Fungal Intron Evolution: Why a Small Genome Has Many Introns? Kemin Zhou, Alan Kuo, Asaf Salamov, and Igor Grigoriev

Total Page:16

File Type:pdf, Size:1020Kb

Fungal Intron Evolution: Why a Small Genome Has Many Introns? Kemin Zhou, Alan Kuo, Asaf Salamov, and Igor Grigoriev Fungal Intron Evolution: Why a small genome has many introns? Kemin Zhou, Alan Kuo, Asaf Salamov, and Igor Grigoriev Introduction Exon number reduction half loss rule. S. roseus is an exception Most frequent and the shortest exon length and evidence of intron loss Here we are trying to answer the question why one of the Table 2. Intron evolution within genomes. Coding exon number between differently smallest genome Sporobolomyces roseus has one of the most conserved genes were compared. The genes were divided in four conservation groups: introns of all fungal genomes in the context of fungal intron Sporo1 all--all genomes (GCAS), between-- between different phyla (GCBP), phylum--within the y = 0.503 x + 1.172 evolution. In this study we used a statistical comparative 1000 −0.7812x same phylum (GCWP), and species-specific genes (SSG). The p-values for t-test are 0 280067 genomics approach toward intron number evolution among 16 No Sporo1, p-val=8.196e-07 L = 1060.1e −1.8961x +198.5 1 206910 colored red if less than 10e-4, pink if less than10e-3, yellow if less than 10e-2, and green fungal genomes. Pospl1 2 206494 if less than 0.05. 600 2000 2500 3000 Table1. Fungal genomes used in this study. cryneo1 567 Database Species dbname all p-val between p-val phylum p-val species Lacbi1 Length Exon Average Count 0 200 Aspni1 Aspergillus niger Aspni1 3.76 8.61E-08 3.31 3.24E-09 3.02 0.002406 2.83 Phchr1 Phybl1 copci1 Mycfi1 Mycosphaerella fijiensis Batde5 5.90 0.000305 5.18 0.224571 4.86 8.79E-07 3.57 copci1 7.32 0.000322 6.61 8.94E-18 5.65 4.17E-34 4.38 Mycgr1 Mycosphaerella graminicola Batde5 G L(x 1) Necha2 Nectria haematococca cryneo1 7.29 0.000356 6.69 0.171129 6.37 1.32E-06 5.18 Necha2 = + Trire2 Picst3 Pichia stipitis Lacbi1 7.89 2.61E-07 6.84 2.97E-10 6.11 1.43E-35 4.83 Mycgr1 6000 8000 Trive1 Aspni1 0 500 1000 1500 Mycfi1 2.49 0.5253 2.44 0.065689 2.52 5.96E-09 2.23 Species-specific Number Exon Ascomycota Trire2 Trichoderma reesei Mycfi1 Trive1 Trichoderma virens Mycgr1 2.48 0.087217 2.59 0.000774 2.75 0.00569 2.91 0 100 200 300 400 500 234 Necha2 3.33 0.001856 3.09 0.002464 2.97 0.00023 3.14 ustma1 Total Exon Length copci1 Coprinus cinereus 80 160 Picst3 2000 4000 Phchr1 7.08 1.40E-05 6.32 2.41E-22 5.18 5.14E-12 4.34 Exon Length cryneo1 Cryptococcus neoformans 0 10203040506070 Phybl1 6.18 0.002574 5.68 0.003718 6.54 2.89E-14 4.21 2345678 Lacbi1 Laccaria bicolor Picst3 1.44 0.425451 1.41 0.510146 1.44 0.098549 1.54 Number of Introns Phchr1 Phanerochaete chrysosporium Exon Number Conserved in All Figure 9. Exon length distribution. Exon length shorter than 500 nt from Pospl1 6.90 0.31744 6.69 0.983844 6.68 1.28E-06 5.92 Z y Pospl1 Postia placenta all 16 genomes are plotted with exon of different phases. Exon phase is g Sporo1 7.21 0.677986 7.29 0.519538 7.48 0.405048 7.21 C o Basidiomycota Figure 4. Half loss rule. Showing the linear relationship between the average Figure 8. The shortest most frequent exon length. Top half, mean exon length as a h m Sporo1 Sporobolomyces roseus defined as the remainder of the length of exon divided by 3. The total y y tr c Trire2 3.31 3.97E-05 2.99 0.001305 2.85 0.046557 3.06 number of exons in species specific genes (SSG) and that of genes function of number of introns. The equation set x to 60 to 70, the estimated exon id o ustma1 Ustilago maydis number of exons (all sizes) in different phases are shown in the legend. io ta conserved in all species (GCAS). Sporo1 is an exception although its inclusion length is 66-86 nt long. The bottom half is simply plots the total exon length against m Trive1 3.35 5.51E-06 2.99 0.000228 2.84 0.045978 2.95 Phase 0 exon dominates. yc Phybl1 Phycomyces blakesleeanus o still make the correlation statistically significant to p-value of 9.996e-06. the intron numbers. t ustma1 1.67 0.846634 1.69 0.778802 1.67 0.003047 1.90 a Batde5 Batrachochytrium dendrobatidis Table 3. Conserved gene have shorter introns. Reversetranscriptase have divergent effects on No intron loss for S. roseus (Sporo1) Average of the log intron length (ALIL) were compared between conservation level all and species. Only Aspni1 exon number 7.29 Basidiomycota Aspni1 Mycfi1 Mycgr1 Necha2 250 cryneo1 Ag 500 showed no significant difference. The two genomes with the ari 300 400 7.66 T 7.32 co most intron loss ustma1 and Picst3 showed the opposite r m e yc 200 Sporo1 300 400 m copci1 7.89 et 78 trend. Column diffexp is the natural exponential of the e 150 200 250 300 e s Lacbi1 l 200 lo Lacbi1 100 m 100 differences of ALIL (species – all). 7.21 100 150 200 y 6.90 0204060801000 20406080100020406080100020406080100 cryneo1 copci1 c 0.05 Pospl1 6 cryneo1 Sporo1 e Phchr1 70 Pospl1 Sporo1 350 t Phchr1 Pospl1 e 0.07 0.62 Picst3 Trive1 Trire2 copci1 dbname All Species diffexp P-value s P Lacbi1 u -0.14 Phybl1 copci1 c 5 Aspni1 4.277 4.279 0.2 0.88794301 Phybl1 ci n 0.28 7.08 500 700 all io -0.03 Phchr1 Batde5 m 0.04 Batde5 4.605 4.653 5.0 1.47E-05 between Batde5 yc 0.05 phylum ot i 300 species n 10 30 50 Batde5 copci1 4.130 4.208 5.0 4.93E-22 a -0.23 Agaricomycotina 5.9 50 150 250 5678 -0.28 0204060801001000 200 300 20406080100 400 020406080100020406080100 Aspni1 cryneo1 4.083 4.175 5.7 4.99E-30 -0.02 Necha2 Chytridiomycota 80 ustma1 1.68 Lacbi1 Phchr1 0 Count 400 1000 Trive1 Mean Number of Exons of Mean Number Lacbi1 4.035 4.319 18.6 0 -5.57 Trire2 0 4 300 -1.07 Ustilaginomycotina 800 Aspni1 Mycgr1 Mycfi1 4.288 4.776 45.8 1.82E-81 Trire2 Mycfi1 200 7.25 -3.48 cryneo1 300 400 500 Trive1 Necha2 Pospl1 Mycgr1 4.283 4.878 58.9 7.27E-137 Average Number of Exons 200 300 400 500 100 Zygomycota 200 400 600 ustma1 0 Necha2 4.180 4.235 3.7 9.06E-05 Saccharomycotina 0204060801000 20406080100020406080100020406080100 Picst3 Mycgr1 Mycfi1 6.18 Phybl1 1234 Batde5 800 Phybl1 Phchr1 4.026 4.069 2.5 8.99E-08 ustma1 23 Pezizomycotina -0.04 -2.33 Phybl1 4.584 4.653 7.0 2.87E-12 ustma1 0.40 0.42 0.44 0.46 0.48 0.50 Picst3 -0.04 64 250 350 Picst3 4.428 4.251 -13.6 0.01634488 -1.21 Sporo1 Mean Relative Intron Location 1234567 150 40 60 80 100 100 200 300 400 Dothideomycetes -0.01 -0.40 Picst3 1.44 200 400 600 Pospl1 4.200 4.507 23.9 5.11E-129 log (Total Number of RT) 50 0204060801000 20406080100020406080100020406080100 Sporo1 4.412 4.529 10.2 7.64E-31 2.49 Mycfi1 Figure 3. Estimating the number of exons in the ancestor of -0.02 -0.003 0.1 Trire2 4.460 4.527 6.0 0.00102148 0.01 Percent Relative Location from 5’-End fungi with relative intron location. Figure 13. Average number of exons and amount of reverser transcriptase 0.1 Mycgr1 -0.03 0.01 Necha2 3.33 Ascomycota Trive1 4.361 4.450 7.3 5.26E-08 relationship. At species level, there is a positive correlation for 10 out of 16 2.48 Trire2 Trive1 Figure 2. Intron relative location distribution. A regression line was drawn with data ustma1 4.689 4.506 -18.2 0.0001481 genomes. At more conserved levels there is a negative correlation. Aspni1 3.35 Sordariomycetes Eurotiomycetes 3.31 excluding the extreme values from both ends. The dip from both ends are due to 3.76 edge effects. Data are grouped for every 1%. Summary and Discussion Intron length variability Figure 1. Whole genome phylogenetic tree and intron gain/loss estimates with Linear Least Square (LLS) method. The average number of coding exons from Pospl1 GCAS are labeled next to each database name (used for abbreviation of p-val: 0.01845 Why S. roseus has the smallest genome Intron lengths in fungi assume roughly log normal distribution so our analysis was carried out in log scale. Species names). Bootstrap values are all 100% except for the two values Mycfi1 Lacbi1 The average introns from GCAS range from 56 to 109 nt, but those from SSG range from 58 to 131 nt. Our shown in light blue boxes. Each value on the branch represents the estimated 18.0 analysis clearly showed that there is an overall trend of less conserved genes tend to have longer introns in intron gain or loss. The major phyla and subphyla are labeled. The number in Phybl1 No intron loss detected by phylogenetic tree method, or very few by the relative intron Necha2 most genome, but shorter introns from P. stipitis and U. maydis the only two genomes where intron loss has circle is the estimated number of coding exons of ancestor of fungi.
Recommended publications
  • Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
    fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating.
    [Show full text]
  • Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
    Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts).
    [Show full text]
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • Crittendenia Gen. Nov., a New Lichenicolous Lineage in the Agaricostilbomycetes (Pucciniomycotina), and a Review of the Biology
    The Lichenologist (2021), 53, 103–116 doi:10.1017/S002428292000033X Standard Paper Crittendenia gen. nov., a new lichenicolous lineage in the Agaricostilbomycetes (Pucciniomycotina), and a review of the biology, phylogeny and classification of lichenicolous heterobasidiomycetes Ana M. Millanes1, Paul Diederich2, Martin Westberg3 and Mats Wedin4 1Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, E-28933 Móstoles, Spain; 2Musée national d’histoire naturelle, 25 rue Munster, L-2160 Luxembourg; 3Museum of Evolution, Norbyvägen 16, SE-75236 Uppsala, Sweden and 4Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden Abstract The lichenicolous ‘heterobasidiomycetes’ belong in the Tremellomycetes (Agaricomycotina) and in the Pucciniomycotina. In this paper, we provide an introduction and review of these lichenicolous taxa, focusing on recent studies and novelties of their classification, phylogeny and evolution. Lichen-inhabiting fungi in the Pucciniomycotina are represented by only a small number of species included in the genera Chionosphaera, Cyphobasidium and Lichenozyma. The phylogenetic position of the lichenicolous representatives of Chionosphaera has, however, never been investigated by molecular methods. Phylogenetic analyses using the nuclear SSU, ITS, and LSU ribosomal DNA mar- kers reveal that the lichenicolous members of Chionosphaera form a monophyletic group in the Pucciniomycotina, distinct from Chionosphaera and outside the Chionosphaeraceae. The new genus Crittendenia is described to accommodate these lichen-inhabiting spe- cies. Crittendenia is characterized by minute synnemata-like basidiomata, the presence of clamp connections and aseptate tubular basidia from which 4–7 spores discharge passively, often in groups. Crittendenia, Cyphobasidium and Lichenozyma are the only lichenicolous lineages known so far in the Pucciniomycotina, whereas Chionosphaera does not include any lichenicolous taxa.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Identification of Culture-Negative Fungi in Blood and Respiratory Samples
    IDENTIFICATION OF CULTURE-NEGATIVE FUNGI IN BLOOD AND RESPIRATORY SAMPLES Farida P. Sidiq A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2014 Committee: Scott O. Rogers, Advisor W. Robert Midden Graduate Faculty Representative George Bullerjahn Raymond Larsen Vipaporn Phuntumart © 2014 Farida P. Sidiq All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Fungi were identified as early as the 1800’s as potential human pathogens, and have since been shown as being capable of causing disease in both immunocompetent and immunocompromised people. Clinical diagnosis of fungal infections has largely relied upon traditional microbiological culture techniques and examination of positive cultures and histopathological specimens utilizing microscopy. The first has been shown to be highly insensitive and prone to result in frequent false negatives. This is complicated by atypical phenotypes and organisms that are morphologically indistinguishable in tissues. Delays in diagnosis of fungal infections and inaccurate identification of infectious organisms contribute to increased morbidity and mortality in immunocompromised patients who exhibit increased vulnerability to opportunistic infection by normally nonpathogenic fungi. In this study we have retrospectively examined one-hundred culture negative whole blood samples and one-hundred culture negative respiratory samples obtained from the clinical microbiology lab at the University of Michigan Hospital in Ann Arbor, MI. Samples were obtained from randomized, heterogeneous patient populations collected between 2005 and 2006. Specimens were tested utilizing cetyltrimethylammonium bromide (CTAB) DNA extraction and polymerase chain reaction amplification of internal transcribed spacer (ITS) regions of ribosomal DNA utilizing panfungal ITS primers.
    [Show full text]
  • ITS As an Environmental DNA Barcode for Fungi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NORA - Norwegian Open Research Archives Bellemain et al. BMC Microbiology 2010, 10:189 http://www.biomedcentral.com/1471-2180/10/189 RESEARCH ARTICLE Open Access ITSResearch as article an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases Eva Bellemain*1, Tor Carlsen2, Christian Brochmann1, Eric Coissac3, Pierre Taberlet3 and Håvard Kauserud2 Abstract Background: During the last 15 years the internal transcribed spacer (ITS) of nuclear DNA has been used as a target for analyzing fungal diversity in environmental samples, and has recently been selected as the standard marker for fungal DNA barcoding. In this study we explored the potential amplification biases that various commonly utilized ITS primers might introduce during amplification of different parts of the ITS region in samples containing mixed templates ('environmental barcoding'). We performed in silico PCR analyses with commonly used primer combinations using various ITS datasets obtained from public databases as templates. Results: Some of the ITS primers, such as ITS1-F, were hampered with a high proportion of mismatches relative to the target sequences, and most of them appeared to introduce taxonomic biases during PCR. Some primers, e.g. ITS1-F, ITS1 and ITS5, were biased towards amplification of basidiomycetes, whereas others, e.g. ITS2, ITS3 and ITS4, were biased towards ascomycetes. The assumed basidiomycete-specific primer ITS4-B only amplified a minor proportion of basidiomycete ITS sequences, even under relaxed PCR conditions. Due to systematic length differences in the ITS2 region as well as the entire ITS, we found that ascomycetes will more easily amplify than basidiomycetes using these regions as targets.
    [Show full text]
  • One Fungus, Which Genes? Development and Assessment of Universal Primers for Potential Secondary Fungal DNA Barcodes
    Persoonia 35, 2015: 242–263 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X689135 One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes J.B. Stielow1*, C.A. Lévesque2*, K.A. Seifert 2*, W. Meyer3*, L. Irinyi3, D. Smits1, R. Renfurm1, G.J.M. Verkley1, M. Groenewald1, D. Chaduli 4, A. Lomascolo 4,5, S. Welti6, L. Lesage-Meessen4, A. Favel4,5, A.M.S. Al-Hatmi1,7,24, U. Damm1,8, N. Yilmaz1,2, J. Houbraken1, L. Lombard1, W. Quaedvlieg1, M. Binder1, L.A.I. Vaas1,3,9, D. Vu1, A. Yurkov10, D. Begerow11, O. Roehl11, M. Guerreiro12, A. Fonseca12, K. Samerpitak1,13,24, A.D. van Diepeningen1, S. Dolatabadi1,24, L.F. Moreno1,24,25, S. Casaregola14, S. Mallet14, N. Jacques14, L. Roscini15, E. Egidi16,17, C. Bizet18,19, D. Garcia-Hermoso18,19, M.P. Martín 20, S. Deng 21, J.Z. Groenewald1, T. Boekhout 1,21, Z.W. de Beer 22, I. Barnes 23, T.A. Duong 23, M.J. Wingfield 22, G.S. de Hoog1,24,27, P.W. Crous1,22,26, C.T. Lewis 2, S. Hambleton2, T.A.A. Moussa27,28, H.S. Al-Zahrani 27, O.A. Almaghrabi27, G. Louis-Seize2, R. Assabgui 2, W. McCormick 2, G. Omer1, K. Dukik1, G. Cardinali15, U. Eberhardt 29,30, M. de Vries1, V. Robert1* Key words Abstract The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode.
    [Show full text]
  • An Overview of the Higher Level Classification of Pucciniomycotina Based on Combined Analyses of Nuclear Large and Small Subunit Rdna Sequences
    Mycologia, 98(6), 2006, pp. 896–905. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 An overview of the higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences M. Catherine Aime1 subphyla of Basidiomycota. More than 8000 species of USDA-ARS, Systematic Botany and Mycology Lab, Pucciniomycotina have been described including Beltsville, Maryland 20705 putative saprotrophs and parasites of plants, animals P. Brandon Matheny and fungi. The overwhelming majority of these Biology Department, Clark University, Worcester, (,90%) belong to a single order of obligate plant Massachusetts 01610 pathogens, the Pucciniales (5Uredinales), or rust fungi. We have assembled a dataset of previously Daniel A. Henk published and newly generated sequence data from USDA-ARS, Systematic Botany and Mycology Lab, Beltsville, Maryland 20705 two nuclear rDNA genes (large subunit and small subunit) including exemplars from all known major Elizabeth M. Frieders groups in order to test hypotheses about evolutionary Department of Biology, University of Wisconsin, relationships among the Pucciniomycotina. The Platteville, Wisconsin 53818 utility of combining nuc-lsu sequences spanning the R. Henrik Nilsson entire D1-D3 region with complete nuc-ssu sequences Go¨teborg University, Department of Plant and for resolution and support of nodes is discussed. Our Environmental Sciences, Go¨teborg, Sweden study confirms Pucciniomycotina as a monophyletic Meike Piepenbring group of Basidiomycota. In total our results support J.W. Goethe-Universita¨t Frankfurt, Department of eight major clades ranked as classes (Agaricostilbo- Mycology, Frankfurt, Germany mycetes, Atractiellomycetes, Classiculomycetes, Cryp- tomycocolacomycetes, Cystobasidiomycetes, Microbo- David J. McLaughlin tryomycetes, Mixiomycetes and Pucciniomycetes) and Department of Plant Biology, University of Minnesota, St Paul, Minnesota 55108 18 orders.
    [Show full text]
  • Crittendenia Gen. Nov., a New Lichenicolous Lineage in The
    The Lichenologist (2021), 53, 103–116 doi:10.1017/S002428292000033X Standard Paper Crittendenia gen. nov., a new lichenicolous lineage in the Agaricostilbomycetes (Pucciniomycotina), and a review of the biology, phylogeny and classification of lichenicolous heterobasidiomycetes Ana M. Millanes1, Paul Diederich2, Martin Westberg3 and Mats Wedin4 1Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, E-28933 Móstoles, Spain; 2Musée national d’histoire naturelle, 25 rue Munster, L-2160 Luxembourg; 3Museum of Evolution, Norbyvägen 16, SE-75236 Uppsala, Sweden and 4Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden Abstract The lichenicolous ‘heterobasidiomycetes’ belong in the Tremellomycetes (Agaricomycotina) and in the Pucciniomycotina. In this paper, we provide an introduction and review of these lichenicolous taxa, focusing on recent studies and novelties of their classification, phylogeny and evolution. Lichen-inhabiting fungi in the Pucciniomycotina are represented by only a small number of species included in the genera Chionosphaera, Cyphobasidium and Lichenozyma. The phylogenetic position of the lichenicolous representatives of Chionosphaera has, however, never been investigated by molecular methods. Phylogenetic analyses using the nuclear SSU, ITS, and LSU ribosomal DNA mar- kers reveal that the lichenicolous members of Chionosphaera form a monophyletic group in the Pucciniomycotina, distinct from Chionosphaera and outside the Chionosphaeraceae. The new genus Crittendenia is described to accommodate these lichen-inhabiting spe- cies. Crittendenia is characterized by minute synnemata-like basidiomata, the presence of clamp connections and aseptate tubular basidia from which 4–7 spores discharge passively, often in groups. Crittendenia, Cyphobasidium and Lichenozyma are the only lichenicolous lineages known so far in the Pucciniomycotina, whereas Chionosphaera does not include any lichenicolous taxa.
    [Show full text]
  • And Rust Fungi Discoveries of New Increased Since These Revisions Through of Biological Control Taxa, New Incursions, and Introductions Agents
    !"· VOLUME 5 ·#$%&M#(# doi:10.5598/imafungus.2014.05.02.03 [ ) Ustilaginomycotina ARTICLE Pucciniales) Roger G. Shivas1, Dean R. Beasley1, and Alistair R. McTaggart1,2 1Plant Pathology Herbarium, Biosecurity Queensland, Department of Agriculture, Fisheries and Forestry, GPO Box 267, Brisbane 4001, Queensland, Australia; corresponding author e-mail: +N;+ 2UB B X /+ >+ U Z [ \[] ^_ !`j ^ Queensland 4001, Australia /+[BUstilaginomycotina and Pucciniomycotina, Microbotryales) and rust fungi (Pucciniomycotina, Pucciniales) are available online at http://collections. Australia ;+ < [ Key Australian smut fungi (317 species in 37 genera) and 100 rust fungi (from approximately 360 species Lucid in 37 genera). The smut and rust keys are illustrated with over 1,600 and 570 images respectively. The Morphology keys are designed to assist a wide range of end-users including mycologists, plant health diagnosticians, Uredinales biosecurity scientists, plant pathologists, and university students. The keys are dynamic and will be Taxonomy regularly updated to include taxonomic changes and incorporate new detections, taxa, distributions and Ustilaginales images. Researchers working with Australian smut and rust fungi are encouraged to participate in the on- going development and improvement of these keys. ={!j|!"#}~B{'#]!"#}~[{##@+!"#} INTRODUCTION Vánky & Shivas (2008) revised the Australian smut fungi, and a separate interactive Lucid key to 296 species with The smut fungi (Ustilaginomycotina and Pucciniomycotina, over 1000 images was developed to accompany the revision Microbotryales) and rust fungi (Pucciniomycotina, (Shivas et al. 2008). Despite the importance of rust fungi Pucciniales) in the Basidiomycota, together represent the in Australia, the most recent monograph is over a century most economically important and largest group of plant old and considered about 160 species (McAlpine 1906).
    [Show full text]
  • Yeasts in Pucciniomycotina
    Mycol Progress DOI 10.1007/s11557-017-1327-8 REVIEW Yeasts in Pucciniomycotina Franz Oberwinkler1 Received: 12 May 2017 /Revised: 12 July 2017 /Accepted: 14 July 2017 # German Mycological Society and Springer-Verlag GmbH Germany 2017 Abstract Recent results in taxonomic, phylogenetic and eco- to conjugation, and eventually fructificaction (Brefeld 1881, logical studies of basidiomycetous yeast research are remark- 1888, 1895a, b, 1912), including mating experiments (Bauch able. Here, Pucciniomycotina with yeast stages are reviewed. 1925; Kniep 1928). After an interval, yeast culture collections The phylogenetic origin of single-cell basidiomycetes still re- were established in various institutions and countries, and mains unsolved. But the massive occurrence of yeasts in basal yeast manuals (Lodder and Kreger-van Rij 1952;Lodder basidiomycetous taxa indicates their early evolutionary pres- 1970;Kreger-vanRij1984; Kurtzman and Fell 1998; ence. Yeasts in Cryptomycocolacomycetes, Mixiomycetes, Kurtzman et al. 2011) were published, leading not only to Agaricostilbomycetes, Cystobasidiomycetes, Septobasidiales, the impression, but also to the practical consequence, that, Heterogastridiomycetes, and Microbotryomycetes will be most often, researchers studying yeasts were different from discussed. The apparent loss of yeast stages in mycologists and vice versa. Though it was well-known that Tritirachiomycetes, Atractiellomycetes, Helicobasidiales, a yeast, derived from a fungus, represents the same species, Platygloeales, Pucciniales, Pachnocybales, and most scientists kept to the historical tradition, and, even at the Classiculomycetes will be mentioned briefly for comparative same time, the superfluous ana- and teleomorph terminology purposes with dimorphic sister taxa. Since most phylogenetic was introduced. papers suffer considerably from the lack of adequate illustra- In contrast, biologically meaningful academic teaching re- tions, plates for representative species of orders have been ar- quired rethinking of the facts and terminology, which very ranged.
    [Show full text]