Process Scheduling the Operating System Kernel • Basic Set of Primitive Operations and Processes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IEEE Std 1003.1-2008
This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-911530 INTERNATIONAL ISO/IEC/ STANDARD IEEE 9945 First edition 2009-09-15 Information technology — Portable Operating System Interface (POSIX®) Base Specifications, Issue 7 Technologies de l'information — Spécifications de base de l'interface pour la portabilité des systèmes (POSIX ®), Issue 7 Reference number ISO/IEC/IEEE 9945:2009(E) Copyright © 2001-2008, IEEE and The Open Group. All rights reserved This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-911530 ISO/IEC/IEEE 9945:2009(E) PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. Neither the ISO Central Secretariat nor IEEE accepts any liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies and IEEE members. In the unlikely event that a problem relating to it is found, please inform the ISO Central Secretariat or IEEE at the address given below. -
Microkernel Mechanisms for Improving the Trustworthiness of Commodity Hardware
Microkernel Mechanisms for Improving the Trustworthiness of Commodity Hardware Yanyan Shen Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Computer Science and Engineering Faculty of Engineering March 2019 Thesis/Dissertation Sheet Surname/Family Name : Shen Given Name/s : Yanyan Abbreviation for degree as give in the University calendar : PhD Faculty : Faculty of Engineering School : School of Computer Science and Engineering Microkernel Mechanisms for Improving the Trustworthiness of Commodity Thesis Title : Hardware Abstract 350 words maximum: (PLEASE TYPE) The thesis presents microkernel-based software-implemented mechanisms for improving the trustworthiness of computer systems based on commercial off-the-shelf (COTS) hardware that can malfunction when the hardware is impacted by transient hardware faults. The hardware anomalies, if undetected, can cause data corruptions, system crashes, and security vulnerabilities, significantly undermining system dependability. Specifically, we adopt the single event upset (SEU) fault model and address transient CPU or memory faults. We take advantage of the functional correctness and isolation guarantee provided by the formally verified seL4 microkernel and hardware redundancy provided by multicore processors, design the redundant co-execution (RCoE) architecture that replicates a whole software system (including the microkernel) onto different CPU cores, and implement two variants, loosely-coupled redundant co-execution (LC-RCoE) and closely-coupled redundant co-execution (CC-RCoE), for the ARM and x86 architectures. RCoE treats each replica of the software system as a state machine and ensures that the replicas start from the same initial state, observe consistent inputs, perform equivalent state transitions, and thus produce consistent outputs during error-free executions. -
Processes Process States
Processes • A process is a program in execution • Synonyms include job, task, and unit of work • Not surprisingly, then, the parts of a process are precisely the parts of a running program: Program code, sometimes called the text section Program counter (where we are in the code) and other registers (data that CPU instructions can touch directly) Stack — for subroutines and their accompanying data Data section — for statically-allocated entities Heap — for dynamically-allocated entities Process States • Five states in general, with specific operating systems applying their own terminology and some using a finer level of granularity: New — process is being created Running — CPU is executing the process’s instructions Waiting — process is, well, waiting for an event, typically I/O or signal Ready — process is waiting for a processor Terminated — process is done running • See the text for a general state diagram of how a process moves from one state to another The Process Control Block (PCB) • Central data structure for representing a process, a.k.a. task control block • Consists of any information that varies from process to process: process state, program counter, registers, scheduling information, memory management information, accounting information, I/O status • The operating system maintains collections of PCBs to track current processes (typically as linked lists) • System state is saved/loaded to/from PCBs as the CPU goes from process to process; this is called… The Context Switch • Context switch is the technical term for the act -
Definition Process Scheduling Queues
Dear Students Due to the unprecedented situation, Knowledgeplus Training center is mobilized and will keep accompanying and supporting our students through this difficult time. Our Staff will be continuously, sending notes and exercises on a weekly basis through what’s app and email. Students are requested to copy the notes and do the exercises on their copybooks. The answers to the questions below will be made available on our website on knowledgeplus.mu/support.php. Please note that these are extra work and notes that we are providing our students and all classes will be replaced during the winter vacation. We thank you for your trust and are convinced that, together, we will overcome these troubled times Operating System - Process Scheduling Definition The process scheduling is the activity of the process manager that handles the removal of the running process from the CPU and the selection of another process on the basis of a particular strategy. Process scheduling is an essential part of a Multiprogramming operating systems. Such operating systems allow more than one process to be loaded into the executable memory at a time and the loaded process shares the CPU using time multiplexing. Process Scheduling Queues The OS maintains all PCBs in Process Scheduling Queues. The OS maintains a separate queue for each of the process states and PCBs of all processes in the same execution state are placed in the same queue. When the state of a process is changed, its PCB is unlinked from its current queue and moved to its new state queue. The Operating System maintains the following important process scheduling queues − • Job queue − This queue keeps all the processes in the system. -
Chapter 3: Processes
Chapter 3: Processes Operating System Concepts – 9th Edition Silberschatz, Galvin and Gagne ©2013 Chapter 3: Processes Process Concept Process Scheduling Operations on Processes Interprocess Communication Examples of IPC Systems Communication in Client-Server Systems Operating System Concepts – 9th Edition 3.2 Silberschatz, Galvin and Gagne ©2013 Objectives To introduce the notion of a process -- a program in execution, which forms the basis of all computation To describe the various features of processes, including scheduling, creation and termination, and communication To explore interprocess communication using shared memory and message passing To describe communication in client-server systems Operating System Concepts – 9th Edition 3.3 Silberschatz, Galvin and Gagne ©2013 Process Concept An operating system executes a variety of programs: Batch system – jobs Time-shared systems – user programs or tasks Textbook uses the terms job and process almost interchangeably Process – a program in execution; process execution must progress in sequential fashion Multiple parts The program code, also called text section Current activity including program counter, processor registers Stack containing temporary data Function parameters, return addresses, local variables Data section containing global variables Heap containing memory dynamically allocated during run time Operating System Concepts – 9th Edition 3.4 Silberschatz, Galvin and Gagne ©2013 Process Concept (Cont.) Program is passive entity stored on disk (executable -
Advanced Operating Systems #1
<Slides download> https://www.pf.is.s.u-tokyo.ac.jp/classes Advanced Operating Systems #2 Hiroyuki Chishiro Project Lecturer Department of Computer Science Graduate School of Information Science and Technology The University of Tokyo Room 007 Introduction of Myself • Name: Hiroyuki Chishiro • Project Lecturer at Kato Laboratory in December 2017 - Present. • Short Bibliography • Ph.D. at Keio University on March 2012 (Yamasaki Laboratory: Same as Prof. Kato). • JSPS Research Fellow (PD) in April 2012 – March 2014. • Research Associate at Keio University in April 2014 – March 2016. • Assistant Professor at Advanced Institute of Industrial Technology in April 2016 – November 2017. • Research Interests • Real-Time Systems • Operating Systems • Middleware • Trading Systems Course Plan • Multi-core Resource Management • Many-core Resource Management • GPU Resource Management • Virtual Machines • Distributed File Systems • High-performance Networking • Memory Management • Network on a Chip • Embedded Real-time OS • Device Drivers • Linux Kernel Schedule 1. 2018.9.28 Introduction + Linux Kernel (Kato) 2. 2018.10.5 Linux Kernel (Chishiro) 3. 2018.10.12 Linux Kernel (Kato) 4. 2018.10.19 Linux Kernel (Kato) 5. 2018.10.26 Linux Kernel (Kato) 6. 2018.11.2 Advanced Research (Chishiro) 7. 2018.11.9 Advanced Research (Chishiro) 8. 2018.11.16 (No Class) 9. 2018.11.23 (Holiday) 10. 2018.11.30 Advanced Research (Kato) 11. 2018.12.7 Advanced Research (Kato) 12. 2018.12.14 Advanced Research (Chishiro) 13. 2018.12.21 Linux Kernel 14. 2019.1.11 Linux Kernel 15. 2019.1.18 (No Class) 16. 2019.1.25 (No Class) Linux Kernel Introducing Synchronization /* The cases for Linux */ Acknowledgement: Prof. -
Process Scheduling Ii
PROCESS SCHEDULING II CS124 – Operating Systems Spring 2021, Lecture 12 2 Real-Time Systems • Increasingly common to have systems with real-time scheduling requirements • Real-time systems are driven by specific events • Often a periodic hardware timer interrupt • Can also be other events, e.g. detecting a wheel slipping, or an optical sensor triggering, or a proximity sensor reaching a threshold • Event latency is the amount of time between an event occurring, and when it is actually serviced • Usually, real-time systems must keep event latency below a minimum required threshold • e.g. antilock braking system has 3-5 ms to respond to wheel-slide • The real-time system must try to meet its deadlines, regardless of system load • Of course, may not always be possible… 3 Real-Time Systems (2) • Hard real-time systems require tasks to be serviced before their deadlines, otherwise the system has failed • e.g. robotic assembly lines, antilock braking systems • Soft real-time systems do not guarantee tasks will be serviced before their deadlines • Typically only guarantee that real-time tasks will be higher priority than other non-real-time tasks • e.g. media players • Within the operating system, two latencies affect the event latency of the system’s response: • Interrupt latency is the time between an interrupt occurring, and the interrupt service routine beginning to execute • Dispatch latency is the time the scheduler dispatcher takes to switch from one process to another 4 Interrupt Latency • Interrupt latency in context: Interrupt! Task -
What Is an Operating System III 2.1 Compnents II an Operating System
Page 1 of 6 What is an Operating System III 2.1 Compnents II An operating system (OS) is software that manages computer hardware and software resources and provides common services for computer programs. The operating system is an essential component of the system software in a computer system. Application programs usually require an operating system to function. Memory management Among other things, a multiprogramming operating system kernel must be responsible for managing all system memory which is currently in use by programs. This ensures that a program does not interfere with memory already in use by another program. Since programs time share, each program must have independent access to memory. Cooperative memory management, used by many early operating systems, assumes that all programs make voluntary use of the kernel's memory manager, and do not exceed their allocated memory. This system of memory management is almost never seen any more, since programs often contain bugs which can cause them to exceed their allocated memory. If a program fails, it may cause memory used by one or more other programs to be affected or overwritten. Malicious programs or viruses may purposefully alter another program's memory, or may affect the operation of the operating system itself. With cooperative memory management, it takes only one misbehaved program to crash the system. Memory protection enables the kernel to limit a process' access to the computer's memory. Various methods of memory protection exist, including memory segmentation and paging. All methods require some level of hardware support (such as the 80286 MMU), which doesn't exist in all computers. -
Operating Systems Processes
Operating Systems Processes Eno Thereska [email protected] http://www.imperial.ac.uk/computing/current-students/courses/211/ Partly based on slides from Julie McCann and Cristian Cadar Administrativia • Lecturer: Dr Eno Thereska § Email: [email protected] § Office: Huxley 450 • Class website http://www.imperial.ac.uk/computing/current- students/courses/211/ 2 Tutorials • No separate tutorial slots § Tutorials embedded in lectures • Tutorial exercises, with solutions, distributed on the course website § You are responsible for studying on your own the ones that we don’t cover during the lectures § Let me know if you have any questions or would like to discuss any others in class 3 Tutorial question & warmup • List the most important resources that must be managed by an operating system in the following settings: § Supercomputer § Smartphone § ”Her” A lonely writer develops an unlikely relationship with an operating system designed to meet his every need. Copyright IMDB.com 4 Introduction to Processes •One of the oldest abstractions in computing § An instance of a program being executed, a running program •Allows a single processor to run multiple programs “simultaneously” § Processes turn a single CPU into multiple virtual CPUs § Each process runs on a virtual CPU 5 Why Have Processes? •Provide (the illusion of) concurrency § Real vs. apparent concurrency •Provide isolation § Each process has its own address space •Simplicity of programming § Firefox doesn’t need to worry about gcc •Allow better utilisation of machine resources § Different processes require different resources at a certain time 6 Concurrency Apparent Concurrency (pseudo-concurrency): A single hardware processor which is switched between processes by interleaving. -
Linux Kernal II 9.1 Architecture
Page 1 of 7 Linux Kernal II 9.1 Architecture: The Linux kernel is a Unix-like operating system kernel used by a variety of operating systems based on it, which are usually in the form of Linux distributions. The Linux kernel is a prominent example of free and open source software. Programming language The Linux kernel is written in the version of the C programming language supported by GCC (which has introduced a number of extensions and changes to standard C), together with a number of short sections of code written in the assembly language (in GCC's "AT&T-style" syntax) of the target architecture. Because of the extensions to C it supports, GCC was for a long time the only compiler capable of correctly building the Linux kernel. Compiler compatibility GCC is the default compiler for the Linux kernel source. In 2004, Intel claimed to have modified the kernel so that its C compiler also was capable of compiling it. There was another such reported success in 2009 with a modified 2.6.22 version of the kernel. Since 2010, effort has been underway to build the Linux kernel with Clang, an alternative compiler for the C language; as of 12 April 2014, the official kernel could almost be compiled by Clang. The project dedicated to this effort is named LLVMLinxu after the LLVM compiler infrastructure upon which Clang is built. LLVMLinux does not aim to fork either the Linux kernel or the LLVM, therefore it is a meta-project composed of patches that are eventually submitted to the upstream projects. -
CS 450: Operating Systems Sean Wallace <[email protected]>
Deadlock CS 450: Operating Systems Computer Sean Wallace <[email protected]> Science Science deadlock |ˈdedˌläk| noun 1 [ in sing. ] a situation, typically one involving opposing parties, in which no progress can be made: an attempt to break the deadlock. –New Oxford American Dictionary 2 Traffic Gridlock 3 Software Gridlock mutex_A.lock() mutex_B.lock() mutex_B.lock() mutex_A.lock() # critical section # critical section mutex_B.unlock() mutex_B.unlock() mutex_A.unlock() mutex_A.unlock() 4 Necessary Conditions for Deadlock 5 That is, what conditions need to be true (of some system) so that deadlock is possible? (Not the same as causing deadlock!) 6 1. Mutual Exclusion Resources can be held by process in a mutually exclusive manner 7 2. Hold & Wait While holding one resource (in mutex), a process can request another resource 8 3. No Preemption One process can not force another to give up a resource; i.e., releasing is voluntary 9 4. Circular Wait Resource requests and allocations create a cycle in the resource allocation graph 10 Resource Allocation Graphs 11 Process: Resource: Request: Allocation: 12 R1 R2 P1 P2 P3 R3 Circular wait is absent = no deadlock 13 R1 R2 P1 P2 P3 R3 All 4 necessary conditions in place; Deadlock! 14 In a system with only single-instance resources, necessary conditions ⟺ deadlock 15 P3 R1 P1 P2 R2 P2 Cycle without Deadlock! 16 Not practical (or always possible) to detect deadlock using a graph —but convenient to help us reason about things 17 Approaches to Dealing with Deadlock 18 1. Ostrich algorithm (Ignore it and hope it never happens) 2. -
Sched-ITS: an Interactive Tutoring System to Teach CPU Scheduling Concepts in an Operating Systems Course
Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2017 Sched-ITS: An Interactive Tutoring System to Teach CPU Scheduling Concepts in an Operating Systems Course Bharath Kumar Koya Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Computer Engineering Commons, and the Computer Sciences Commons Repository Citation Koya, Bharath Kumar, "Sched-ITS: An Interactive Tutoring System to Teach CPU Scheduling Concepts in an Operating Systems Course" (2017). Browse all Theses and Dissertations. 1745. https://corescholar.libraries.wright.edu/etd_all/1745 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. SCHED – ITS: AN INTERACTIVE TUTORING SYSTEM TO TEACH CPU SCHEDULING CONCEPTS IN AN OPERATING SYSTEMS COURSE A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By BHARATH KUMAR KOYA B.E, Andhra University, India, 2015 2017 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL April 24, 2017 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Bharath Kumar Koya ENTITLED SCHED-ITS: An Interactive Tutoring System to Teach CPU Scheduling Concepts in an Operating System Course BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQIREMENTS FOR THE DEGREE OF Master of Science. _____________________________________ Adam R. Bryant, Ph.D. Thesis Director _____________________________________ Mateen M. Rizki, Ph.D. Chair, Department of Computer Science and Engineering Committee on Final Examination _____________________________________ Adam R.