Joint Encoding of the Waveform and Speech Recognition Features Using a Transform Codec
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MIGRATING RADIO CALL-IN TALK SHOWS to WIDEBAND AUDIO Radio Is the Original Social Network
Established 1961 2013 WBA Broadcasters Clinic Madison, WI MIGRATING RADIO CALL-IN TALK SHOWS TO WIDEBAND AUDIO Radio is the original Social Network • Serves local or national audience • Allows real-time commentary from the masses • The telephone becomes the medium • Telephone technical factors have limited the appeal of the radio “Social Network” Telephones have changed over the years But Telephone Sound has not changed (and has gotten worse) This is very bad for Radio Why do phones sound bad? • System designed for efficiency not comfort • Sampling rate of 8kHz chosen for all calls • 4 kHz max response • Enough for intelligibility • Loses depth, nuance, personality • Listener fatigue Why do phones sound so bad ? (cont) • Low end of telephone calls have intentional high- pass filtering • Meant to avoid AC power hum pickup in phone lines • Lose 2-1/2 Octaves of speech audio on low end • Not relevant for digital Why Phones Sound bad (cont) Los Angeles Times -- January 10, 2009 Verizon Communications Inc., the second-biggest U.S. telephone company, plans to do away with traditional phone lines within seven years as it moves to carry all calls over the Internet. An Internet-based service can be maintained at a fraction of the cost of a phone network and helps Verizon offer a greater range of services, Stratton said. "We've built our business over the years with circuit-switched voice being our bread and butter...but increasingly, we are in the business of selling, basically, data connectivity," Chief Marketing Officer John Stratton said. VoIP -
Communications
Oracle Enterprise Session Border Controller with Zoom Phone Premise Peering ( BYOC) and Verizon Business SIP Trunk Technical Application Note COMMUNICATIONS Disclaimer The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle. 2 | P a g e Contents 1 RELATED DOCUMENTATION ............................................................................................................................... 5 1.1 ORACLE SBC ........................................................................................................................................................................ 5 1.2 ZOOM PHONE ....................................................................................................................................................................... 5 2 REVISION HISTORY ................................................................................................................................................. 5 3 INTENDED AUDIENCE ............................................................................................................................................ 5 3.1 VALIDATED ORACLE VERSIONS ....................................................................................................................................... -
Polycom Voice
Level 1 Technical – Polycom Voice Level 1 Technical Polycom Voice Contents 1 - Glossary .......................................................................................................................... 2 2 - Polycom Voice Networks ................................................................................................. 3 Polycom UC Software ...................................................................................................... 3 Provisioning ..................................................................................................................... 3 3 - Key Features (Desktop and Conference Phones) ............................................................ 5 OpenSIP Integration ........................................................................................................ 5 Microsoft Integration ........................................................................................................ 5 Lync Qualification ............................................................................................................ 5 Better Together over Ethernet ......................................................................................... 5 BroadSoft UC-One Integration ......................................................................................... 5 Conference Link / Conference Link2 ................................................................................ 6 Polycom Desktop Connector .......................................................................................... -
THE FUTURE of IDEAS This Work Is Licensed Under a Creative Commons Attribution-Noncommercial License (US/V3.0)
less_0375505784_4p_fm_r1.qxd 9/21/01 13:49 Page i THE FUTURE OF IDEAS This work is licensed under a Creative Commons Attribution-Noncommercial License (US/v3.0). Noncommercial uses are thus permitted without any further permission from the copyright owner. Permissions beyond the scope of this license are administered by Random House. Information on how to request permission may be found at: http://www.randomhouse.com/about/ permissions.html The book maybe downloaded in electronic form (freely) at: http://the-future-of-ideas.com For more permission about Creative Commons licenses, go to: http://creativecommons.org less_0375505784_4p_fm_r1.qxd 9/21/01 13:49 Page iii the future of ideas THE FATE OF THE COMMONS IN A CONNECTED WORLD /// Lawrence Lessig f RANDOM HOUSE New York less_0375505784_4p_fm_r1.qxd 9/21/01 13:49 Page iv Copyright © 2001 Lawrence Lessig All rights reserved under International and Pan-American Copyright Conventions. Published in the United States by Random House, Inc., New York, and simultaneously in Canada by Random House of Canada Limited, Toronto. Random House and colophon are registered trademarks of Random House, Inc. library of congress cataloging-in-publication data Lessig, Lawrence. The future of ideas : the fate of the commons in a connected world / Lawrence Lessig. p. cm. Includes index. ISBN 0-375-50578-4 1. Intellectual property. 2. Copyright and electronic data processing. 3. Internet—Law and legislation. 4. Information society. I. Title. K1401 .L47 2001 346.04'8'0285—dc21 2001031968 Random House website address: www.atrandom.com Printed in the United States of America on acid-free paper 24689753 First Edition Book design by Jo Anne Metsch less_0375505784_4p_fm_r1.qxd 9/21/01 13:49 Page v To Bettina, my teacher of the most important lesson. -
Intelligibility of Selected Speech Codecs in Frame-Erasure Conditions
NTIA Report 17-522 Intelligibility of Selected Speech Codecs in Frame-Erasure Conditions Andrew A. Catellier Stephen D. Voran report series U.S. DEPARTMENT OF COMMERCE • National Telecommunications and Information Administration NTIA Report 17-522 Intelligibility of Selected Speech Codecs in Frame-Erasure Conditions Andrew A. Catellier Stephen D. Voran U.S. DEPARTMENT OF COMMERCE November 2016 DISCLAIMER Certain commercial equipment and materials are identified in this report to specify adequately the technical aspects of the reported results. In no case does such identification imply recommendation or endorsement by the National Telecommunications and Information Administration, nor does it imply that the material or equipment identified is the best available for this purpose. iii PREFACE The work described in this report was performed by the Public Safety Communications Research Program (PSCR) on behalf of the Department of Homeland Security (DHS) Science and Technology Directorate. The objective was to quantify the speech intelligibility associated with selected digital speech coding algorithms subjected to erased data frames. This report constitutes the final deliverable product for this project. The PSCR is a joint effort of the National Institute of Standards and Technology and the National Telecommunications and Information Administration. v CONTENTS Preface..............................................................................................................................................v Figures......................................................................................................................................... -
NTT DOCOMO Technical Journal
3GPP EVS Codec for Unrivaled Speech Quality and Future Audio Communication over VoLTE EVS Speech Coding Standardization NTT DOCOMO has been engaged in the standardization of Research Laboratories Kimitaka Tsutsumi the 3GPP EVS codec, which is designed specifically for Kei Kikuiri VoLTE to further enhance speech quality, and has contributed to establishing a far-sighted strategy for making the EVS codec cover a variety of future communication services. Journal NTT DOCOMO has also proposed technical solutions that provide speech quality as high as FM radio broadcasts and that achieve both high coding efficiency and high audio quality not possible with any of the state-of-the-art speech codecs. The EVS codec will drive the emergence of a new style of speech communication entertainment that will combine BGM, sound effects, and voice in novel ways for mobile users. 2 Technical Band (AMR-WB)* [2] that is used in also encode music at high levels of quality 1. Introduction NTT DOCOMO’s VoLTE and that sup- and efficiency for non-real-time services, The launch of Voice over LTE (VoL- port wideband speech with a sampling 3GPP experts agreed to adopt high re- TE) services and flat-rate voice service frequency*3 of 16 kHz. In contrast, EVS quirements in the EVS codec for music has demonstrated the importance of high- has been designed to support super-wide- despite its main target of real-time com- quality telephony service to mobile users. band*4 speech with a sampling frequen- munication. Furthermore, considering In line with this trend, the 3rd Genera- cy of 32 kHz thereby achieving speech that telephony services using AMR-WB tion Partnership Project (3GPP) complet- of FM-radio quality*5. -
The Growing Importance of HD Voice in Applications the Growing Importance of HD Voice in Applications White Paper
White Paper The Growing Importance of HD Voice in Applications The Growing Importance of HD Voice in Applications White Paper Executive Summary A new excitement has entered the voice communications industry with the advent of wideband audio, commonly known as High Definition Voice (HD Voice). Although enterprises have gradually been moving to HD VoIP within their own networks, these networks have traditionally remained “islands” of HD because interoperability with other networks that also supported HD Voice has been difficult. With the introduction of HD Voice on mobile networks, which has been launched on numerous commercial mobile networks and many wireline VoIP networks worldwide, consumers can finally experience this new technology firsthand. Verizon, AT&T, T-Mobile, Deutsche Telekom, Orange and other mobile operators now offer HD Voice as a standard feature. Because mobile users tend to adopt new technology rapidly, replacing their mobile devices seemingly as fast as the newest models are released, and because landline VoIP speech is typically done via a headset, the growth of HD Voice continues to be high and in turn, the need for HD- capable applications will further accelerate. This white paper provides an introduction to HD Voice and discusses its current adoption rate and future potential, including use case examples which paint a picture that HD Voice upgrades to network infrastructure and applications will be seen as important, and perhaps as a necessity to many. 2 The Growing Importance of HD Voice in Applications White Paper Table of Contents What Is HD Voice? . 4 Where is HD Voice Being Deployed? . 4 Use Case Examples . -
HD Voice – a Revolution in Voice Communication
HD Voice – a revolution in voice communication Besides data capacity and coverage, which are one of the most important factors related to customers’ satisfaction in mobile telephony nowadays, we must not forget about the intrinsic characteristic of the mobile communication – the Voice. Ever since the nineties and the introduction of GSM there have not been much improvements in the area of voice communication and quality of sound has not seen any major changes. Smart Network going forward! Mobile phones made such a progress in recent years that they have almost replaced PCs, but their basic function, voice calls, is still irreplaceable and vital in mobile communication and it has to be seamless. In order to grow our customer satisfaction and expand our service portfolio, Smart Network engineers of Telenor Serbia have enabled HD Voice by introducing new network features and transitioning voice communication to all IP network. This transition delivers crystal-clear communication between the two parties greatly enhancing customer experience during voice communication over smartphones. Enough with the yelling into smartphones! HD Voice (or High-Definition Voice) represents a significant upgrade to sound quality in mobile communications. Thanks to this feature users experience clarity, smoothly reduced background noise and a feeling that the person they are talking to is standing right next to them or of "being in the same room" with the person on the other end of the phone line. On the more technical side, “HD Voice is essentially wideband audio technology, something that long has been used for conference calling and VoIP apps. Instead of limiting a call frequency to between 300 Hz and 3.4 kHz, a wideband audio call transmits at a range of 50 Hz to 7 kHz, or higher. -
Input Formats & Codecs
Input Formats & Codecs Pivotshare offers upload support to over 99.9% of codecs and container formats. Please note that video container formats are independent codec support. Input Video Container Formats (Independent of codec) 3GP/3GP2 ASF (Windows Media) AVI DNxHD (SMPTE VC-3) DV video Flash Video Matroska MOV (Quicktime) MP4 MPEG-2 TS, MPEG-2 PS, MPEG-1 Ogg PCM VOB (Video Object) WebM Many more... Unsupported Video Codecs Apple Intermediate ProRes 4444 (ProRes 422 Supported) HDV 720p60 Go2Meeting3 (G2M3) Go2Meeting4 (G2M4) ER AAC LD (Error Resiliant, Low-Delay variant of AAC) REDCODE Supported Video Codecs 3ivx 4X Movie Alaris VideoGramPiX Alparysoft lossless codec American Laser Games MM Video AMV Video Apple QuickDraw ASUS V1 ASUS V2 ATI VCR-2 ATI VCR1 Auravision AURA Auravision Aura 2 Autodesk Animator Flic video Autodesk RLE Avid Meridien Uncompressed AVImszh AVIzlib AVS (Audio Video Standard) video Beam Software VB Bethesda VID video Bink video Blackmagic 10-bit Broadway MPEG Capture Codec Brooktree 411 codec Brute Force & Ignorance CamStudio Camtasia Screen Codec Canopus HQ Codec Canopus Lossless Codec CD Graphics video Chinese AVS video (AVS1-P2, JiZhun profile) Cinepak Cirrus Logic AccuPak Creative Labs Video Blaster Webcam Creative YUV (CYUV) Delphine Software International CIN video Deluxe Paint Animation DivX ;-) (MPEG-4) DNxHD (VC3) DV (Digital Video) Feeble Files/ScummVM DXA FFmpeg video codec #1 Flash Screen Video Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Forward Uncompressed Video Codec fox motion video FRAPS: -
Perceptual Audio Coding
Perceptual Audio Coding Sources: Kahrs, Brandenburg, (Editors). (1998). ”Applications of digital signal processing to audio and acoustics”. Kluwer Academic. Bernd Edler. (1997). ”Low bit rate audio tools”. MPEG meeting. Contents: q Overview of perceptual q Introduction audio coding q Requiremens for audio q Description of coding tools codecs q Filterbankds q Perceptual coding vs. q Perceptual models source coding q Quantization and coding q Measuring audio quality q Stereo coding q Facts from psychoacoustics q Real coding systems 1 Introduction n Transmission bandwidth increases continuously, but the demand increases even more à need for compression technology n Applications of audio coding – audio streaming and transmission over the internet – mobile music players – digital broadcasting – soundtracks of digital video (e.g. digital television and DVD) Requirements for audio coding systems n Compression efficiency: sound quality vs. bit-rate n Absolute achievable quality – often required: given sufficiently high bit-rate, no audible difference compared to CD-quality original audio n Complexity – computational complexity: main factor for general purpose computers – storage requirements: main factor for dedicated silicon chips – encoder vs. decoder complexity • the encoder is usually much more complex than the decoder • encoding can be done off-line in some applications Requirements (cont.) n Algorithmic delay – depending on the application, the delay is or is not an important criterion – very important in two way communication (~ 20 ms OK) – not important in storage applications – somewhat important in digital TV/radio broadcasting (~ 100 ms) n Editability – a certain point in audio signal can be accessed from the coded bitstream – requires that the decoding can start at (almost) any point of the bitstream n Error resilience – susceptibility to single or burst errors in the transmission channel – usually combined with error correction codes, but that costs bits Source coding vs. -
Report Describes the Workings of the Project Group: H.264 Codec
Just In Time Joint Encoding of Multiple Video Streams Master's thesis Henrik Juul Pedersen & Palle Ravn June 6, 2013 Department of Electronic Systems Fredrik Bajers Vej 7 DK-9220 Aalborg Øst Phone: +45 96 35 86 00 Internet: es.aau.dk Title: Just In Time Joint Encoding of Multiple Video Streams Theme: Synopsis: Master's thesis This master's thesis focuses on H.264 video compression of multiple streams Project period: to be transmitted over a limited channel. September 2012 - june 2013 The report describes the workings of the Project group: H.264 codec. Afterwards, proposals on 13gr1071 bitrate estimators are presented, and a predictor is chosen for later use in rate Members of the group: control. We design a rate controller set Henrik Juul Pedersen up as a constrained convex optimization Palle Ravn problem, and test it against a set of video sequences. Supervisors: Our results show that it is possible to Jan Østergaard encode video sequences jointly with re- Søren Holdt Jensen gard to their individual qualities, whilst Number of copies: 5 still keeping fluctuations in quality low. We conclude, that if a Just-In-Time en- Number of pages: 69 coder is created with regard to our pro- posed rate controller and bitrate predic- Attachments: CD tion, it could be used in realtime joint Appendices: 1 video coding. Project completed: June 6, 2013 Contents of this report is freely available but publication (with specification of source) may only be done upon arrangement with the authors. Institut for Elektroniske Systemer Fredrik Bajers Vej 7 9220 Aalborg Øst Telefon: 96 35 86 00 Internet: es.aau.dk Titel: Just In Time Joint Encoding of Multiple Video Streams Synopsis: Tema: Dette kandidatspeciale fokuserer p˚a Kandidatspeciale H.264 video komprimering af flere video Projektperiode: strømme til transmission over en be- September 2012 - juni 2013 grænset kanal. -
Universal Transmission and Compression: Send the Model? Aline Roumy
Universal transmission and compression: send the model? Aline Roumy To cite this version: Aline Roumy. Universal transmission and compression: send the model?. Signal and Image processing. Université Rennes 1, 2018. tel-01916058 HAL Id: tel-01916058 https://hal.inria.fr/tel-01916058 Submitted on 8 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNEE´ 2018 HDR / UNIVERSITE´ DE RENNES 1 sous le sceau de l'Universit´eBretagne Loire Domaine : Signal, Image, Vision Ecole doctorale MathSTIC pr´esent´ee par Aline ROUMY pr´epar´eeau centre de recherche de Inria Rennes-Bretagne Atlantique soutenue `aRennes Universal le 26 novembre 2018 devant le jury compos´ede : transmission and Giuseppe CAIRE Professeur, TU Berlin / rapporteur compression: Pierre DUHAMEL DR, CNRS L2S / rapporteur send the model? B´eatricePESQUET-POPESCU Directrice Recherche Innovation, Thal`es/ rapportrice Inbar FIJALKOW Professeure, ENSEA / examinatrice Claude LABIT DR, Inria Rennes / examinateur Philippe SALEMBIER Professeur, UPC Barcelona / examinateur Vladimir STANKOVIC Professeur, Univ. Strathclyde, Glasgow / examinateur 2 Contents 1 Introduction5 2 Compression and universality9 2.1 Lossless data compression............................9 2.2 Universal source coding and its theoretical cost................ 11 2.3 Universal source coding in a wide set of distributions: the model selection problem and the minimum description length principle.