manufacturing of cells of high quality. On the other hand, this dissertation has demonstrated that nanofibrous materials that mimic the physical or morphological characteristics and a large percentage of the chemical composition of the extracellular matrix of tissue in the human body could also be designed by applying the electrospinning technique. It was possible to develop collagen and collagen/hydroxyapatite nanofibrous membranes for soft and bone tissue regeneration, preserving the chemical structure and biological function. Through the manipulation of the electrospinning equipment, voltage, and injection flow, it is possible to obtain control over the diameter, morphology, and orientation of the nanofibers. Finally, polymers can also be used to design a microneedle patch useful for drug delivery by applying the molding technique. This work demonstrated that a microneedle patch of chitosan was successfully created for the delivery of meloxicam. Chitosan/meloxicam patches presented an organized distribution and homogeneous dimension of microneedles. Results revealed that the chemical composition of chitosan and meloxicam were successfully preserved, and a penetration study showed a sustained insertion of microneedles in cadaver skin of a cow’s ear. This dissertation demonstrated that polymers have the capacity to be used to fabricate materials for tissue regeneration, cell manufacturing, and drug delivery application. ©2021 by David Alfonso Castilla-Casadiego All Rights Reserved TABLE OF CONTENTS Introduction ......................................................................................................................................1 References .......................................................................................................................................4 CHAPTER 1. LITERATURE REVIEW ...........................................................................................7 1.1. Effects of Physical, Chemical, and Biological Stimulus on h-MSC Expansion and their Functional Characteristics .........................................................................................................7 1.1.1. Abstract ...............................................................................................................................7 1.1.2. Introduction .........................................................................................................................7 1.1.3. Response to Physical, Chemical, and Biological Stimuli ................................................. 10 1.1.3.1. Culture Substrates ................................................................................................ 10 1.1.3.2. Tissues Culture – Treated Plastic (TCP) .............................................................. 10 1.1.3.3. Stiffness ................................................................................................................ 12 1.1.3.4. Fibrous Scaffolds ................................................................................................. 13 1.1.3.5. Topography ........................................................................................................... 14 1.1.3.6. Surface Chemistry ................................................................................................ 15 1.1.3.7. Biochemical Stimulus on Human Stem Manufacturing ........................................ 17 1.1.4. Scaling h-MSC Manufacturing: Strategies to Stimulate Proliferation ............................. 25 1.1.4.1. Influence of Cell Culture Conditions in Bioreactors .............................................. 26 1.1.4.2. Influence of Operational Parameters in Bioreactors ............................................ 27 1.1.5. Making Sustainable Banks for the Future ........................................................................ 29 1.1.6. Importance of the Cell Donor ............................................................................................ 30 1.1.7. Issues and Changes on Good Manufacturing Practice of h-MSC ................................... 31 1.1.8. Ethics Factors of Manufacturing ....................................................................................... 32 1.1.9. Conclusions....................................................................................................................... 33 1.2. Electrospun Collagen Scaffolds ........................................................................................ 34 1.2.1. Abstract ............................................................................................................................. 34 1.2.2. Introduction ....................................................................................................................... 35 1.2.3. Collagen Nanofibers: Use of Toxic Solvents to Benign Solvents .................................... 36 1.2.4. Properties of Collagen Nanofibers.................................................................................... 43 1.2.5. Nanofiber Diameter Tuning using Polymeric Solution Blends ........................................ 44 1.2.6. Electrospinning Parameters Impact on Nanofiber Alignment and Diameter .................. 47 1.2.7. Mechanical Properties in Relation to Crosslinking .......................................................... 55 1.2.8. Biomedical Applications ................................................................................................... 61 1.2.8.1. Nerve .................................................................................................................... 62 1.2.8.2. Bone ..................................................................................................................... 65 1.2.8.3. Dermal (skin) and Wound Healing ...................................................................... 67 1.2.8.4. Tendon/Ligament Tissue ..................................................................................... 69 1.2.8.5. Vascular Grafts .................................................................................................... 70 1.2.9. Future Studies .................................................................................................................. 72 1.2.10. Conclusions ...................................................................................................................... 73 1.3. Microneedle Patches for Drug Delivery ........................................................................... 74 1.4. References ........................................................................................................................ 77 CHAPTER