Toxic Sweatshops
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UNICORE OPTIMIZATION William Jalby
UNICORE OPTIMIZATION William Jalby LRC ITA@CA (CEA DAM/ University of Versailles St-Quentin-en-Yvelines) FRANCE 1 Outline The stage Key unicore performance limitations (excluding caches) Multimedia Extensions Compiler Optimizations 2 Abstraction Layers in Modern Systems Application Algorithm/Libraries CS Programming Language Original Compilers/Interpreters domain of Operating System/Virtual Machines Domain of the computer recent architect Instruction Set Architecture (ISA) computer architecture (‘50s-’80s) Microarchitecture (‘90s) Gates/Register-Transfer Level (RTL) Circuits EE Devices Physics Key issue Application Algorithm/Libraries Understand the We have to take into relationship/interaction account the between Architecture intermediate layers Microarchitecture and Applications/Algorithms Microarchitecture KEY TECHNOLOGY: Don’t forget also the lowest layers Performance Measurement and Analysis Performance Measurement and Analysis AN OVERLOOKED ISSUE HARDWARE VIEW: mechanism description and a few portions of codes where it works well (positive view) COMPILER VIEW: aggregate performance number (SPEC), little correlation with hardware Lack of guidelines for writing efficient programs Uniprocessor Performance From Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, October, 2006 - VAX: 25%/year 1978 to 1986 - RISC + x86: 52%/year 1986 to 2002 RISC + x86: ??%/year 2002 to present Trends Unicore Performance REF: Mikko Lipasti-University of [source: Intel] Wisconsin Modern Unicore Stage KEY PERFORMANCE -
\\Crewserver05\Data\Research & Investigations\Most Ethical Public
Stephen Abraham Exhibits EXHIBIT 1 Unlikely Adversary Arises to Criticize Detainee Hearings - New York Times http://www.nytimes.com/2007/07/23/us/23gitmo.html?pagewanted=print July 23, 2007 Unlikely Adversary Arises to Criticize Detainee Hearings By WILLIAM GLABERSON NEWPORT BEACH, Calif. — Stephen E. Abraham’s assignment to the Pentagon unit that runs the hearings at Guantánamo Bay, Cuba, seemed a perfect fit. A lawyer in civilian life, he had been decorated for counterespionage and counterterrorism work during 22 years as a reserve Army intelligence officer in which he rose to the rank of lieutenant colonel. His posting, just as the Guantánamo hearings were accelerating in 2004, gave him a close-up view of the government’s detention policies. It also turned him into one of the Bush administration’s most unlikely adversaries. In June, Colonel Abraham became the first military insider to criticize publicly the Guantánamo hearings, which determine whether detainees should be held indefinitely as enemy combatants. Just days after detainees’ lawyers submitted an affidavit containing his criticisms, the United States Supreme Court reversed itself and agreed to hear an appeal arguing that the hearings are unjust and that detainees have a right to contest their detentions in federal court. Some lawyers say Colonel Abraham’s account — of a hearing procedure that he described as deeply flawed and largely a tool for commanders to rubber-stamp decisions they had already made — may have played an important role in the justices’ highly unusual reversal. That decision once again brought the administration face to face with the vexing legal, political and diplomatic questions about the fate of Guantánamo and the roughly 360 men still held there. -
Computer Architecture Techniques for Power-Efficiency
MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY i MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35 ii MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35 iii Synthesis Lectures on Computer Architecture Editor Mark D. Hill, University of Wisconsin, Madison Synthesis Lectures on Computer Architecture publishes 50 to 150 page publications on topics pertaining to the science and art of designing, analyzing, selecting and interconnecting hardware components to create computers that meet functional, performance and cost goals. Computer Architecture Techniques for Power-Efficiency Stefanos Kaxiras and Margaret Martonosi 2008 Chip Mutiprocessor Architecture: Techniques to Improve Throughput and Latency Kunle Olukotun, Lance Hammond, James Laudon 2007 Transactional Memory James R. Larus, Ravi Rajwar 2007 Quantum Computing for Computer Architects Tzvetan S. Metodi, Frederic T. Chong 2006 MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35 Copyright © 2008 by Morgan & Claypool All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in printed reviews, without the prior permission of the publisher. Computer Architecture Techniques for Power-Efficiency Stefanos Kaxiras and Margaret Martonosi www.morganclaypool.com ISBN: 9781598292084 paper ISBN: 9781598292091 ebook DOI: 10.2200/S00119ED1V01Y200805CAC004 A Publication in the Morgan & Claypool Publishers -
Installation Guide for UNICORE Server Components
Installation Guide for UNICORE Server Components Installation Guide for UNICORE Server Components UNICORE Team July 2015, UNICORE version 7.3.0 Installation Guide for UNICORE Server Components Contents 1 Introduction1 1.1 Purpose and Target Audience of this Document.................1 1.2 Overview of the UNICORE Servers and some Terminology...........1 1.3 Overview of this Document............................2 2 Installation of Core Services for a Single Site3 2.1 Basic Scenarios..................................3 2.2 Preparation....................................5 2.3 Installation....................................6 2.4 Security Settings................................. 15 2.5 Installation of the Perl TSI and TSI-related Configuration of the UNICORE/X server....................................... 18 2.6 The Connections Between the UNICORE Components............. 20 3 Operation of a UNICORE Installation 22 3.1 Starting...................................... 22 3.2 Stopping...................................... 22 3.3 Monitoring.................................... 22 3.4 User Management................................. 22 3.5 Testing your Installation............................. 23 4 Integration of Another Target System 24 4.1 Configuration of the UNICORE/X Service.................... 24 4.2 Configuration of Target System Interface..................... 25 4.3 Addition of Users to the XUUDB........................ 26 4.4 Additions to the Gateway............................. 26 5 Multi-Site Installation Options 26 5.1 Multiple Registries............................... -
Intel's High-Performance Computing Technologies
Intel’s High-Performance Computing Technologies 11th ECMWF Workshop Use of HIgh Performance Computing in Meteorology Reading, UK 26-Oct-2004 Dr. Herbert Cornelius Advanced Computing Center Intel EMEA Advanced Computing on Intel® Architecture Intel HPC Technologies October 2004 HPC continues to change … *Other brands and names are the property of their respective owners •2• Advanced Computing on Intel® Architecture Intel HPC Technologies October 2004 Some HPC History 1960s 1970s 1980s 1990s 2000s HPC Systems 1970s 1980s 1990s 2000s Processor proprietary proprietary COTS COTS Memory proprietary proprietary COTS COTS Motherboard proprietary proprietary proprietary COTS Interconnect proprietary proprietary proprietary COTS OS, SW Tools proprietary proprietary proprietary mixed COTS: Commercial off the Shelf (industry standard) *Other brands and names are the property of their respective owners •3• Advanced Computing on Intel® Architecture Intel HPC Technologies October 2004 High-Performance Computing with IA Source: http://www.top500.org/lists/2004/06/2/ Source: http://www.top500.org/lists/2004/06/5/ 4096 (1024x4) Intel® Itanium® 2 processor based system 2500 (1250x2) Intel® Xeon™ processor based system 22.9 TFLOPS peak performance 15.3 TFLOPS peak performance PNNL RIKEN 9 1936 Intel® Itanium® 2 processor cluster 7 2048 Intel® Xeon™ processor cluster 11.6 / 8.6 TFLOPS Rpeak/Rmax 12.5 / 8.7 TFLOPS Rpeak/Rmax *Other brands and names are the property of their respective owners •4• Advanced Computing on Intel® Architecture Intel HPC Technologies -
Katz, Marshall & Banks
KA, MASA & AKS, LLP By Hand-Delivery July I5, 2010 The Honorable Deborah A. Robinson U.S. District Court for the District of Columbia 333 Constitution Avenue, N.W. Washington, DC 2000I Re: United States of America v. Scott J. Bloch., No. I:10-mj-00215-DAR Dear Magistrate Judge Robinson: As attorneys for the individuals and groups harmed by Scott Bloch's unlawful conduct in the above-captioned case', we are writing to offer a victim impact statement for your consideration in Mr. Bloch's upcoming sentencing on July 23, 2010. As detailed in a federal complaint filed in March 2005, which is still under investigation by the Inspector General at the federal Office of Personnel Management (OPM IG), Mr. Bloch engaged in serious abuses of power in his role as Special Counsel, retaliated against federal employees who sought to prevent or expose his abuses, and then obstructed the ongoing investigation by deleting information from his computer. While Mr. Bloch has now pled guilty to his final act of unlawful conduct — willfully withholding pertinent information from a congressional investigation into the matter — this charge understates the true scope and impact of Mr. Bloch's unlawful conduct. We understand the U.S. Attorney's Office intends to support a request by Mr. Bloch that he receive a sentence of only probation. On behalf of the victims of Mr. Bloch's unlawful conduct, we would oppose such a light sentence. We believe such a sentence would not appropriately reflect the severity of Mr. Bloch's admitted actions and would represent a miscarriage of justice in this case. -
Implementing Production Grids William E
Implementing Production Grids William E. Johnston a, The NASA IPG Engineering Team b, and The DOE Science Grid Team c Contents 1 Introduction: Lessons Learned for Building Large-Scale Grids ...................................... 3 5 2 The Grid Context .................................................................................................................. 3 The Anticipated Grid Usage Model Will Determine What Gets Deployed, and When. 7 3.1 Grid Computing Models ............................................................................................................ 7 3 1.1 Export Existing Services .......................................................................................................... 7 3 1.2 Loosely Coupled Processes ..................................................................................................... 7 3.1 3 WorlqTow Managed Processes .............................................................................. 8 3.1 4 Distributed-Pipelined / Coupled processes ............................................................................. 9 3.1 5 Tightly Coupled Processes ........................................................................ 9 3.2 Grid Data Models ..................................................................................................................... 10 3.2.1 Occasional Access to Multiple Tertiary Storage Systems ..................................................... 11 3.2.2 Distributed Analysis of Massive Datasets Followed by Cataloguing and Archiving ........... -
UNICORE D2.3 Platform Requirements
H2020-ICT-2018-2-825377 UNICORE UNICORE: A Common Code Base and Toolkit for Deployment of Applications to Secure and Reliable Virtual Execution Environments Horizon 2020 - Research and Innovation Framework Programme D2.3 Platform Requirements - Final Due date of deliverable: 30 September 2019 Actual submission date: 30 September 2019 Start date of project 1 January 2019 Duration 36 months Lead contractor for this deliverable Accelleran NV Version 1.0 Confidentiality status “Public” c UNICORE Consortium 2020 Page 1 of (62) Abstract This is the final version of the UNICORE “Platform Requirements - Final” (D2.3) document. The original version (D2.1 Requirements) was published in April 2019. The differences between the two versions of this document are detailed in the Executive Summary. The goal of the EU-funded UNICORE project is to develop a common code-base and toolchain that will enable software developers to rapidly create secure, portable, scalable, high-performance solutions starting from existing applications. The key to this is to compile an application into very light-weight virtual machines - known as unikernels - where there is no traditional operating system, only the specific bits of operating system functionality that the application needs. The resulting unikernels can then be deployed and run on standard high-volume servers or cloud computing infrastructure. The technology developed by the project will be evaluated in a number of trials, spanning several applica- tion domains. This document describes the current state of the art in those application domains from the perspective of the project partners whose businesses encompass those domains. It then goes on to describe the specific target scenarios that will be used to evaluate the technology within each application domain, and how the success of each trial will be judged. -
Complaint of Prohibited Personnel Practices Against Special Counsel Scott Bloch
COMPLAINT OF PROHIBITED PERSONNEL PRACTICES AGAINST SPECIAL COUNSEL SCOTT BLOCH Submitted by: Debra S. Katz, Esqu re Rashida Adams, Esquire Bernabei and Katz, PLLC 1773 T Street, NW Washington, D.C. 20009 (202) 745-1942 Counsel for: Anonymous Career Employees of the U.S. Office of Special Counsel The Government Accountability Project The Human Rights Campaign Public Employees for Environmental Responsibility The Project on Government Oversight March 3, 2005 STATEMENT IN SUPPORT OF COMPLAINT OF PROHIBITED PERSONNEL PRACTICES AGAINST U.S. SPECIAL COUNSEL SCOTT J. BLOCH I. INTRODUCTION This statement is filed pursuant to 5 U.S.C. § 1214 in support ofthe attached complaints alleging the commission ofa series ofprohibited personnel practices as well as violations ofcivil service laws, and other acts ofmalfeasance by U.S. Special Counsel Scott J. Bloch. l A. The Complainants There are two groups ofcomplainants: 1. An alliance ofpublic interest organizations that have a strong and direct interest in assuring that OSC impartially and effectively performs its mission of promoting the merit system and protecting whistleblowers against retaliation. These organizations are the Government Accountability Project, the Project on Government Oversight, Public Employees for Environmental Responsibility, and the Human Rights Campaign. OSC has jurisdiction over the complaints ofthese organizations pursuant to 5 U.S.C. § 1214(a)(l)(A), which provides that "the Special Counsel shall receive any allegation ofa prohibited personnel practice and shall investigate -
DC DMV Communication Related to Reinstating Suspended Driver Licenses and Driving Privileges (As of December 10, 2018)
DC DMV Communication Related to Reinstating Suspended Driver Licenses and Driving Privileges (As of December 10, 2018) In accordance with District Law L22-0175, Traffic and Parking Ticket Penalty Amendment Act of 2017, the DC Department of Motor Vehicles (DC DMV) has reinstated driver licenses and driving privileges for residents and non-residents whose credential was suspended for one of the following reasons: • Failure to pay a moving violation; • Failure to pay a moving violation after being found liable at a hearing; or • Failure to appear for a hearing on a moving violation. DC DMV is mailing notification letters to residents and non-residents affected by the law. District residents who have their driver license or learner permit, including commercial driver license (CDL), reinstated and have outstanding tickets are boot eligible if they have two or more outstanding tickets. If a District resident has an unpaid moving violation in a different jurisdiction, then his or her driving privileges may still be suspended in that jurisdiction until the moving violation is paid. If the resident’s driver license or CDL is not REAL ID compliant (i.e., there is a black star in the upper right-hand corner) and expired, then to renew the credential, the resident will need to provide DC DMV with: • One proof of identity; • One proof of Social Security Number; and • Two proofs of DC residency. If the resident has a name change, then additional documentation, such as a marriage license, divorce order, or name change court order is required. DC DMV only accepts the documents listed on its website at www.dmv.dc.gov. -
Power and Energy Characterization of an Open Source 25-Core Manycore Processor
Power and Energy Characterization of an Open Source 25-core Manycore Processor Michael McKeown, Alexey Lavrov, Mohammad Shahrad, Paul J. Jackson, Yaosheng Fu∗, Jonathan Balkind, Tri M. Nguyen, Katie Lim, Yanqi Zhouy, David Wentzlaff Princeton University fmmckeown,alavrov,mshahrad,pjj,yfu,jbalkind,trin,kml4,yanqiz,[email protected] ∗ Now at NVIDIA y Now at Baidu Abstract—The end of Dennard’s scaling and the looming power wall have made power and energy primary design CB Chip Bridge (CB) PLL goals for modern processors. Further, new applications such Tile 0 Tile 1 Tile 2 Tile 3 Tile 4 as cloud computing and Internet of Things (IoT) continue to necessitate increased performance and energy efficiency. Manycore processors show potential in addressing some of Tile 5 Tile 6 Tile 7 Tile 8 Tile 9 these issues. However, there is little detailed power and energy data on manycore processors. In this work, we carefully study Tile 10 Tile 11 Tile 12 Tile 13 Tile 14 detailed power and energy characteristics of Piton, a 25-core modern open source academic processor, including voltage Tile 15 Tile 16 Tile 17 Tile 18 Tile 19 versus frequency scaling, energy per instruction (EPI), memory system energy, network-on-chip (NoC) energy, thermal charac- Tile 20 Tile 21 Tile 22 Tile 23 Tile 24 teristics, and application performance and power consumption. This is the first detailed power and energy characterization of (a) (b) an open source manycore design implemented in silicon. The Figure 1. Piton die, wirebonds, and package without epoxy encapsulation open source nature of the processor provides increased value, (a) and annotated CAD tool layout screenshot (b). -
MISP Objects
MISP Objects MISP Objects Introduction. 7 Funding and Support . 9 MISP objects. 10 ail-leak . 10 ais-info . 11 android-app. 12 android-permission. 13 annotation . 15 anonymisation . 16 asn . 20 attack-pattern . 22 authentication-failure-report . 22 authenticode-signerinfo . 23 av-signature. 24 bank-account. 25 bgp-hijack. 29 bgp-ranking . 30 blog . 30 boleto . 32 btc-transaction . 33 btc-wallet . 34 cap-alert . 35 cap-info. 39 cap-resource . 43 coin-address . 44 command . 46 command-line. 46 cookie . 47 cortex . 48 cortex-taxonomy . 49 course-of-action . 49 covid19-csse-daily-report . 51 covid19-dxy-live-city . 53 covid19-dxy-live-province . 54 cowrie . 55 cpe-asset . 57 1 credential . 67 credit-card . 69 crypto-material. 70 cytomic-orion-file. 73 cytomic-orion-machine . 74 dark-pattern-item. 74 ddos . 75 device . 76 diameter-attack . 77 dkim . 79 dns-record . ..