Low Bit-Rate Speech Coding with Vq-Vae and a Wavenet Decoder
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MIGRATING RADIO CALL-IN TALK SHOWS to WIDEBAND AUDIO Radio Is the Original Social Network
Established 1961 2013 WBA Broadcasters Clinic Madison, WI MIGRATING RADIO CALL-IN TALK SHOWS TO WIDEBAND AUDIO Radio is the original Social Network • Serves local or national audience • Allows real-time commentary from the masses • The telephone becomes the medium • Telephone technical factors have limited the appeal of the radio “Social Network” Telephones have changed over the years But Telephone Sound has not changed (and has gotten worse) This is very bad for Radio Why do phones sound bad? • System designed for efficiency not comfort • Sampling rate of 8kHz chosen for all calls • 4 kHz max response • Enough for intelligibility • Loses depth, nuance, personality • Listener fatigue Why do phones sound so bad ? (cont) • Low end of telephone calls have intentional high- pass filtering • Meant to avoid AC power hum pickup in phone lines • Lose 2-1/2 Octaves of speech audio on low end • Not relevant for digital Why Phones Sound bad (cont) Los Angeles Times -- January 10, 2009 Verizon Communications Inc., the second-biggest U.S. telephone company, plans to do away with traditional phone lines within seven years as it moves to carry all calls over the Internet. An Internet-based service can be maintained at a fraction of the cost of a phone network and helps Verizon offer a greater range of services, Stratton said. "We've built our business over the years with circuit-switched voice being our bread and butter...but increasingly, we are in the business of selling, basically, data connectivity," Chief Marketing Officer John Stratton said. VoIP -
Linux Sound Subsystem Documentation Release 4.13.0-Rc4+
Linux Sound Subsystem Documentation Release 4.13.0-rc4+ The kernel development community Sep 05, 2017 CONTENTS 1 ALSA Kernel API Documentation 1 1.1 The ALSA Driver API ............................................ 1 1.2 Writing an ALSA Driver ........................................... 89 2 Designs and Implementations 145 2.1 Standard ALSA Control Names ...................................... 145 2.2 ALSA PCM channel-mapping API ..................................... 147 2.3 ALSA Compress-Offload API ........................................ 149 2.4 ALSA PCM Timestamping ......................................... 152 2.5 ALSA Jack Controls ............................................. 155 2.6 Tracepoints in ALSA ............................................ 156 2.7 Proc Files of ALSA Drivers ......................................... 158 2.8 Notes on Power-Saving Mode ....................................... 161 2.9 Notes on Kernel OSS-Emulation ..................................... 161 2.10 OSS Sequencer Emulation on ALSA ................................... 165 3 ALSA SoC Layer 171 3.1 ALSA SoC Layer Overview ......................................... 171 3.2 ASoC Codec Class Driver ......................................... 172 3.3 ASoC Digital Audio Interface (DAI) .................................... 174 3.4 Dynamic Audio Power Management for Portable Devices ...................... 175 3.5 ASoC Platform Driver ............................................ 180 3.6 ASoC Machine Driver ............................................ 181 3.7 Audio Pops -
Polycom Voice
Level 1 Technical – Polycom Voice Level 1 Technical Polycom Voice Contents 1 - Glossary .......................................................................................................................... 2 2 - Polycom Voice Networks ................................................................................................. 3 Polycom UC Software ...................................................................................................... 3 Provisioning ..................................................................................................................... 3 3 - Key Features (Desktop and Conference Phones) ............................................................ 5 OpenSIP Integration ........................................................................................................ 5 Microsoft Integration ........................................................................................................ 5 Lync Qualification ............................................................................................................ 5 Better Together over Ethernet ......................................................................................... 5 BroadSoft UC-One Integration ......................................................................................... 5 Conference Link / Conference Link2 ................................................................................ 6 Polycom Desktop Connector .......................................................................................... -
Audio Codecs
Audio Codecs [ AoIP | Leased Line | E1 ] Release date: July 2019 All rights reserved. Permission to reprint or electronically reproduce any document or graphic in whole or in part for any reason is prohibited unless prior written consent is obtained from AVT Audio Video Technolo- gies GmbH. This catalogue has been put together with the utmost digilence. However, no guar- antee for correctness can be given. AVT Audio Video Technologies GmbH cannot be held responsible for any misleading or incorrect information provided throughout this catalogue. AVT Audio Video Technologies GmbH re- serves the right to change specifications at any time without notice. CONTENT General 5 Features & Symbols 6 Overview 8 ISDN + VoIP ● MAGIC D7 XIP & MAGIC DC7 XIP RM Audio Codecs 10 ○ Application: Audio contribution 12 ISDN + AoIP ● MAGIC AC1 XIP & MAGIC AC1 XIP RM Audio Codecs 14 ○ Application: Audio contribution 16 E1 + AoIP ● MAGIC ACip3 & MAGIC ACip3 2M Audio Codecs 18 ○ Application: Audio contribution 20 ○ Application: AoIP distribution 22 ● MAGIC ACip3 (2M) ModNet System 24 ○ Application: Studio-Transmitter-Links 26 Audio Codec Integration ● MAGIC THipPro ACconnect 28 System Manager Upgrade 30 General Audio Codecs are needed for high-quality bitrate, the desired quality and the accept- Audio transmissions over different networks able delay. The EBU names the following Au- like IP, ISDN, 2-Mbit/s (E1) and X.21. Over IP dio algorithms as mandatory to comply with and ISDN, both Leased Line connections as the AoIP standard. G.711, G.722, ISO/MPEG well as temporary dial-up connections can Layer 2 and PCM (for stationary Audio Co- be used. -
Centauri II Multichannel Audio Gateway Codec – a New Generation Conquers the Control-Room
Centauri II Multichannel Audio Gateway Codec conquers the Control-room.– a new generation New! D 6ms Latency D 5.1 / 7.1 Multichannel D Front-panel Hot Keys D Gateway Function D Backup Function D Twin/Quad Codec D ASI Most Audio-Codecs are specialists. The CENTAURI II simply enables you to do everything. An unbeatable range of features makes the CENTAURI II simpler, safer and more cost-effective to use than any other codec. The CENTAURI II is your universal Audio cover the entire range currently in general Considering the extensive system support Codec for every imaginable project. use. Including MPEG, AES Transparent it is clear that the CENTAURI II is an and APT – simultaneously! audio codec for all situations. Whether for There are no networks that can stop a By other manufacturers this would still be Broadcasting, for DVB-H or UMTS trans- CENTAURI II, whether ISDN or Ethernet, a legitimate question but by MAYAH this missions, to name but a few. has long been possible. X.21 or E1. There are no protocols that In light of so much technical sophistica- the CENTAURI II cannot understand. This Combinations of its many and versatile tion, it’s hardly surprising to learn that codec can be simply and easily integrated features permit a wide range of applica- the CENTAURI II is also the first audio into every imaginable IT infrastructure. tions; from Gateway, Backup Codec or codec to offer professional 5.1/7.1 multi- And its more than 15 coding algorithms Streaming-Server to Multichannel Codec. channel transmissions. -
NTT DOCOMO Technical Journal
3GPP EVS Codec for Unrivaled Speech Quality and Future Audio Communication over VoLTE EVS Speech Coding Standardization NTT DOCOMO has been engaged in the standardization of Research Laboratories Kimitaka Tsutsumi the 3GPP EVS codec, which is designed specifically for Kei Kikuiri VoLTE to further enhance speech quality, and has contributed to establishing a far-sighted strategy for making the EVS codec cover a variety of future communication services. Journal NTT DOCOMO has also proposed technical solutions that provide speech quality as high as FM radio broadcasts and that achieve both high coding efficiency and high audio quality not possible with any of the state-of-the-art speech codecs. The EVS codec will drive the emergence of a new style of speech communication entertainment that will combine BGM, sound effects, and voice in novel ways for mobile users. 2 Technical Band (AMR-WB)* [2] that is used in also encode music at high levels of quality 1. Introduction NTT DOCOMO’s VoLTE and that sup- and efficiency for non-real-time services, The launch of Voice over LTE (VoL- port wideband speech with a sampling 3GPP experts agreed to adopt high re- TE) services and flat-rate voice service frequency*3 of 16 kHz. In contrast, EVS quirements in the EVS codec for music has demonstrated the importance of high- has been designed to support super-wide- despite its main target of real-time com- quality telephony service to mobile users. band*4 speech with a sampling frequen- munication. Furthermore, considering In line with this trend, the 3rd Genera- cy of 32 kHz thereby achieving speech that telephony services using AMR-WB tion Partnership Project (3GPP) complet- of FM-radio quality*5. -
The Growing Importance of HD Voice in Applications the Growing Importance of HD Voice in Applications White Paper
White Paper The Growing Importance of HD Voice in Applications The Growing Importance of HD Voice in Applications White Paper Executive Summary A new excitement has entered the voice communications industry with the advent of wideband audio, commonly known as High Definition Voice (HD Voice). Although enterprises have gradually been moving to HD VoIP within their own networks, these networks have traditionally remained “islands” of HD because interoperability with other networks that also supported HD Voice has been difficult. With the introduction of HD Voice on mobile networks, which has been launched on numerous commercial mobile networks and many wireline VoIP networks worldwide, consumers can finally experience this new technology firsthand. Verizon, AT&T, T-Mobile, Deutsche Telekom, Orange and other mobile operators now offer HD Voice as a standard feature. Because mobile users tend to adopt new technology rapidly, replacing their mobile devices seemingly as fast as the newest models are released, and because landline VoIP speech is typically done via a headset, the growth of HD Voice continues to be high and in turn, the need for HD- capable applications will further accelerate. This white paper provides an introduction to HD Voice and discusses its current adoption rate and future potential, including use case examples which paint a picture that HD Voice upgrades to network infrastructure and applications will be seen as important, and perhaps as a necessity to many. 2 The Growing Importance of HD Voice in Applications White Paper Table of Contents What Is HD Voice? . 4 Where is HD Voice Being Deployed? . 4 Use Case Examples . -
HD Voice – a Revolution in Voice Communication
HD Voice – a revolution in voice communication Besides data capacity and coverage, which are one of the most important factors related to customers’ satisfaction in mobile telephony nowadays, we must not forget about the intrinsic characteristic of the mobile communication – the Voice. Ever since the nineties and the introduction of GSM there have not been much improvements in the area of voice communication and quality of sound has not seen any major changes. Smart Network going forward! Mobile phones made such a progress in recent years that they have almost replaced PCs, but their basic function, voice calls, is still irreplaceable and vital in mobile communication and it has to be seamless. In order to grow our customer satisfaction and expand our service portfolio, Smart Network engineers of Telenor Serbia have enabled HD Voice by introducing new network features and transitioning voice communication to all IP network. This transition delivers crystal-clear communication between the two parties greatly enhancing customer experience during voice communication over smartphones. Enough with the yelling into smartphones! HD Voice (or High-Definition Voice) represents a significant upgrade to sound quality in mobile communications. Thanks to this feature users experience clarity, smoothly reduced background noise and a feeling that the person they are talking to is standing right next to them or of "being in the same room" with the person on the other end of the phone line. On the more technical side, “HD Voice is essentially wideband audio technology, something that long has been used for conference calling and VoIP apps. Instead of limiting a call frequency to between 300 Hz and 3.4 kHz, a wideband audio call transmits at a range of 50 Hz to 7 kHz, or higher. -
UMTS); LTE; Performance Characterization of the Adaptive Multi-Rate Wideband (AMR-WB) Speech Codec (3GPP TR 26.976 Version 10.0.0 Release 10)
ETSI TR 126 976 V10.0.0 (2011-04) Technical Report Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; Performance characterization of the Adaptive Multi-Rate Wideband (AMR-WB) speech codec (3GPP TR 26.976 version 10.0.0 Release 10) 3GPP TR 26.976 version 10.0.0 Release 10 1 ETSI TR 126 976 V10.0.0 (2011-04) Reference RTR/TSGS-0426976va00 Keywords GSM, LTE, UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. -
Audio Codec (1)
Audio Codec (1) Sampling Number of Codec bit rate Description frequency channels General (medium to high bit rate) 640 kbps (max.) Belonging to Dolby Digital, 448 kbps (DVD, supporting multi-channel AC-3 Digital cable TV) -Multiaudio, used on DVD 384 kbps (ATSC) Pulse-code modulation, digital representation of an analogue signal by sampling the Varied magnitude of the signal at PCM -Up to 8 64 kbps (DS0) uniform intervals, used in digital telephone systems and digital audio in computers and CDs AAC - 8 – 96 kHz - Advanced Audio Coding, Adaptive Transform Acoustic 48, 64, 66, 132, 256 Coding, developed by Sony, ATRAC -- kbps used to store information on Minidisc, Digital Theatre System, used 768 – 1536 kbps (6- DTS -Multifor in-movie sound on film and channel) on DVD MP1 384 kbps Varied 1, 2 Lowest encoder complexity 256 – 384 kbps More complex encoder and (excellent) decoder, able to remove more 224 – 256 kbps (very of the signal redundancy and MP2 Varied 1, 2 good) to apply the psychoacoustic 192 – 224 kbps threshold more efficiently (good) 224 – 320 kbps More complex, directed (excellent) towards lower bit rate 32, 41.1, 48 MP3 192 – 224 kbps (very 1, 2 applications kHz good) 128 – 192 (good) Known as MPC, MPEGplus, Musepack 160 – 180 kbps - 2 MPEG+ or MP+, a derivative of MP2 Constant bitrate at Developed by Nippon TwinVQ 80, 96, 112, 128, --Telegraph and Telephone 160, 192 kbps Corporation Open and free codec project Vorbis 45 – 500 kbps - - from the Xiph.org Foundation Constant and Developed by Microsoft WMA variable bit rate -Multi -
Ambisonic Coding with Spatial Image Correction Pierre Mahé, Stéphane Ragot, Sylvain Marchand, Jérôme Daniel
Ambisonic Coding with Spatial Image Correction Pierre Mahé, Stéphane Ragot, Sylvain Marchand, Jérôme Daniel To cite this version: Pierre Mahé, Stéphane Ragot, Sylvain Marchand, Jérôme Daniel. Ambisonic Coding with Spatial Image Correction. European Signal Processing Conference (EUSIPCO) 2020, Jan 2021, Amsterdam (virtual ), Netherlands. hal-03042322 HAL Id: hal-03042322 https://hal.archives-ouvertes.fr/hal-03042322 Submitted on 6 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ambisonic Coding with Spatial Image Correction Pierre MAHE´ 1;2 Stephane´ RAGOT1 Sylvain MARCHAND2 Jer´ omeˆ DANIEL1 1Orange Labs, Lannion, France 2L3i, Universite´ de La Rochelle, France [email protected], [email protected], [email protected], [email protected] Abstract—We present a new method to enhance multi-mono re-creates the spatial scene based on a mono downmix and coding of ambisonic audio signals. In multi-mono coding, each these spatial parameters. This method has been extended to component is represented independently by a mono core codec, High-Order Ambisonics (HOA) in HO-DirAC [9] where the this may introduce strong spatial artifacts. The proposed method is based on the correction of spatial images derived from the sound field is divided into angular sectors; for each angular sound-field power map of original and degraded ambisonic sig- sector, one source is extracted. -
Input Formats & Codecs
Input Formats & Codecs Pivotshare offers upload support to over 99.9% of codecs and container formats. Please note that video container formats are independent codec support. Input Video Container Formats (Independent of codec) 3GP/3GP2 ASF (Windows Media) AVI DNxHD (SMPTE VC-3) DV video Flash Video Matroska MOV (Quicktime) MP4 MPEG-2 TS, MPEG-2 PS, MPEG-1 Ogg PCM VOB (Video Object) WebM Many more... Unsupported Video Codecs Apple Intermediate ProRes 4444 (ProRes 422 Supported) HDV 720p60 Go2Meeting3 (G2M3) Go2Meeting4 (G2M4) ER AAC LD (Error Resiliant, Low-Delay variant of AAC) REDCODE Supported Video Codecs 3ivx 4X Movie Alaris VideoGramPiX Alparysoft lossless codec American Laser Games MM Video AMV Video Apple QuickDraw ASUS V1 ASUS V2 ATI VCR-2 ATI VCR1 Auravision AURA Auravision Aura 2 Autodesk Animator Flic video Autodesk RLE Avid Meridien Uncompressed AVImszh AVIzlib AVS (Audio Video Standard) video Beam Software VB Bethesda VID video Bink video Blackmagic 10-bit Broadway MPEG Capture Codec Brooktree 411 codec Brute Force & Ignorance CamStudio Camtasia Screen Codec Canopus HQ Codec Canopus Lossless Codec CD Graphics video Chinese AVS video (AVS1-P2, JiZhun profile) Cinepak Cirrus Logic AccuPak Creative Labs Video Blaster Webcam Creative YUV (CYUV) Delphine Software International CIN video Deluxe Paint Animation DivX ;-) (MPEG-4) DNxHD (VC3) DV (Digital Video) Feeble Files/ScummVM DXA FFmpeg video codec #1 Flash Screen Video Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Forward Uncompressed Video Codec fox motion video FRAPS: