Venoms and Toxins 2020 | Virtual Toxinology Despite Lock-Down

Total Page:16

File Type:pdf, Size:1020Kb

Venoms and Toxins 2020 | Virtual Toxinology Despite Lock-Down Venoms and Toxins 2020 | Virtual Toxinology despite lock-down 7th International Toxinology Meeting 16 th - 17 th September 2020 @LPMHealthcare | #VenOx20V [email protected] 2 Hamish Ogston Foundation Our sole sponsor We are grateful to The Hamish Ogston Foundation (HOF) for their continuing support of our Oxford toxinology meetings. HOF is a charitable foundation driven by a desire to contribute to lasting change, across three pillars: Health, Heritage and Music. Taking advantage of the commercial knowledge of its Founder, Hamish Ogston, and an experienced group of advisors, the Foundation introduces new disciplines and generates wider visions on impactful, fiscally prudent and longer-term giving. The HOF is particularly committed to supporting and raising awareness of some lesser- known and preventable health issues, in particular snakebite. Having recognised the devastating impact snakebite can have, the Foundation aims to alleviate suffering by sponsoring high-quality antivenom research, and has recently committed to support research in three of the Asian countries worst affected by this neglected tropical disease. This will include hospital treatment of snakebite victims and first aid as well as support for studies into the effectiveness and safety of currently available and recently developed antivenoms. Hamish Ogston CBE is an active philanthropist, supporting a range of initiatives related to health, heritage and music in and outside of the UK. Hamish was awarded his CBE in 2011 for services to business and the community in York. Venoms and Toxins 2020 (Oxford) - Virtual | 16-17 September 2020 | http://lpmhealthcare.com/venoms-and-toxins-2020-virtual 3 Contents General Zoom instructions for participants 4 Information for speakers 6 Information for poster presenters 7 Timetable – Wednesday 16 th September 2020 8 Timetable – Thursday 17 th September 2020 10 Podium abstracts 13 Poster abstracts 33 DISCLAIMER The information specified in oral and poster presentations, written abstracts and biographies come from diverse sources and it is not in the capacity of event organisers to validate it, and is provided on an ‘as-is’ basis. Responsibility for the literary and scientific content of the abstracts and the presentations, both oral and poster, remains with the authors and the presenters. Therefore, the event organisers accept no responsibility for literary or scientific correctness of this information, and shall accept no liability of any kind, should any of the information be incorrect. The event organisers and hosts make no representation or warranty of gain of business or profits as a result of use of services or information provided in connection with the even and shall not be liable for any direct or indirect damages, loss of business, employment, profits or anticipated savings resulting from the use of the services or information provided in connection with the event, in any country or court of law. Furthermore, the materials contained in the event handbook are provided on the understanding that speakers or presenters have the right to their presentation in this manner. Therefore, event organisers and hosts shall not be liable for infringement of third party rights by an event presenter, participant, sponsor, supporter or exhibitor. We cannot guarantee a minimum number of attendees. This handbook is for use by the Venoms and Toxins 2020-Virtual (16-17 September 2020) participants only. © 2020 Copyright Information: Textual and graphical contents of this handbook are copyright of presenters, sponsors, instructors and/or LibPubMedia Ltd, unless explicitly stated otherwise. No part of this handbook may be reproduced, distributed or transmitted in any form or by any means, electronic or mechanical, including but not limited to, photocopy, recording, or any other information storage or retrieval system, without the prior written permission of the legal copyright owners. Venoms and Toxins 2020 (Oxford) - Virtual | 16-17 September 2020 | http://lpmhealthcare.com/venoms-and-toxins-2020-virtual 4 General Zoom Instructions for Participants Getting started We will be using Zoom for our virtual meeting, which is a commonly used video conferencing platform. If you have not used Zoom previously, please see the following link, which has many useful short videos about this platform, including about joining a meeting : https://support.zoom.us/hc/en-us/articles/206618765-Zoom-video-tutorials https://support.zoom.us/hc/en-us/articles/360034967471-Quick-start-guide-for-new-users To use Zoom, you will need the following: • A computer (laptop/desktop) with a microphone and webcam (or a tablet or smartphone with speaker or headphones ) * • Speakers/headset/earbuds • High-speed internet *NB: Please log in from one device only. If you are logged in from two devices, one of them will be removed from the meeting. Thereafter, you may not be able to join the rest of meeting from this device, especially if this was your main meeting access device. Logging in/joining the meeting and downloading Zoom client You will receive an email notice from your meeting chair to join the meeting via Zoom on your registered day(s). The email will include information such as: • A link to join the meeting • The meeting title and scheduled times • Phone numbers for a conference call option • The meeting ID (9 or 11 digits) and passcode, etc. If you have registered to attend both days, you will receive separate email notifications for each day. For security reasons, do not share the links, user or conference IDs or passwords with anyone else – this may prevent you from accessing the meeting. You may also be required to register your email beforehand. When you click on the link provided by your host, you will be asked to download or launch Zoom client on your device. We recommend you install the software before the start of the meeting. Zoom releases regular updates to their desktop program. It is important to ensure you are running the most recent version of Zoom so that you have the most up-to-date controls when you are joining the virtual conference. You can either click on the link provided, or go to https://join.zoom.us/ and enter the 9- or 11-digit Meeting ID number (see the red box on next page). Venoms and Toxins 2020 (Oxford) - Virtual | 16-17 September 2020 | http://lpmhealthcare.com/venoms-and-toxins-2020-virtual 5 Closing all programs that will not be required for the duration of the virtual conference will improve the connection quality. Waiting for the virtual conference to begin When you join the meeting on 16 th and/or 17 th September, for security reasons, you will be sent to the ‘ waiting room ’, and will be admitted to the meeting manually against the list of registered participants that we hold. Therefore, it is important that your Zoom joining name is the same as it appears in your registration form/invoice - DO NOT use your initials or nickname . Otherwise, you may not be admitted to the meeting. Before joining, you will have the opportunity to test your audio by clicking on ‘Test Computer Audio’. Once you are satisfied that your audio works, click on ‘Join audio by computer’. The virtual conference The Zoom menu bar will appear at the bottom of the Zoom window once the meeting begins. If you do not see the menu bar, move your mouse slightly and the bar will appear ( the bar disappears after a few seconds when in full-screen mode). Venoms and Toxins 2020 (Oxford) - Virtual | 16-17 September 2020 | http://lpmhealthcare.com/venoms-and-toxins-2020-virtual 6 You can: 1) Mute/unmute your own microphone (by default during speaker sessions, all microphones will automatically be muted) 2) Turn on/off your camera (‘Start/Stop Video’) (by default during speaker sessions, videos sharing will automatically be turned off) 3) View the participant list – opens a pop-out screen that includes a ‘Raise Hand’ icon that you may use to raise a virtual hand to ask a question 4) Share your screen (only for speakers and for use in breakout rooms) 5) Chat – the chat function allows attendees to send messages to be seen by all attendees. We ask participants to be polite and respectful when asking questions, keeping discussions courteous and non-confrontational and based around the scientific content 6) Record (this feature will be disabled for participants) 7) Leave the meeting – please note: once you leave the meeting, you will no longer be able to join on the same device On your Zoom screen (usually top right) you will also see a choice to toggle between ‘speaker’ and ‘gallery’ view. ‘Speaker view’ shows the active speaker. ‘Gallery view’ tiles all of the meeting participants. Information for speakers Your talk will continue as scheduled. As with a physical meeting, each session will proceed in the order identified and maintain the schedule. • Please allow at least 5 minutes for questions and switching to the next speaker at the end of your talk (guide: ca. 6-7 slides for a 10 + 5 minute talk and 10-12 slides for a 15 + 5 minute talk). • Ensure video and audio are enabled for your presentation and are working prior to the virtual conference, and test the share screen option. Plan to join the meeting 15-20 minutes early in case there are any issues with your video/audio. • If you intend to share a third-party audio/video, please select ‘Share Computer Sound’ (bottom left corner). • Using the ‘Share Screen’ option ( 5), share your presentation screen with the participants. Once the screen has been shared, please start your presentation (please ensure you are not on ‘presenter view’, as participants will not be able to see your slides – you will still be visible to the participants while screen sharing in the top right-hand corner of the screen). • Venoms and Toxins 2020 (Oxford) - Virtual | 16-17 September 2020 | http://lpmhealthcare.com/venoms-and-toxins-2020-virtual 7 • For those with Zoom experience, you may use the whiteboard screen if you wish to draw/write out anything during your presentation.
Recommended publications
  • Effects of Brazilian Scorpion Venoms on the Central Nervous System
    Nencioni et al. Journal of Venomous Animals and Toxins including Tropical Diseases (2018) 24:3 DOI 10.1186/s40409-018-0139-x REVIEW Open Access Effects of Brazilian scorpion venoms on the central nervous system Ana Leonor Abrahão Nencioni1* , Emidio Beraldo Neto1,2, Lucas Alves de Freitas1,2 and Valquiria Abrão Coronado Dorce1 Abstract In Brazil, the scorpion species responsible for most severe incidents belong to the Tityus genus and, among this group, T. serrulatus, T. bahiensis, T. stigmurus and T. obscurus are the most dangerous ones. Other species such as T. metuendus, T. silvestres, T. brazilae, T. confluens, T. costatus, T. fasciolatus and T. neglectus are also found in the country, but the incidence and severity of accidents caused by them are lower. The main effects caused by scorpion venoms – such as myocardial damage, cardiac arrhythmias, pulmonary edema and shock – are mainly due to the release of mediators from the autonomic nervous system. On the other hand, some evidence show the participation of the central nervous system and inflammatory response in the process. The participation of the central nervous system in envenoming has always been questioned. Some authors claim that the central effects would be a consequence of peripheral stimulation and would be the result, not the cause, of the envenoming process. Because, they say, at least in adult individuals, the venom would be unable to cross the blood-brain barrier. In contrast, there is some evidence showing the direct participation of the central nervous system in the envenoming process. This review summarizes the major findings on the effects of Brazilian scorpion venoms on the central nervous system, both clinically and experimentally.
    [Show full text]
  • Medical Management of Biological Casualties Handbook
    USAMRIID’s MEDICAL MANAGEMENT OF BIOLOGICAL CASUALTIES HANDBOOK Sixth Edition April 2005 U.S. ARMY MEDICAL RESEARCH INSTITUTE OF INFECTIOUS DISEASES FORT DETRICK FREDERICK, MARYLAND Emergency Response Numbers National Response Center: 1-800-424-8802 or (for chem/bio hazards & terrorist events) 1-202-267-2675 National Domestic Preparedness Office: 1-202-324-9025 (for civilian use) Domestic Preparedness Chem/Bio Helpline: 1-410-436-4484 or (Edgewood Ops Center – for military use) DSN 584-4484 USAMRIID’s Emergency Response Line: 1-888-872-7443 CDC'S Emergency Response Line: 1-770-488-7100 Handbook Download Site An Adobe Acrobat Reader (pdf file) version of this handbook can be downloaded from the internet at the following url: http://www.usamriid.army.mil USAMRIID’s MEDICAL MANAGEMENT OF BIOLOGICAL CASUALTIES HANDBOOK Sixth Edition April 2005 Lead Editor Lt Col Jon B. Woods, MC, USAF Contributing Editors CAPT Robert G. Darling, MC, USN LTC Zygmunt F. Dembek, MS, USAR Lt Col Bridget K. Carr, MSC, USAF COL Ted J. Cieslak, MC, USA LCDR James V. Lawler, MC, USN MAJ Anthony C. Littrell, MC, USA LTC Mark G. Kortepeter, MC, USA LTC Nelson W. Rebert, MS, USA LTC Scott A. Stanek, MC, USA COL James W. Martin, MC, USA Comments and suggestions are appreciated and should be addressed to: Operational Medicine Department Attn: MCMR-UIM-O U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) Fort Detrick, Maryland 21702-5011 PREFACE TO THE SIXTH EDITION The Medical Management of Biological Casualties Handbook, which has become affectionately known as the "Blue Book," has been enormously successful - far beyond our expectations.
    [Show full text]
  • Tityus Asthenes (Pocock, 1893)
    Tityus asthenes (Pocock, 1893) by Michiel Cozijn Fig. 1:T.asthenes adult couple from Peru, top: ♀, down: ♂ M.A.C.Cozijn © 2008 What’s in a name? Tityus asthenes has no generally accepted common name, but they are sometimes sold under names like “Peruvian black scorpion” or as other species like Tityus metuendus (Pocock, 1897). Etymology: The name ‘asthenes’ in apposition to the generic name (Tityus) literally means weak or sick in ancient Greek, but it refers to ‘a thin or slender habitus’ in this case. M.A.C.Cozijn © 2011 All text and images. E-mail :[email protected] 1 Fig.2: part of South and Central America (modified) © Google maps 2011 Distribution Colombia, Costa Rica, Ecuador, Panama, Peru (1). Natural habitat T.asthenes is a common element of the tropical forests of Eastern Amazonia. T.asthenes can be found on tree trunks, but also on the forest floor under fallen logs and other debris, aswell as in the rootsystems of large trees. They are more common in rural areas. In Costa Rica the species is considered rare (Viquez, 1999). Most of the specimens in the hobby circuit originate from Peru, leading me to believe it is rather common in that country. Venom The LD50 value of the venom is 6.1 mg/ kg, and this value seems rather high when compared to T.serrulatus Lutz & Mello 1922 (0.43 Zlotkin et al, 1978) or T.bahiensis Perty 1833 (1.38, Hassan 1984). A study in Colombia revealed that systemic effects occurred mostly in children. Eighty patients where studied, of which fourteen sought medical help in a hospital.
    [Show full text]
  • Biosafety Manual 2017
    Biosafety Manual 2017 Revised 6/2017 Policy Statement It is the policy of Northern Arizona University (NAU) to provide a safe working environment. The primary responsibility for insuring safe conduct and conditions in the laboratory resides with the principal investigator. The Office of Biological Safety is committed to providing up-to-date information, training, and monitoring to the research and biomedical community concerning the safe conduct of biological, recombinant, and acute toxin research and the handling of biological materials in accordance with all pertinent local, state and federal regulations, guidelines, and laws. To that end, this manual is a resource, to be used in conjunction with the CDC and NIH guidelines, the NAU Select Agent Program, Biosafety in Microbiological and Biomedical Laboratories (BMBL), and other resource materials. Introduction This Biological Safety Manual is intended for use as a guidance document for researchers and clinicians who work with biological materials. It should be used in conjunction with the Laboratory-Specific Safety Manual, which provides more general safety information. These manuals describe policies and procedures that are required for the safe conduct of research at NAU. The NAU Personnel Policy on Safety 5.03 also provides guidance for safety in the workplace. Responsibilities In the academic research/teaching setting, the principal investigator (PI) is responsible for ensuring that all members of the laboratory are familiar with safe research practices. In the clinical laboratory setting, the faculty member who supervises the laboratory is responsible for safety practices. Lab managers, supervisors, technicians and others who provide supervisory roles in laboratories and clinical settings are responsible for overseeing the safety practices in laboratories and reporting any problems, accidents, and spills to the appropriate faculty member.
    [Show full text]
  • Caracterização Proteometabolômica Dos Componentes Da Teia Da Aranha Nephila Clavipes Utilizados Na Estratégia De Captura De Presas
    UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS – RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS BIOLOGIA CELULAR E MOLECULAR Caracterização proteometabolômica dos componentes da teia da aranha Nephila clavipes utilizados na estratégia de captura de presas Franciele Grego Esteves Dissertação apresentada ao Instituto de Biociências do Câmpus de Rio . Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Mestre em Biologia Celular e Molecular. Rio Claro São Paulo - Brasil Março/2017 FRANCIELE GREGO ESTEVES CARACTERIZAÇÃO PROTEOMETABOLÔMICA DOS COMPONENTES DA TEIA DA ARANHA Nephila clavipes UTILIZADOS NA ESTRATÉGIA DE CAPTURA DE PRESA Orientador: Prof. Dr. Mario Sergio Palma Co-Orientador: Dr. José Roberto Aparecido dos Santos-Pinto Dissertação apresentada ao Instituto de Biociências da Universidade Estadual Paulista “Júlio de Mesquita Filho” - Campus de Rio Claro-SP, como parte dos requisitos para obtenção do título de Mestre em Biologia Celular e Molecular. Rio Claro 2017 595.44 Esteves, Franciele Grego E79c Caracterização proteometabolômica dos componentes da teia da aranha Nephila clavipes utilizados na estratégia de captura de presas / Franciele Grego Esteves. - Rio Claro, 2017 221 f. : il., figs., gráfs., tabs., fots. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências de Rio Claro Orientador: Mario Sergio Palma Coorientador: José Roberto Aparecido dos Santos-Pinto 1. Aracnídeo. 2. Seda de aranha. 3. Glândulas de seda. 4. Toxinas. 5. Abordagem proteômica shotgun. 6. Abordagem metabolômica. I. Título. Ficha Catalográfica elaborada pela STATI - Biblioteca da UNESP Campus de Rio Claro/SP Dedico esse trabalho à minha família e aos meus amigos. Agradecimentos AGRADECIMENTOS Agradeço a Deus primeiramente por me fortalecer no dia a dia, por me capacitar a enfrentar os obstáculos e momentos difíceis da vida.
    [Show full text]
  • Quantitative Characterization of the Hemorrhagic, Necrotic, Coagulation
    Hindawi Journal of Toxicology Volume 2018, Article ID 6940798, 8 pages https://doi.org/10.1155/2018/6940798 Research Article Quantitative Characterization of the Hemorrhagic, Necrotic, Coagulation-Altering Properties and Edema-Forming Effects of Zebra Snake (Naja nigricincta nigricincta)Venom Erick Kandiwa,1 Borden Mushonga,1 Alaster Samkange ,1 and Ezequiel Fabiano2 1 School of Veterinary Medicine, Faculty of Agriculture and Natural Resources, Neudamm Campus, University of Namibia, P. Bag 13301, Pioneers Park, Windhoek, Namibia 2Department of Wildlife Management and Ecotourism, Katima Mulilo Campus, Faculty of Agriculture and Natural Resources, University of Namibia, P. Bag 1096, Ngweze, Katima Mulilo, Namibia Correspondence should be addressed to Alaster Samkange; [email protected] Received 30 May 2018; Revised 5 October 2018; Accepted 10 October 2018; Published 24 October 2018 Academic Editor: Anthony DeCaprio Copyright © 2018 Erick Kandiwa et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Tis study was designed to investigate the cytotoxicity and haemotoxicity of the Western barred (zebra) spitting cobra (Naja nigricincta nigricincta) venom to help explain atypical and inconsistent reports on syndromes by Namibian physicians treating victims of human ophidian accidents. Freeze-dried venom milked from adult zebra snakes was dissolved in phosphate bufered saline (PBS) for use in this study. Haemorrhagic and necrotic activity of venom were studied in New Zealand albino rabbits. Oedema-forming activity was investigated in 10-day-old Cobb500 broiler chicks. Procoagulant and thrombolytic activity was investigated in adult Kalahari red goat blood in vitro.
    [Show full text]
  • Confirmation of Parthenogenesis in the Medically Significant, Synanthropic Scorpion Tityus Stigmurus (Thorell, 1876) (Scorpiones: Buthidae)
    NOTA BREVE: Confirmation of parthenogenesis in the medically significant, synanthropic scorpion Tityus stigmurus (Thorell, 1876) (Scorpiones: Buthidae) Lucian K. Ross NOTA BREVE: Abstract: Parthenogenesis (asexuality) or reproduction of viable offspring without fertiliza- Confirmation of parthenogenesis tion by a male gamete is confirmed for the medically significant, synanthropic in the medically significant, synan- scorpion Tityus (Tityus) stigmurus (Thorell, 1876) (Buthidae), based on the litters thropic scorpion Tityus stigmurus of four virgin females (62.3–64.6 mm) reared in isolation in the laboratory since (Thorell, 1876) (Scorpiones: Buthi- birth. Mature females were capable of producing initial litters of 10–21 thely- dae) tokous offspring each; 93–117 days post-maturation. While Tityus stigmurus has been historically considered a parthenogenetic species in the pertinent literature, Lucian K. Ross the present contribution is the first to demonstrate and confirm thelytokous 6303 Tarnow parthenogenesis in this species. Detroit, Michigan 48210-1558 U.S.A. Keywords: Buthidae, Tityus stigmurus, parthenogenesis, reproduction, thelytoky. Phone/Fax: +1 (313) 285-9336 Mobile Phone: +1 (313) 898-1615 E-mail: [email protected] Confirmación de la partenogénesis en el escorpión sinantrópico y de relevan- cia médica Tityus stigmurus (Thorell, 1876) (Scorpiones: Buthidae) Resumen: Se confirma la partenogénesis (asexualidad) o reproducción con progenie viable Revista Ibérica de Aracnología sin fertilización mediante gametos masculinos en el escorpión sinantrópico y de ISSN: 1576 - 9518. relevancia médica Tityus stigmurus (Thorell, 1876) (Scorpiones: Buthidae). Cua- Dep. Legal: Z-2656-2000. tro hembras vírgenes (Mn 62.3-64.6) se criaron en el laboratorio desde su naci- Vol. 18 miento. Al alcanzar el estadio adulto tuvieron una descendencia telitoca inicial de Sección: Artículos y Notas.
    [Show full text]
  • Active Compounds Present in Scorpion and Spider Venoms and Tick Saliva Francielle A
    Cordeiro et al. Journal of Venomous Animals and Toxins including Tropical Diseases (2015) 21:24 DOI 10.1186/s40409-015-0028-5 REVIEW Open Access Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva Francielle A. Cordeiro, Fernanda G. Amorim, Fernando A. P. Anjolette and Eliane C. Arantes* Abstract Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites, ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear protein-coding genes shows that these animals share some common protein families known as neurotoxins, defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the venoms from these animals may present components with functional and structural similarities. Therefore, we described in this review the main components present in spider and scorpion venom as well as in tick saliva, since they have similar components. These three arachnids are responsible for many accidents of medical relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components with important biological activities, which may motivate the conducting of further research studies on their action mechanisms.
    [Show full text]
  • A Spatial and Temporal Assessment of Human Snake Conflicts in Windhoek 2018.Pdf
    Environmental Information Service, Namibia for the Ministry of Environment and Tourism, the Namibian Chamber of Environment and the Namibia University of Science and Technology. The Namibian Journal of Environment (NJE) covers broad environmental areas of ecology, agriculture, forestry, agro-forestry, social science, economics, water and energy, climate change, planning, land use, pollution, strategic and environmental assessments and related fields. The journal addresses the sustainable development agenda of the country in its broadest context. It publishes two categories of articles. SECTION A: Peer-reviewed papers includes primary research findings, syntheses and reviews, testing of hypotheses, in basic, applied and theoretical research. SECTION B: Open articles will be editor-reviewed. These include research conference abstracts, field observations, preliminary results, new ideas and exchange of opinions, book reviews. NJE aims to create a platform for scientists, planners, developers, managers and everyone involved in promoting Namibia’s sustainable development. An Editorial Committee will ensure that a high standard is maintained. ISSN: 2026-8327 (online). Articles in this journal are licensed under a Creative Commons Attribution 4.0 License. Editor: BA CURTIS SECTION A: PEER-REVIEWED PAPERS Recommended citation format: Hauptfleisch ML & Theart F (2018) A spatial and temporal assessment of human-snake conflicts in Windhoek, Namibia. Namibian Journal of Environment 2 A: 128-133. Namibian Journal of Environment 2018 Vol 2. Section A: 128-133 A spatial and temporal assessment of human-snake conflicts in Windhoek, Namibia ML Hauptfleisch1, F Theart2 URL: http://www.nje.org.na/index.php/nje/article/view/volume2-hauptfleisch Published online: 5th December 2018 1 Namibia University of Science and Technology.
    [Show full text]
  • Taipoxin Induces Synaptic Vesicle Exocytosis And
    Molecular Pharmacology Fast Forward. Published on February 4, 2005 as DOI: 10.1124/mol.104.005678 Molecular PharmacologyThis article has Fast not beenForward. copyedited Published and formatted. on The February final version 4, may 2005 differ as from doi:10.1124/mol.104.005678 this version. MOL # 5678 Taipoxin induces synaptic vesicle exocytosis and disrupts the interaction of synaptophysin I Downloaded from with VAMP2 molpharm.aspetjournals.org Dario Bonanomi, Maria Pennuto, Michela Rigoni, Ornella Rossetto, Cesare Montecucco and Flavia Valtorta Department of Neuroscience, S. Raffaele Scientific Institute and “Vita-Salute” University, Milan, Italy (D.B., M.P., F.V.); Department of Biomedical Sciences, University of Padova, Italy (M.R., O.R., C.M.) at ASPET Journals on October 1, 2021 1 Copyright 2005 by the American Society for Pharmacology and Experimental Therapeutics. Molecular Pharmacology Fast Forward. Published on February 4, 2005 as DOI: 10.1124/mol.104.005678 This article has not been copyedited and formatted. The final version may differ from this version. MOL # 5678 Running title: Effects of taipoxin on SypI-VAMP2 interactions Address for correspondence: Flavia Valtorta DIBIT 3A3 San Raffaele Scientific Institute via Olgettina 58 20132 Milan, Italy telephone: 39-022643-4826 telefax: 39-022643-4813 e- mail: [email protected] Downloaded from Number of text pages: 29 molpharm.aspetjournals.org Number of tables: = = = Number of figures: 7 Number of references: 33 Number of words in the Abstract: 102 at ASPET Journals on October
    [Show full text]
  • How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity As a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting
    toxins Article How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting Nadya Panagides 1,†, Timothy N.W. Jackson 1,†, Maria P. Ikonomopoulou 2,3,†, Kevin Arbuckle 4,†, Rudolf Pretzler 1,†, Daryl C. Yang 5,†, Syed A. Ali 1,6, Ivan Koludarov 1, James Dobson 1, Brittany Sanker 1, Angelique Asselin 1, Renan C. Santana 1, Iwan Hendrikx 1, Harold van der Ploeg 7, Jeremie Tai-A-Pin 8, Romilly van den Bergh 9, Harald M.I. Kerkkamp 10, Freek J. Vonk 9, Arno Naude 11, Morné A. Strydom 12,13, Louis Jacobsz 14, Nathan Dunstan 15, Marc Jaeger 16, Wayne C. Hodgson 5, John Miles 2,3,17,‡ and Bryan G. Fry 1,*,‡ 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; [email protected] (N.P.); [email protected] (T.N.W.J.); [email protected] (R.P.); [email protected] (S.A.A.); [email protected] (I.K.); [email protected] (J.D.); [email protected] (B.S.); [email protected] (A.A.); [email protected] (R.C.S.); [email protected] (I.H.) 2 QIMR Berghofer Institute of Medical Research, Herston, QLD 4049, Australia; [email protected] (M.P.I.); [email protected] (J.M.) 3 School of Medicine, The University of Queensland, Herston, QLD 4002, Australia 4 Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK; [email protected] 5 Monash Venom Group, Department of Pharmacology, Monash University,
    [Show full text]
  • (Oxyuranus) and Brown Snakes (Pseudonaja) Differ in Composition of Toxins Involved in Mammal Poisoning
    bioRxiv preprint doi: https://doi.org/10.1101/378141; this version posted July 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Venoms of related mammal-eating species of taipans (Oxyuranus) and brown snakes (Pseudonaja) differ in composition of toxins involved in mammal poisoning Jure Skejic1,2,3*, David L. Steer4, Nathan Dunstan5, Wayne C. Hodgson2 1 Department of Biochemistry and Molecular Biology, BIO21 Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia 2 Monash Venom Group, Department of Pharmacology, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia 3 Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia 4 Monash Biomedical Proteomics Facility, Monash University, 23 Innovation Walk, Clayton, Victoria 3800, Australia 5 Venom Supplies Pty Ltd., Stonewell road, Tanunda, South Australia 5352, Australia * Correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/378141; this version posted July 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Background Differences in venom composition among related snake lineages have often been attributed primarily to diet. Australian elapids belonging to taipans (Oxyuranus) and brown snakes (Pseudonaja) include a few specialist predators as well as generalists that have broader dietary niches and represent a suitable model system to investigate this assumption. Here, shotgun high-resolution mass spectrometry (Q Exactive Orbitrap) was used to compare venom proteome composition of several related mammal-eating species of taipans and brown snakes.
    [Show full text]