In the Warming Arctic Seas

Total Page:16

File Type:pdf, Size:1020Kb

In the Warming Arctic Seas CLIMATE’S CLIFF In the Warming Arctic Seas SUBHANKAR BANERJEE 18 SUBHANKAR BANERJEE ARCTIC SEAS RCTIC NATIONAL WILDLIFE noticed a perfect reflection and clicked the REFUGE—I was standing in the shutter. In 2001, almost no one, includ- Aback of the sled when it broke ing the biologists, anticipated what was to through the ice, plunging into the frigid happen to the bears of the Beaufort Sea. water of the Hulahula River. Just in time, Dialing the clock back a bit further to Robert yanked the machine. The heavy April, Robert and I were traveling through sled, instead of falling on me, gradually the Canning River Valley in the western moved out of the shallow water. It must edge of the Arctic NWR, when we came have been about 40 degrees below zero. I across a band of 13 muskoxen with a new- began to settle into hypothermia. Robert born calf, likely a day or two old. The woolly Thompson and his cousin Perry Anashugak bovines were migrating from the foothills of quickly set up the tent and lit both burners the Brooks Range Mountains to the coastal of the Coleman stove. Inside a sleeping bag, plain. Muskoxen, one of the most adapted I began to warm up. That day, I escaped animals to the extreme cold of the Arctic, death, barely. “The river is supposed to have give birth on exposed land when the ground solid ice on the surface in November, not is covered with snow and temperatures dip fragile like this,” Robert lamented. That way below freezing. A few hours after the was 2001, in the Arctic National Wildlife sighting, a strong blizzard started to blow, Refuge (NWR) in northeast Alaska. the temperature around 35 below zero with Five months before the Hulahula River windchills approaching minus 100 degrees incident, in mid-June, Robert and I were Fahrenheit. Robert thought it was “unusu- standing on the northern edge of Barter al” that the band of muskoxen with a new- Island. In front of us was Barnard Har- born calf would migrate like that. bor that extends to a barrier island, which meets the Beaufort Sea. On the south was HARBINGERS the coastal plain of the Arctic NWR. A These incidents constitute a starting point, short distance away a mid-sized polar bear showing how varieties of environmental was approaching a whale bone left behind changes have arrived in a rather short time, from the previous year’s hunt by the Iñu- since the turn of the 21st century, in a par- piat people of Kaktovik. The sea ice on the ticular place—each representative of the harbor was still frozen, but the snow on top many significant climate change impacts was beginning to melt, creating puddles. that affect the human communities and the There was no wind, and the evening sun nonhuman biotic life in the entire circum- was casting a warm glow on the white sea- polar Arctic. When land and sea are going scape and on the ivory fur of the bear. As through rapid changes, inhabitants of the the bear walked past one of the puddles, I area are usually the first to witness it. In Subhankar Banerjee, an artist, writer, and environmental humanities scholar, was a Di- rector’s Visitor at the Institute for Advanced Study in Princeton and received a Cultural Freedom Award from Lannan Foundation. He is editor of the anthology, Arctic Voices: Resistance at the Tipping Point (Seven Stories Press, 2013), and author of Seasons of Life and Land: Arctic National Wildlife Refuge (Mountaineers Books, 2003). His pho- tographs have been exhibited in more than 50 museums around the world. SUMMER 2015 19 CLIMATE’S CLIFF 2002, the Arctic Research Consortium of out of sheet lead; snow had eroded the the United States, in cooperation with the wood to where the lead was in relief. Arctic Studies Center of the Smithsonian We also found a wooden marker with a Institution, pointed out that the indigenous non-native name over by Sungiksaluk, peoples “are already witnessing disturbing perhaps a whaler. There was also a body and severe climatic and ecological changes,” that came out of the ground to the east. even though “the majority of the Earth’s cit- It was reburied in our cemetery. izens have not seen any significant climate changes thus far.” Thirteen years later, a ma- The Arctic is warming at a rate of at jority of the world’s people are experiencing least twice the global average. With this significant impacts of climate change. In the rapid warming, permafrost, or perma- Arctic, the changes have only accelerated. nently frozen ground, is thawing. When Iñupiaq conservationist Robert Thomp- permafrost thaws, the organic matter inside son and his wife Jane live in Kaktovik, a begins to break down and releases carbon small town of about 300 residents on Bar- dioxide and methane, the latter about 86 ter Island. A decade ago, the conversations times more potent than carbon dioxide, as a I had with residents of Kaktovik and Arc- greenhouse gas over a 20-year period. One tic Village focused on both climate change of the most visible signs of thawing perma- and oil development. The lakes were drying frost is “drunken forest”—trees leaning at up, affecting subsistence fishing. The wil- odd angles as they lose their footing in the low plants were getting much larger and unstable soil. In November 2007, large ar- bushier affecting migration of caribou. And eas of drunken forest were spreading near wildfires were becoming widespread and Nelemonoye, a Yukaghir community along more destructive. All this came from the the upper Kolyma River in the Sakha Re- Gwich’in people, while the Iñupiat people public. Thawing of terrestrial permafrost said the sea ice was retreating rapidly and also has major impact on ecology, hydrol- the permafrost was beginning to thaw. ogy, and human infrastructures, as homes, In early August 2006, at the north- buildings, roads, and runways can collapse western edge of Barter Island, a coffin was as the ground underneath begins to buckle. lying exposed with bones scattered near- In addition to carbon stored in the organ- by. The permafrost around the coffin had ic matter inside permafrost, there is also an thawed. Robert told me in an email: enormous amount of methane trapped inside icy crystals known as clathrates. Scientists do The grave we saw on the other side not yet know how much clathrate is in the of the island was of a child. Lon Son- Arctic but think that much of the carbon salla, Fenton Rexford, and I went over stored in the Arctic is inside clathrates, which there when we heard that a brown bear can be found either deep in terrestrial perma- had broken into the coffin and scattered frost or beneath Arctic shelves offshore, ac- the body. I picked up a foot. It startled cording to a U.S. National Research Council me—it was so light, freeze-dried. We Report. The release of methane from terres- put all the parts back in the box, nailed trial permafrost is a slower process, but from it shut, and reburied the person. There subsea permafrost it can happen steadily, or in are two other exposed graves with dates sudden, potentially catastrophic, pulses. More of 1932. These had names and dates cut than a decade of research by Russian scientists 20 WORLD POLICY JOURNAL ARCTIC SEAS Natalia Shakhova and Igor Semiletov shows winter months, followed by freezing tem- that methane is being actively released from peratures that create a hard layer of ice on subsea permafrost in the East Siberian Arc- tundra that animals like caribou or reindeer tic Shelf. Based on their field observations, a and muskoxen cannot break through to team of physical and social scientists in Eu- find food. Earlier this year, Kim Holmén, rope have shown that a decade-long 50-gi- the international director of the Norwegian gaton methane pulse from the East Siberian Polar Institute told a Guardian reporter Arctic Shelf could cost the global economy that, “Much of Svalbard is covered with an average of $60 trillion. To put this in per- ice on land, which is a fatal state for the spective, the financial damage from just one reindeer,” while the extreme storm, Hurricane Sandy that hit the fjords around Svalbard East Coast of the United States in 2012, was remained unfrozen. muskoxen barely $60 billion. So the aggregate impact Holmén further said and caribou on property, infrastructure, and food produc- that they are experi- tion of a 50-gigaton methane pulse would be encing “more icing or reindeer equivalent to 1,000 Hurricane Sandys. events,” and when that are the only “I was rained on in February,” Robert happens the reindeer said speaking of an experience he had in win- “can’t move around, arctic hoofed ter 2006. “To me, an Iñupiaq, residing on the and they can’t eat.” animals that edge of the Arctic Ocean, to be rained on in University of made it from February is strange.” In the winter of 2005 to Gothenberg Profes- 2006, a thousand caribou from the Teshek- sor Tyrone Martins- the pleistocene puk Lake herd came over to the Arctic NWR, son first went to era to modern a 240-mile journey. “It rained and then the Svalbard in 2001. times, but tundra froze over there, and the animals came He circumnavigated over to our area to find food,” Robert recalled. Svalbard that sum- remain “But it also rained on Barter Island, and the mer at 80 degrees vulnerable to tundra froze.
Recommended publications
  • Flow of Pacific Water in the Western Chukchi
    Deep-Sea Research I 105 (2015) 53–73 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Flow of pacific water in the western Chukchi Sea: Results from the 2009 RUSALCA expedition Maria N. Pisareva a,n, Robert S. Pickart b, M.A. Spall b, C. Nobre b, D.J. Torres b, G.W.K. Moore c, Terry E. Whitledge d a P.P. Shirshov Institute of Oceanology, 36, Nakhimovski Prospect, Moscow 117997, Russia b Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA c Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada d University of Alaska Fairbanks, 505 South Chandalar Drive, Fairbanks, AK 99775, USA article info abstract Article history: The distribution of water masses and their circulation on the western Chukchi Sea shelf are investigated Received 10 March 2015 using shipboard data from the 2009 Russian-American Long Term Census of the Arctic (RUSALCA) pro- Received in revised form gram. Eleven hydrographic/velocity transects were occupied during September of that year, including a 25 August 2015 number of sections in the vicinity of Wrangel Island and Herald canyon, an area with historically few Accepted 25 August 2015 measurements. We focus on four water masses: Alaskan coastal water (ACW), summer Bering Sea water Available online 31 August 2015 (BSW), Siberian coastal water (SCW), and remnant Pacific winter water (RWW). In some respects the Keywords: spatial distributions of these water masses were similar to the patterns found in the historical World Arctic Ocean Ocean Database, but there were significant differences.
    [Show full text]
  • ARCTIC ECOLOGY Total Phosphorus, and Ions of Calcium, Increase in the Spatial Distribution of Lakes in Peril Chloride, Magnesium, and Sodium) Warmer Temperatures
    research highlights ARCTIC ECOLOGY total phosphorus, and ions of calcium, increase in the spatial distribution of Lakes in peril chloride, magnesium, and sodium) warmer temperatures. Glob. Change Biol. http://doi.org/xhk (2014) increased in shrinking lakes over the These findings highlight that extreme 25-year study period, but changed little in Northern Hemisphere anomalies are stable or expanding lakes. These changes the most variable on decadal timescales were most likely the result of shifts in the and could be used as indicators of global evaporation-to-inflow ratio and indicate temperature variability. BW that shrinking lakes may suffer from high- nutrient or saline conditions. AB ECONOMICS Climate-trade policy nexus TEMPERATURE TRENDS Appl. Econ. Persp. Pol. http://doi.org/xhg (2014) Warming hemispheres Geophys. Res. Lett. http://doi.org/xhh (2014) Surface temperature is typically reported as a global average when considering climate change. The use of a global average allows us to see the overall trend in temperature change, but results in the loss of important MINT IMAGES LIMITED / ALAMY MINT IMAGES spatial information. To investigate trends in warm and Reductions in lake area in some regions of cold temperature anomalies and their the Arctic and subarctic have occurred in spatial pattern, Scott Robeson of Indiana recent years. These changes raise concerns University, USA, and co-workers apply a about the fate of stored carbon and could spatial percentile approach to a gridded also have serious consequences for the temperature dataset on a monthly basis. health of the lake ecosystems themselves. Anomalies are calculated by comparison GEDULDIG / ALAMY BILDAGENTUR The mechanisms of lake reduction are with the 1961 to 1990 period and thought to relate primarily to increased analysis was performed individually on Climate change and international trade evaporation and decreased inflow, and lake both hemispheres.
    [Show full text]
  • Chukchi Sea Itrs 2013
    Biological Opinion for Polar Bears (Ursus maritimus) and Conference Opinion for Pacific Walrus (Odobenus rosmarus divergens) on the Chukchi Sea Incidental Take Regulations Prepared by: U.S. Fish and Wildlife Service Fairbanks Fish and Wildlife Field Office 110 12th Ave, Room 110 Fairbanks, Alaska 99701 May 20, 2013 1 Table of Contents Introduction ................................................................................................................................5 Background on Section 101(a)(5) of MMPA ...........................................................................6 The AOGA Petition .................................................................................................................6 History of Chukchi Sea ITRS ..............................................................................................7 Relationship of ESA to MMPA ...........................................................................................7 MMPA Terms: ........................................................................................................................7 ESA Terms: ............................................................................................................................8 The Proposed Action ...................................................................................................................8 Information Required to Obtain a Letter of Authorization .......................................................9 Specific Measures of LOAs ..................................................................................................
    [Show full text]
  • Arctic Climate Impact Assessment
    PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge, CB2 2RU, UK AMAP Secretariat 40 West 20th Street, New York, NY 10011-4211, USA P.O. Box 8100 Dep. 10 Stamford Road, Oakleigh, VIC 3166, Australia N-0032 Oslo, Norway Ruiz de Alarcón 13, 28014 Madrid, Spain Tel: +47 23 24 16 30 Dock House, The Waterfront, Cape Town 8001, South Africa Fax: +47 22 67 67 06 http://www.amap.no http://www.cambridge.org First published 2004 CAFF International Printed in Canada Secretariat Hafnarstraeti 97 ISBN 0 521 61778 2 paperback 600 Akureyri, Iceland Tel: +354 461-3352 ©Arctic Climate Impact Assessment, 2004 Fax: +354 462-3390 http://www.caff.is Author Susan Joy Hassol IASC Secretariat Project Production and Graphic Design Middelthuns gate 29 Paul Grabhorn, Joshua Weybright, Clifford Grabhorn (Cartography) P.O. Box 5156 Majorstua N-0302 Oslo, Norway Photography Tel: +47 2295 9900 Bryan and Cherry Alexander, and others: credits on page 139 Fax: +47 2295 9901 Technical editing http://www.iasc.no Carolyn Symon Contributors Assessment Integration Team ACIA Secretariat Robert Corell, Chair American Meteorological Society, USA Gunter Weller, Executive Director Pål Prestrud, Vice Chair Centre for Climate Research in Oslo, Norway Patricia A. Anderson, Deputy Executive Director Gunter Weller University of Alaska Fairbanks, USA Barb Hameister, Sherry Lynch Patricia A. Anderson University of Alaska Fairbanks, USA International Arctic Research Center Snorri Baldursson Liaison for the Arctic Council, Iceland University of Alaska Fairbanks Elizabeth Bush Environment Canada, Canada Fairbanks, AK 99775-7740, USA Terry V.
    [Show full text]
  • 1 POLAR BEAR (Ursus Maritimus): Chukchi/Bering Seas Stock STOCK
    Revised: 01/01/2010 POLAR BEAR (Ursus maritimus): Chukchi/Bering Seas Stock STOCK DEFINITION AND GEOGRAPHIC RANGE Polar bears are circumpolar in their distribution in the northern hemisphere. They occur in several largely discrete stocks or populations (Harington 1968). Polar bear movements are extensive and individual activity areas are enormous (Garner et al. 1990, Amstrup et al. 2000). The parameters used by Dizon et al. (1992) to classify stocks based on the phylogeographic approach were considered in the determination of stock separation in Alaska. Several polar bear stocks are known to be shared between countries (Amstrup et al. 1986, Amstrup and DeMaster 1988). Lentfer hypothesized that in Alaska two stocks exist, the Southern Beaufort Sea (SBS) and the Chukchi/Bering seas (CBS), based upon: (a) variations in levels of heavy metal contaminants of organ tissues (Lentfer 1976, Figure 1. Map of the Southern Beaufort Sea and the Chukchi/ Lentfer and Galster 1987); (b) morphological Bering seas polar bear stocks. characteristics (Manning 1971, Lentfer 1974, Wilson 1976); (c) physical oceanographic features which segregate the Chukchi Sea and Bering Sea stock from the Beaufort Sea stock (Lentfer 1974); and (d) movement information collected from mark and recapture studies of adult female bears (Lentfer 1974, 1983) (Figure 1). Information on contaminants (Woshner et al. 2001, Evans 2004a, Evans 2004b, Kannan et al. 2005, Smithwick et al. 2005, Verreault et al. 2005, Muir et al. 2006, Smithwick et al. 2006, Kannan et al. 2007, Rush et al. 2008) and movement data using satellite collars (Amstrup et al. 2004, Amstrup et al. 2005) continue to support the presence of these two stocks.
    [Show full text]
  • 12 Northern Bering-Chukchi Sea
    12/18:&LME&FACTSHEET&SERIES& NORTHERN BERING- CHUKCHI SEA LME tic LMEs Arc NORTHERN'BERING+CHUKCHI'SEA'LME'MAP 18 of Map Russia Bering Strait Alaska Russia LME Canada Iceland Central Arctic Ocean 12 "1 ARCTIC LMEs Large&! Marine& Ecosystems& (LMEs)& are& defined& as& regions& of& work&of&the&ArcMc&Council&in&developing&and&promoMng&the& ocean& space& of& 200,000& km²& or& greater,& that& encompass& Ecosystem& ApproacH& to& management& of& the& ArcMc& marine& coastal& areas& from& river& basins& and& estuaries& to& the& outer& environment.& margins& of& a& conMnental& sHelf& or& the& seaward& extent& of& a& predominant&coastal&current.&LMEs&are&defined&by&ecological& Joint'EA'Expert'group' criteria,&including&bathymetry,&HydrograpHy,&producMvity,&and& PAME& establisHed& an& Ecosystem& ApproacH& to& Management& tropically& linked& populaMons.& PAME& developed& a& map& expert& group& in& 2011& with& the& parMcipaMon& of& other& ArcMc& delineaMng&17&ArcMc&Large&Marine&Ecosystems&(ArcMc&LME's)& Council&working&groups&(AMAP,&CAFF&and&SDWG).&THis&joint& in&the&marine&waters&of&the&ArcMc&and&adjacent&seas&in&2006.& Ecosystem&ApproacH&Expert&Group&(EAYEG)&Has&developed&a& In&a&consultaMve&process&including&agencies&of&ArcMc&Council& framework& for& EA& implementaMon& wHere& the& first& step& is& member&states&and&other&ArcMc&Council&working&groups,&the& idenMficaMon& of& the& ecosystem& to& be& managed.& IdenMfying& ArcMc& LME& map& was& revised& in& 2012&to&include&18&ArcMc& the&ArcMc&LMEs&represents&this&first&step. LMEs.& THis& is& the& current&
    [Show full text]
  • Farquharson Et Al 2018. Coastal Changes Chukchi Sea. Marine
    Marine Geology 404 (2018) 71–83 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margo Temporal and spatial variability in coastline response to declining sea-ice in northwest Alaska T ⁎ L.M. Farquharsona, , D.H. Mannb, D.K. Swansonc, B.M. Jonesd, R.M. Buzardb, J.W. Jordane a Geophysical Institute Permafrost Laboratory, University of Alaska Fairbanks, Fairbanks, AK, USA b Department of Geosciences, University of Alaska Fairbanks, Fairbanks, AK, USA c National Park Service, Fairbanks, AK, USA d Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA e Department of Environmental Studies, Antioch University New England, USA ARTICLE INFO ABSTRACT Editor: E. Anthony Arctic sea-ice is declining in extent, leaving coastlines exposed to more storm-wave events. There is an urgent ff Keywords: need to understand how these changes a ect geomorphic processes along Arctic coasts. Here we describe spatial Arctic and temporal patterns of shoreline changes along two geomorphologically distinct, storm-wave dominated Coastal erosion reaches of the Chukchi Sea coastline over the last 64 years. One study area encompasses the west- to southwest- Permafrost facing, coarse-clastic shoreline and ice-rich bluffs of Cape Krusenstern (CAKR). The other covers the north- Remote sensing facing, sandy shorelines on barrier islands, ice-rich bluffs, and the Cape Espenberg spit in the Bering Land Bridge Sea-ice National Park (BELA). Both study areas lie within the zone of continuous permafrost, which exists both on and offshore and outcrops as ice-rich bluffs along the BELA coast. We mapped changes in coastal geomorphology over three observation periods: 1950–1980, 1980–2003, and 2003–2014 using aerial and satellite imagery.
    [Show full text]
  • Arctic Policy &
    Arctic Policy & Law References to Selected Documents Edited by Wolfgang E. Burhenne Prepared by Jennifer Kelleher and Aaron Laur Published by the International Council of Environmental Law – toward sustainable development – (ICEL) for the Arctic Task Force of the IUCN Commission on Environmental Law (IUCN-CEL) Arctic Policy & Law References to Selected Documents Edited by Wolfgang E. Burhenne Prepared by Jennifer Kelleher and Aaron Laur Published by The International Council of Environmental Law – toward sustainable development – (ICEL) for the Arctic Task Force of the IUCN Commission on Environmental Law The designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of ICEL or the Arctic Task Force of the IUCN Commission on Environmental Law concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers and boundaries. The views expressed in this publication do not necessarily reflect those of ICEL or the Arctic Task Force. The preparation of Arctic Policy & Law: References to Selected Documents was a project of ICEL with the support of the Elizabeth Haub Foundations (Germany, USA, Canada). Published by: International Council of Environmental Law (ICEL), Bonn, Germany Copyright: © 2011 International Council of Environmental Law (ICEL) Reproduction of this publication for educational or other non- commercial purposes is authorized without prior permission from the copyright holder provided the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. Citation: International Council of Environmental Law (ICEL) (2011).
    [Show full text]
  • Is Arctic Greening Consistent with the Ecology of Tundra? Lessons from an Ecologically Informed Mass Balance Model
    Environmental Research Letters LETTER • OPEN ACCESS Is arctic greening consistent with the ecology of tundra? Lessons from an ecologically informed mass balance model To cite this article: A V Rocha et al 2018 Environ. Res. Lett. 13 125007 View the article online for updates and enhancements. This content was downloaded from IP address 129.74.231.133 on 02/01/2019 at 15:50 Environ. Res. Lett. 13 (2018) 125007 https://doi.org/10.1088/1748-9326/aaeb50 LETTER Is arctic greening consistent with the ecology of tundra? Lessons OPEN ACCESS from an ecologically informed mass balance model RECEIVED 9 August 2018 A V Rocha1 , B Blakely1, Y Jiang2, K S Wright1 and S R Curasi1 REVISED 1 University of Notre Dame, Department of Biological Sciences & the Environmental Change Initiative, Notre Dame, IN, 46556, United 23 October 2018 States of America ACCEPTED FOR PUBLICATION 2 Oregon State University, Forest Ecosystems and Society, Corvallis, Oregon, 97331, United States of America 25 October 2018 PUBLISHED E-mail: [email protected] 7 December 2018 Keywords: NDVI, arctic greening/browning, disturbance, arctic ecology and biogeochemistry Original content from this work may be used under the terms of the Creative Abstract Commons Attribution 3.0 licence. Climate change has been implicated in the widespread ‘greening’ of the arctic in recent decades. Any further distribution of However, differences in arctic greening patterns among satellite platforms and recent reports of this work must maintain attribution to the decreased rate of greening or of browning have made attributing arctic greening trends to a warming author(s) and the title of climate challenging.
    [Show full text]
  • Arctic Report Card 2018 Effects of Persistent Arctic Warming Continue to Mount
    Arctic Report Card 2018 Effects of persistent Arctic warming continue to mount 2018 Headlines 2018 Headlines Video Executive Summary Effects of persistent Arctic warming continue Contacts to mount Vital Signs Surface Air Temperature Continued warming of the Arctic atmosphere Terrestrial Snow Cover and ocean are driving broad change in the Greenland Ice Sheet environmental system in predicted and, also, Sea Ice unexpected ways. New emerging threats Sea Surface Temperature are taking form and highlighting the level of Arctic Ocean Primary uncertainty in the breadth of environmental Productivity change that is to come. Tundra Greenness Other Indicators River Discharge Highlights Lake Ice • Surface air temperatures in the Arctic continued to warm at twice the rate relative to the rest of the globe. Arc- Migratory Tundra Caribou tic air temperatures for the past five years (2014-18) have exceeded all previous records since 1900. and Wild Reindeer • In the terrestrial system, atmospheric warming continued to drive broad, long-term trends in declining Frostbites terrestrial snow cover, melting of theGreenland Ice Sheet and lake ice, increasing summertime Arcticriver discharge, and the expansion and greening of Arctic tundravegetation . Clarity and Clouds • Despite increase of vegetation available for grazing, herd populations of caribou and wild reindeer across the Harmful Algal Blooms in the Arctic tundra have declined by nearly 50% over the last two decades. Arctic • In 2018 Arcticsea ice remained younger, thinner, and covered less area than in the past. The 12 lowest extents in Microplastics in the Marine the satellite record have occurred in the last 12 years. Realms of the Arctic • Pan-Arctic observations suggest a long-term decline in coastal landfast sea ice since measurements began in the Landfast Sea Ice in a 1970s, affecting this important platform for hunting, traveling, and coastal protection for local communities.
    [Show full text]
  • An Introduction to Inuit and Chukchi Experiences in the Bering Strait, Beaufort Sea, and Baffin Bay
    water Article Crossroads of Continents and Modern Boundaries: An Introduction to Inuit and Chukchi Experiences in the Bering Strait, Beaufort Sea, and Baffin Bay Henry P. Huntington 1,* , Richard Binder Sr. 2, Robert Comeau 3, Lene Kielsen Holm 4, Vera Metcalf 5, Toku Oshima 6, Carla SimsKayotuk 7 and Eduard Zdor 8 1 Ocean Conservancy, Eagle River, AK 99577, USA 2 Inuvik, NT X0E 0T0, Canada; [email protected] 3 Iqaluit, NU X0A 0H0, Canada; [email protected] 4 Greenland Institute of Natural Resources, Nuuk 3900, Greenland; [email protected] 5 Eskimo Walrus Commission, Nome, AK 99762, USA; [email protected] 6 Qaanaaq 3971, Greenland; [email protected] 7 North Slope Borough Department of Wildlife Management, Kaktovik, AK 99747, USA; [email protected] 8 Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; [email protected] * Correspondence: [email protected] Received: 21 May 2020; Accepted: 20 June 2020; Published: 24 June 2020 Abstract: The homeland of Inuit extends from Asia and the Bering Sea to Greenland and the Atlantic Ocean. Inuit and their Chukchi neighbors have always been highly mobile, but the imposition of three international borders in the region constrained travel, trade, hunting, and resource stewardship among neighboring groups. Colonization, assimilation, and enforcement of national laws further separated those even from the same family. In recent decades, Inuit and Chukchi have re-established many ties across those boundaries, making it easier to travel and trade with one another and to create new institutions of environmental management. To introduce Indigenous perspectives into the discussion of transboundary maritime water connections in the Arctic, this paper presents personal descriptions of what those connections mean to people who live and work along and across each of the national frontiers within the region: Russia–U.S., U.S.–Canada, and Canada–Greenland.
    [Show full text]
  • 1 Status Review for the Eastern Chukchi Sea Beluga
    STATUS REVIEW FOR THE EASTERN CHUKCHI SEA BELUGA WHALE STOCK for the NAMMCO Global Review of Monodontids Submitted 18 February 2017 Lloyd F. Lowry, Alaska Beluga Whale Committee and University of Alaska Fairbanks, 73-4388 Paiaha Street, Kailua Kona, HI 96740 USA John J. Citta, Alaska Department of Fish and Game, 1300 College Road, Fairbanks, AK 99701 USA Greg O’Corry-Crowe, Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA Kathryn J. Frost, Alaska Beluga Whale Committee. 73-4388 Paiaha Street, Kailua Kona, HI 96740 USA Robert Suydam, North Slope Borough, Box 69, Barrow, AK 99723, USA 1. Distribution and stock identity The eastern Chukchi Sea (ECS) beluga stock occurs in the lagoons and adjacent waters of the ECS in late spring and early summer (Frost et al. 1993). Individuals of this stock range widely throughout the ECS and Beaufort Sea and into the Arctic Ocean during summer and early fall (Suydam 2009, Hauser et al. 2014) and then move through the Bering Strait into the Bering Sea in the winter, returning to the Chukchi Sea the following spring (Citta et al. 2017). The non-uniform distribution of beluga whales in coastal waters of the Bering, Chukchi, and Beaufort Seas in summer is indicative of likely population subdivision and formed the basis for original, but provisional, stock designations (Frost and Lowry 1990). It was recognized at the time that identification of more biologically meaningful stocks would require genetic studies to elucidate the underlying patterns of demographic and reproductive relationships among seasonal groupings (O’Corry-Crowe and Lowry 1997).
    [Show full text]