Arrow System Improvement Program EA Es-1

Total Page:16

File Type:pdf, Size:1020Kb

Arrow System Improvement Program EA Es-1 Arrow System Improvement Program Environmental Assessment 24 October 2003 U.S. Army Space and Missile Defense Command P.O. Box 1500 Huntsville, Alabama 35807-3801 ARROW SYSTEM IMPROVEMENT PROGRAM ENVIRONMENTAL ASSESSMENT ARROW PROGRAM OFFICE OF THE MISSILE DEFENSE AGENCY AGENCY: Arrow Program Office (APO) of the Missile Defense Agency (MDA) ACTION: Finding of No Significant Impact BACKGROUND: The U.S. Army Space and Missile Defense Command, on behalf of the Arrow Program Office (APO) of the Missile Defense Agency (MDA), has prepared the attached Environmental Assessment (EA) to analyze the potential environmental consequences of conducting missile intercept flight tests as part of the Arrow System Improvement Program (ASIP) at a U.S. test range. The ASIP is focused on designing, implementing, and testing improvements to the Arrow Weapon System (AWS) necessary to ensure system effectiveness against advanced, long-range threats. This EA is only analyzing the flight test portion of the ASIP in the United States, as well as the necessary facility modifications and construction required by the proposed testing. Proposed testing, as currently conceived, would consist of four missile intercept tests divided between two series, or “caravans,” of two tests each. This EA has been prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended; the Council on Environmental Quality regulations that implement NEPA (Code of Federal Regulations [CFR], Title 40, Parts 1500-1508); Department of Defense (DoD) Instruction 4715.9, Environmental Planning and Analysis; the applicable service regulations that implement these laws and regulations (32 CFR Part 651 [Environmental Analysis of Army Actions] and Army Regulation 210-20, Master Planning for Army Installations); and Executive Order 12114, Environmental Effects Abroad of Major Federal Actions. The purpose of ASIP is to enhance the operational capabilities of the AWS to defeat emerging ballistic missile threats, including longer-range missiles and countermeasures. In addition, ASIP would enhance the capability of the AWS to operate with deployed U.S. missile defense systems. The purpose of this EA is to examine the environmental effects of this improvement program, the current AWS, and the improved AWS, during a series of flight tests, including a more challenging and realistic test configuration than allowed by the Israeli geography and test range safety limitations. The development program and associated flight tests would provide phenomenology and technology data for potential use in developing U.S. missile defense systems. DESCRIPTION OF THE PROPOSED ACTION: The Proposed Action is to conduct intercept flight tests of the AWS at the Naval Air Systems Command Weapons Division–Point Mugu Sea Range (hereinafter Point Mugu Sea Range) 1 with the AWS interceptor launched from San Nicolas Island. San Nicolas Island is owned and operated by the U.S. Navy. Flight test scenarios would include various short- and long-range threat representative target missiles launched from the open Pacific Ocean area using the Mobile Launch Platform (MLP), Vandenberg Air Force Base (AFB), California, and/or an air launched platform flying in the area of the Point Mugu Sea Range. The AWS radar would be located at San Nicolas Island or Naval Base Ventura County–Point Mugu Main Base (hereinafter Point Mugu). Two options for the AWS deployment at Point Mugu Sea Range are currently being investigated and evaluated. The first option is described as a “split deployment.” In this case, the Arrow Command and Control Area, consisting primarily of the Arrow Fire Control Center (FCC) and Fire Control Radar (FCR) elements, would be located on the mainland of Point Mugu. The Arrow Launcher area elements, consisting of the Launcher Control Center (LCC), mobile launcher, and interceptors, would be located on San Nicolas Island. The second option would entail the whole AWS being positioned on San Nicolas Island. In both options, the Arrow interceptors would be launched from San Nicolas Island to accommodate personnel and facility safety considerations. Currently two caravans of tests are planned in the United States over a period of 4 years. Caravan 1, currently planned to begin in fiscal year 2004, would consist of two flight tests necessary to evaluate the baseline AWS against threat representative target missiles under conditions that cannot be implemented in Israel due to range size and safety limitations. Caravan 2, currently planned for calendar year 2007, would also consist of two flight tests and would focus on evaluation of the AWS upgrades and system enhancements developed after the previous tests. The Arrow interceptor would be launched from San Nicolas Island for all flight tests. For U.S. Flight Test 1 (USFT-1), the target missile would be a liquid-fueled target system (LFTS) launched from either the MLP in the Point Mugu Sea Range or Vandenberg AFB. For USFT-2, the target would be a modified Short Range Air Launch Target (SRALT). Target launch locations would include Point Mugu Sea Range. For USFT-3, the target missile would be a Long Range Air Launch Target (LRALT). Should alternative target missiles become available before USFT-3, this EA would be reevaluated and appropriate environmental documentation would be prepared. Target launch locations would include Point Mugu Sea Range. USFT-4 would be a multiple engagement scenario. Target missiles could include a combination of the following: an SRALT launched within Point Mugu Sea Range; an LRALT or alternative target missile launched within Point Mugu Sea Range; and an LFTS launched from the MLP or Vandenberg AFB. 2 The Arrow interceptor missile is a two-staged vehicle launched from a six-pack mobile launcher. The missile contains approximately 1,670 kilograms (3,600 pounds) of solid rocket propellant in the booster. The interceptor with the propellant has a hazard classification of 1.3 and consists of hydroxyl terminated polybutadiene (HTPB), ammonium perchlorate, and aluminum powder. The interceptor also contains an optical (infrared) seeker and a radar sensor. The payload includes a focused blast-fragmentation warhead, with a hazard classification of 1.1D. Combined, the Arrow interceptor missile with its payload has a hazard classification of 1.1. It is controlled through aerodynamic and thrust vector control and contains a flight termination system. The towable FCR is an L-band phased-array radar with search, acquisition, track, and fire control functions configured in four vehicles (power, cooling, electronics, and antenna). The FCC is a mobile shelter in which battle management functions are performed. The LCC is a mobile shelter that provides a communication interface between the FCC and the Arrow launcher. Its primary function is to enable monitoring of launcher and missile status, and it also provides missile maintenance and diagnostic capabilities. The LCC can support operations at remote distances from the FCC. Additional support facilities such as a missile assembly building and Test Mission Control Center would also be required. The AWS would be transported to the Point Mugu Sea Range from Israel (and subsequently returned to Israel) by a contracted commercial sea-carrying vessel and/or commercial air transport. The FCR antenna array and Arrow interceptors would most likely be transported separately by a cargo aircraft from Israel directly to the test range. Ground transportation would then be required from the seaport and/or airfield over existing roads to appropriate storage and staging facilities at the test range. It is possible that the entire AWS could be transported by commercial sea vessel. However, final determination of the transportation plan is highly dependent on selection of specific project sites and available transportation modes at the launch and support locations. After arrival at the test range, the Arrow launcher would be placed on the launch pad or a hard-packed earth surface and the interceptors would be placed in an approved storage facility. Before each planned test flight, the interceptor would be transported from the storage facility to the ordnance or missile assembly building and prepared for flight. Final assembly and inspection requirements would take place at the assembly building and on the launch pad. Missile impact zones would be confined to open areas at sea. After the second flight test of each caravan, the AWS equipment would be dismantled and packed for shipment back to Israel. The LFTS is a single stage, liquid-fueled missile that uses a main liquid fuel, an oxidizer, and an initiator fuel for vehicle motor ignition and propulsion. It has an inertial guidance system and a non-separating high-explosive payload. The LFTS 3 proposed for testing has a maximum range of approximately 300 kilometers (186 miles). The LFTS has a Flight Termination System that is activated by shutting off the flow of fuel, which terminates the flight vehicle’s thrust. The LFTS would be launched from the sea-based MLP or Vandenberg AFB. LFTSs with different payloads were successfully flight tested in the Republic of the Marshall Islands at the Ronald Reagan Ballistic Missile Defense Test Site (formerly known as the U.S. Army Kwajalein Missile Range) in 1997 and from Vandenberg AFB in 2002. The MLP is a converted U.S. Navy helicopter carrier, retrofitted to allow for missile storage and launches and could be used to launch LFTSs. The MLP is a free-floating vessel that would be towed to position prior to testing. It would not be anchored to the ocean floor during launching. The MLP provides the test program the flexibility to launch targets where no ground launch sites are available, and to vary launch azimuths and ranges of targets to accommodate test objectives and safety considerations. MDA is preparing the MLP EA to address and analyze operations of the MLP, including launching of the LFTS. The EA is scheduled to be completed in March 2004. Launching of LFTS targets from the MLP for the ASIP program would be based on the analysis provided in the MLP EA.
Recommended publications
  • Exo-Atmospheric Intercepts: Bringing New Challenges to Standard Missile
    G. A. SULLINS Exo-atmospheric Intercepts: Bringing New Challenges to Standard Missile Gary A. Sullins The Navy Theater Wide System is being designed to provide defense for U.S. forces and our Allies against medium- to long-range tactical ballistic missiles. As part of this system, a new variant of Standard Missile, SM-3, will be introduced to the Fleet. SM-3 will perform a hit-to-kill intercept of the ballistic missile while it is in exo-atmospheric flight (i.e., while outside the Earth’s atmosphere). Exo-atmospheric flight and hit-to-kill intercepts have brought new challenges to the SM Program. These challenges have intro- duced new technologies, which in turn have created the need for new tests to be added to an already robust SM ground test program. This article discusses these new challenges and describes tests geared to verify SM-3 design, with emphasis given to those tests performed at APL. INTRODUCTION The threat of ballistic missile attacks to U.S. forces and the ability of the combat system to engage them and our Allies continues to grow. Currently over 40 by guiding the missile to an intercept. Modifications are nations have the capability to launch ballistic missile being made to the AWS to change the logic consistent attacks. Most of these missiles are not capable of reaching with tracking and engaging ballistic missiles rather than U.S. soil; nevertheless, they do pose a significant threat its traditional Anti-Air Warfare role. to our forces stationed overseas. Many of these nations In addition to modifications to the AWS, the NTW also have the ability to build chemical, biological, or System is developing a new SM variant, SM-3.
    [Show full text]
  • Ballistic Missile Defense Technology: Weapons, Power, Communications, and Space Transportation CONTENTS Page Introduction
    Chapter 5 Ballistic Missile Defense Technology: Weapons, Power, Communications, and Space Transportation CONTENTS Page Introduction . ......................105 5-6b. Boost and Post-Boost Kill Weapons . ..................,......105 Effectiveness (500 single-RV Kinetic-Energy Weapons (KEW) ....106 ICBMs atone site) . ...........117 Directed-Energy Weapons . .........123 5-7. Boost and Post-Boost Kill Power and Power Conditioning . ......142 Effectiveness (200 “medium- Space Power Requirements . ........142 bum-booster” ICBMs at one site). .............118 Space Power Generation Technology .143 5-8. Schematic of an Electromagnetic Power Conditioning . .. ..........145 Launcher (EML) or “Railgun” ..119 Communication Technology . .........146 5-9. Lightweight Homing Projectile. .l2l 60-GHz Communication Links .. ....147 5-10. Illustration of the Relationships Laser Communication Links . .......148 Between Laser Parameters and Space Transportation . ..............148 Power Density Projected on a Space Transportation Target . .............125 Requirements. ................149 5-11. FEL Waveforms . .............125 Space Transportation Alternatives ...149 5-12. Schematic of a Neutral Particle Space Transportation Cost Beam Weapon.. .............129 Reduction . ................153 5-13a. Annual Space Launch Capacity .152 Conclusions . ....................153 5-13b. Space Transportation . .........152 Weapon Technology Conclusions ....153 Space Power Conclusions. .........155 Tables Space Communications Conclusion. ..l55 Table No. Page Space Transportation
    [Show full text]
  • Design and Optimization of an Electromagnetic Railgun
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2018 DESIGN AND OPTIMIZATION OF AN ELECTROMAGNETIC RAILGUN Nihar S. Brahmbhatt Michigan Technological University, [email protected] Copyright 2018 Nihar S. Brahmbhatt Recommended Citation Brahmbhatt, Nihar S., "DESIGN AND OPTIMIZATION OF AN ELECTROMAGNETIC RAILGUN", Open Access Master's Report, Michigan Technological University, 2018. https://doi.org/10.37099/mtu.dc.etdr/651 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Controls and Control Theory Commons DESIGN AND OPTIMIZATION OF AN ELECTROMAGNETIC RAIL GUN By Nihar S. Brahmbhatt A REPORT Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Electrical Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2018 © 2018 Nihar S. Brahmbhatt This report has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Electrical Engineering. Department of Electrical and Computer Engineering Report Advisor: Dr. Wayne W. Weaver Committee Member: Dr. John Pakkala Committee Member: Dr. Sumit Paudyal Department Chair: Dr. Daniel R. Fuhrmann Table of Contents Abstract ........................................................................................................................... 7 Acknowledgments........................................................................................................... 8 List of Figures ................................................................................................................
    [Show full text]
  • House Bill No. 944
    FIRST REGULAR SESSION HOUSE COMMITTEE SUBSTITUTE FOR HOUSE BILL NO. 944 101ST GENERAL ASSEMBLY 1836H.02C DANA RADEMAN MILLER, Chief Clerk AN ACT To repeal section 571.030, RSMo, and to enact in lieu thereof one new section relating to unlawful use of weapons, with penalty provisions. Be it enacted by the General Assembly of the state of Missouri, as follows: Section A. Section 571.030, RSMo, is repealed and one new section enacted in lieu 2 thereof, to be known as section 571.030, to read as follows: 571.030. 1. A person commits the offense of unlawful use of weapons, except as 2 otherwise provided by sections 571.101 to 571.121, if he or she knowingly: 3 (1) Carries concealed upon or about his or her person a knife, a firearm, a blackjack or 4 any other weapon readily capable of lethal use into any area where firearms are restricted under 5 section 571.107; [or] 6 (2) Sets a spring gun; [or] 7 (3) Discharges or shoots a firearm into a dwelling house, a railroad train, boat, aircraft, 8 or motor vehicle as defined in section 302.010, or any building or structure used for the 9 assembling of people; [or] 10 (4) Exhibits, in the presence of one or more persons, any weapon readily capable of 11 lethal use in an angry or threatening manner; [or] 12 (5) Has a firearm or projectile weapon readily capable of lethal use on his or her person, 13 while he or she is intoxicated, and handles or otherwise uses such firearm or projectile weapon 14 in either a negligent or unlawful manner or discharges such firearm or projectile weapon unless 15 acting in self-defense; [or] 16 (6) Discharges a firearm within one hundred yards of any occupied schoolhouse, 17 courthouse, or church building; [or] EXPLANATION — Matter enclosed in bold-faced brackets [thus] in the above bill is not enacted and is intended to be omitted from the law.
    [Show full text]
  • Complex Projectile Technology and Homo Sapiens Dispersal Into Western Eurasia
    Complex Projectile Technology and Homo sapiens Dispersal into Western Eurasia JOHN J. SHEA Department of Anthropology and Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA; [email protected] MATTHEW L. SISK Interdepartmental Doctoral Program in Anthropological Science, Stony Brook University, Stony Brook, NY 11794-4364, USA; [email protected] ABSTRACT This paper proposes that complex projectile weaponry was a key strategic innovation driving Late Pleistocene human dispersal into western Eurasia after 50 Ka. It argues that complex projectile weapons of the kind used by ethnographic hunter-gatherers, such as the bow and arrow, and spearthrower and dart, enabled Homo sapiens to overcome obstacles that constrained previous human dispersal from Africa to temperate western Eurasia. In the East Mediterranean Levant, the only permanent land bridge between Africa and Eurasia, stone and bone projectile armatures like those used in the complex weapon systems of recent humans appear abruptly ca 45–35 Ka in early Upper Paleolithic contexts associated with Homo sapiens fossils. Such artifacts are absent from Middle Paleolithic contexts associated with Homo sapiens and Neandertals. Hypotheses concerning the indigenous vs. exogenous origins of complex projectile weaponry in the Levant are reviewed. Current evidence favors the hypothesis that complex projectile technology developed as an aid to ecological niche broadening strategies among African popu- lations between 50–100 Ka. It most likely spread to western Eurasia along with dispersing Homo sapiens popula- tions. Neandertals did not routinely deploy projectile weapons as subsistence aids. This puzzling gap in their otherwise impressive record for survival in some of the harshest environments ever occupied by primates may reflect energetic constraints and time-budgeting factors associated with complex technology.
    [Show full text]
  • The Strategic Defense Initiative and the Militarization of Space: Scientific Responsibility and Citizen Resistance
    Penn State International Law Review Volume 9 Article 2 Number 2 Dickinson Journal of International Law 1991 The trS ategic Defense Initiative and the Militarization of Space: Scientific Responsibility and Citizen Resistance Matthew Lippman Follow this and additional works at: http://elibrary.law.psu.edu/psilr Part of the International Law Commons, and the Military, War, and Peace Commons Recommended Citation Lippman, Matthew (1991) "The trS ategic Defense Initiative and the Militarization of Space: Scientific Responsibility and Citizen Resistance," Penn State International Law Review: Vol. 9: No. 2, Article 2. Available at: http://elibrary.law.psu.edu/psilr/vol9/iss2/2 This Article is brought to you for free and open access by Penn State Law eLibrary. It has been accepted for inclusion in Penn State International Law Review by an authorized administrator of Penn State Law eLibrary. For more information, please contact [email protected]. The Strategic Defense Initiative and the Militarization of Space: Scientific Responsibility and Citizen Resistance Matthew Lippman* I. Introduction The moderating of international tensions between the superpow- ers, the slowing of the nuclear arms race and the promise of a peace dividend have all contributed to a lessened popular concern over is- sues of national defense.1 The diversion of attention from war and peace has resulted in little scholarly attention being paid to the omi- nous potential growth in third-generation high-technology weapons. 2 These automated weapons systems are being designed primarily to operate in outer space where, despite claims to the contrary, they will be used to enhance the United States'ability to launch a first strike nuclear attack.3 The technological and strategic foundation of this revolution in weaponry is the Strategic Defense Initiative (SDI).
    [Show full text]
  • Projectile Motion
    PROJECTILE MOTION Objectives • Distinguish between a vector PROJECTILE MOTION quantity and a scalar quantity. 5 (5.1) • Explain how to find the Projectile motion can be resultant of two perpendicular THE BIG vectors. (5.2) described by the horizontal and • Describe how the components IDEA .......... vertical components of motion. of a vector affect each other. (5.3) • Describe the components of n the previous chapter, we studied simple straight-line projectile motion. (5.4) motion—linear motion. We distinguished between motion • Describe the downward motion with constant velocity, such as a bowling ball rolling of a horizontally launched I projectile. (5.5) horizontally, and accelerated motion, such as an object • Describe how far below an falling vertically under the influence of gravity. Now we imaginary straight-line path a extend these ideas to nonlinear motion—motion along projectile falls. (5.6) a curved path. Throw a baseball and the path it follows is a curve. This curve is a combination of constant- velocity horizontal motion and accelerated vertical discover! motion. We’ll see that the velocity of a thrown ball at any instant has two independent “components” of MATERIALS cardboard, tape, motion—what happens horizontally is not affected soda straws, pencil, ruler, two marbles by what happens vertically. EXPECTED OUTCOME Marble 2 will hit Marble 1. ANALYZE AND CONCLUDE 1. Yes; the speed of Marble 2 discover! 2. Same 3. Gravity accelerates both How Should You Aim to Hit a Falling 4. At the same time, marbles equally. Target? release Marble 1 and launch TEACHING TIP Known to many 1.
    [Show full text]
  • Assessing Israel's Iron Dome Missile Defense System
    Research memo Assessing Israel’s Iron Dome Missile Defense System By Jacob Nagel and Jonathan Schanzer November 13, 2019 The Israeli Iron Dome missile defense system continues to make headlines as it knocks Hamas and Palestinian Islamic Jihad rockets out of the sky. The system is the crucial lower tier of Israel’s layered missile defense system, which guards Israel’s skies from threats near and far. The David’s Sling system covers middle-layer threats, and the Arrow system defends against long-range projectiles. Iron Dome has earned great praise across professional, political, military, and civilian circles. The U.S. Army recently acquired two Iron Dome batteries as an interim solution to existing vulnerabilities, and may acquire more for the long term. The U.S. Marine Corps has also expressed interest and recently conducted several successful tests in the United States. Even among Israel’s foes, Iron Dome is widely recognized as a remarkable military innovation. But over time, certain potential disadvantages also have become a topic for debate. For one, Iron Dome’s efficacy in shooting down projectiles may encourage Israel’s enemies to increase their rocket launches to achieve their aims. And by granting time and space to Israeli officials to consider a proportional or surgical strike, Iron Dome can have the unintended consequence of potentially prolonging a conflict. In other words, the system raises the threshold for Israeli political leaders and military brass to launch a decisive operation, even as the volume of rocket provocations increases. There is also a psychological warfare element. Israel’s enemies can repeatedly broadcast photos of their cadres firing rockets with relatively little response from the Israeli side.
    [Show full text]
  • Q-1M Page 1 of 7 STOCKTON POLICE DEPARTMENT GENERAL
    STOCKTON POLICE DEPARTMENT GENERAL ORDER IMPACT PROJECTILE WEAPON SYSTEMS SUBJECT DATE: AUGUST 10, 2020 NO: Q-1m FROM: CHIEF ERIC JONES TO: ALL PERSONNEL INDEX: REMINGTON 870 DEDICATED IMPACT PROJECTILE WEAPON SYSTEM 40MM SINGLE LAUNCHER WEAPON SYSTEM I. POLICY It is the policy of the Stockton Police Department to utilize Impact Projectile Weapon Systems whenever sshould give a verbal warning, when feasible, before using force, whether lethal or less-lethal. II. DEFINITION OF TERMS A. Impact Projectile Weapon Systems – Intermediate force options designed to resolve potentially dangerous situations by striking a subject with one or more flexible or non-flexible projectiles specifically designed to be fired from either 12-gauge or 40mm weapon systems, with the goal of gaining the subject’s compliance and the cessation of their hostile behavior. Use of an Impact Projectile Weapon System is not intended as a substitute for a firearm used exclusively for the application of lethal force. B. Impact Projectile Munitions – Those munitions specifically designed to be either hand delivered (in the case of sting ball grenades or diversionary devices), or fired from an Impact Projectile Weapon System (12-gauge and 40mm). Impact Projectile Munitions are not designed to inflict lethal injury; however, a potential exists that lethal injury can be inflicted as a result of their use. III. PROCEDURE A. Use of Impact Projectile Weapon Systems 1. Situations for the use of a Less Lethal Weapon System may include, but are not limited to: a. To gain control over subjects that are armed, actively resisting, and appear violent or threaten significant aggressive action when such use can be accomplished with a reasonable degree of safety to collateral citizens and officers.
    [Show full text]
  • Report to Congress on the Strategic Defense System Architecture (U)
    Sr:CfCr:T/NOfiOftN/fiOflM!flLY ReSTRICT!!) DATA DECLASSIFIED UNDER AUTHORITY OF THE INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL. E.O. 13526, SECTION 5.3(b)(3) ISCAP No. ;tt>09 - 0 a3> , document '1. REPORT TO CONGRESS ON THE STRATEGIC DEFENSE SYSTEM ARCHITECTURE (U) \.. 17 DECEMBER 1987 ', .. , ... ,:' Prepared by the Strategic Defense Initiative Organization Washington. D.C. 20301-7100 St!CRETfNOFORN/FORMERLV RESTRICTED DATA a,... M" ff}I /" seCRET/NOFORN/FORMERLV RESTRICTED DATA' REPORT TO CONGRESS ON 'THE STRATEGIC DEFENSE· SYSTEM ARCHITECTURE (U) 17 DECEMBER 1987 Prepared by the Strategic Defense Initiative Organization Washington, D.C. 20301-7100 SRCIR' T ABLE OF CONTENTS UST OF ACRONYMS ii I. INlROOUcnON 1 A. Purpose of Repon 1 B. Strategic Defense System Architecture Concept 1 II. STRATEGIC DEFENSE SYSTEM DESCRIPTION 3 A. Overview 3 B. Phased Deployment 4 C. Phase I 5 O. Description of Selected Architecture for Phase I 8 E. Follow-on Phases 11 III. STRATEGIC DEFENSE SYSTEM PHASE I 15 A. Strategic Defense Mission 17 B. System Characteristics 18 C. Concept of Operation 21 IV. 50S FOLLOW-ON PHASES CONCEPT OF OPERATION 27 V. ACQUISmON STRATEGY 29 A. Acquisition Approach 29 B. SOS Acquisition Strategy Elements 29 VI. ISSUES 31 A. Interaction With Interim Operational Command 31 B. Survivability 31 C. Discrimination 31 D. Affotdability 32 E. Lethality 32 F. Readiness 32 G. Security 33 H. Advanced Launch System 33 I. Industrial Base 33 1. Effectiveness in Natural and Nuclear Perturbed Environments 34 vn. SDS ARCIm'ECfURE DEVELOPMENT 35 A. SOS Srudies. - Phase I 35 B. Architecture Analysis - Phase I 35 C.
    [Show full text]
  • Terminal Ballistics- Part I SUBJECT FORENSIC SCIENCE
    SUBJECT FORENSIC SCIENCE Paper No. and Title PAPER No. 6: Forensic Ballistics Module No. and Title MODULE No.17: Terminal Ballistics - Part I Module Tag FSC_P6_M17 FORENSIC SCIENCE PAPER No.6: Forensic Ballistics MODULE No.17: Terminal Ballistics- Part I TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Penetration Potential 4. Concept of Wound Ballistics 5. Target Site 6. Identification of Entry Wound 7. Yaw and Wounds 8. Velocity of Missiles & Wounds 9. Constructional Features & Wounding Capability 10. Summary FORENSIC SCIENCE PAPER No.6: Forensic Ballistics MODULE No.17: Terminal Ballistics- Part I 1. Learning Outcomes After studying this module, you shall be able to know about- What is Terminal Ballistics What is penetration potential and the concept behind wound ballistics You will be also made familiar with the identification of entry wounds and the constructional features and wounding capabilities 2. Introduction Ballistics is the science involving study of motion of projectiles. The term Ballistics is derived from the Latin word “Ballistic” meaning a cross-bow like device for throwing stones by means of twisted ropes. When firing pin hits the primer, excessive heat is generated and the bullet (projectile) get pushed from the cartridge and start moving inside the barrel of a fire arm. This comes under the field of internal ballistics. The study of internal ballistics involves burning or combustion of grains of the propellants. The study is called internal ballistics so long as motion of projectile is inside the barrel of the weapon. As soon as the projectile leaves the muzzle end of the weapon the External ballistics comes into play and remain till the projectile hits the target.
    [Show full text]
  • PHYSICS Projectile Motion Investigation Manual
    PHYSICS Projectile Motion Investigation Manual PROJECTILE MOTION Table of Contents Overview In this investigation, students study projectile motion by exploring 2 Overview two-dimensional motion and how vectors are used to describe the 2 Outcomes trajectory of an object. They will observe the motion of an object 2 Time Requirements launched horizontally at various speeds and will learn how to predict the motion of the launched object by combining their prior 3 Background knowledge of kinematics with new knowledge of vectors and the 6 Materials trajectory of projectiles. 7 Safety 7 Technology Outcomes 8 Preparation • Describe what factors affect the trajectory of a projectile. 9 Activity 1 • Explain how vectors are used to describe two-dimensional and 10 Disposal and Cleanup projectile motion. • Predict the trajectory of a horizontally launched projectile using 10 Observations vectors and kinematic equations. Time Requirements Preparation .................................................................... 15 minutes Activity 1: Launching a Projectile in a Horizontal Direction ...................................... 30 minutes Key Personal protective equipment (PPE) follow photograph stopwatch link to results and required goggles gloves apron video submit warning corrosion flammable toxic environment health hazard Made ADA compliant by NetCentric Technologies using the CommonLook® software 2 Carolina Distance Learning Background Projectiles are objects that are given an initial questions can all be calculated by applying velocity and subsequently travel along their kinematic equations and some knowledge about trajectory (flight path) due to their own inertia. vectors. In sports, a projectile is a basketball that has Projectiles tend to follow a parabolic trajectory. been thrown through a hoop, a pitched baseball, If you draw a line that follows the movement or a golf ball that has been hit by a golf club.
    [Show full text]