Attention and Awareness: Visual Psychophysics And

Total Page:16

File Type:pdf, Size:1020Kb

Attention and Awareness: Visual Psychophysics And ATTENTION AND AWARENESS: VISUAL PSYCHOPHYSICS AND AVERSIVE CONDITIONING IN HUMANS Thesis by Naotsugu Tsuchiya In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2006 (Defended July 18, 2005) ii 2006 Naotsugu Tsuchiya All Rights Reserved iii Acknowledgement As I write this acknowledgement, I remember all the exciting events and troubles that happened to me one after another since I came to Caltech. I started as a volunteer researcher in April 2000 and joined the CNS program as a graduate student during that summer. Over these five years, I’ve been fortunate to be surrounded by my colleagues and friends, whom I want to acknowledge here. Mark Konishi and Shin Shimojo have been my role models of successful Japanese researchers in the American academic community. I owe a lot to their advice and encouragement throughout my graduate life at Caltech. Especially, Shin’s recommendation to Christof Koch in April 2000 made it possible for me to work as a volunteer. My Caltech life started from there. I introduced myself in a five-minute meeting to Christof, trying to convince him that I was desperately interested in the problem of consciousness and that I wanted to work in his lab. It was the most intense five minutes. He took the risk of taking me. I only hope I have brought more fruit than troubles to him. I cannot imagine such a great (and colorful) advisor like him if I were in Japan. Jochen Braun was the advisor for my first project on visual motion and attention (Chapter 3). I thank him for his generous invitation to England and Germany, which makes me think that I should be generous to him even if our manuscript will never be published. Working with Geraint Rees at University College London on this motion and attention project with functional magnetic resonance imaging (fMRI) was very exciting. Through this project, I learned a lot about visual psychophysics and fMRI. iv McKell Carter taught me how to conduct electrical shock experiments with Caltech students (and sometimes with our mentor!) in the name of science. Throughout the collaboration with him, we published one paper and submitted another one now in the second round of the review (in Chapter 4), at the cost of a few friends who really hated the electrical shocks. I thank more than 200 subjects who participated in our ‘uncomfortable but not painful’ experiments (See Method 4.4.1). Ryota Kanai at the Universiteit Utrecht, the Netherlands, has been my best friend, colleague, and rival since we shared our office in Kyoto University, Japan, in 1999-2000. With Ryota, I translated Christof’s “The Quest for Consciousness” into Japanese as a private project. We will continue our collaboration. I thank all of my colleagues in the Koch lab, past and present. Connie Hofstoetter and Farshad Moradi were very helpful with my project on afterimage using continuous flash suppression. I enjoyed the collaboration with Melissa Saenz as well as two of my SURF students, Bobby Rohrkemper and Dania Adamuszek. Kamran Diba invited me to give a talk at Rutgers, The State University of New Jersey, which was a very good experience for me. I organized several parties in the Koch lab, which went very well usually. I was pleased when people liked the sushi, which Dirk Walther and I prepared at the farewell party for the Reddy sisters. There is one thing I do regret, however: it was my mistake to introduce karaoke to Patrick Wilken and Wei Ji Ma at the farewell party for Chunhui Mo. I am grateful to my committee for two candidacy exams and the defense: Yaser Abu-Mostafa, Pietro Perona, David Dubowitz, Joe Bogen, Ralph Adolphs, John O’Doherty, Steve Quartz, Richard Andersen. v My wife, Noriko, has supported and encouraged my research throughout. She has been keeping an eye on my health, both mental and physical. Nori’s comments on my practice talks before conferences have been always critical and useful. We shared one joy when I received the Best Student Presentation Award in the ASSC 9 conference in June of 2005. Nori and I often let out our stress at parties with our Japanese friends. These Japanese friends were my secret pool for many of my psychophysics experiments. Finally, I want to thank my family, Hisao, Junko, and Rie for their generous support and encouragement. vi Abstract We studied the neuronal correlates of consciousness by characterizing the role of attention and awareness in three psychophysical experiments. First, we investigated the role of visual awareness in the formation of afterimages, phenomena believed to occur in the retina. Visibility of the afterimage-inducing stimuli was manipulated by a powerful dichoptic suppression technique, continuous flash suppression, which allows us to project visual stimuli onto the retina without subjects noticing them at all, sometimes longer than three minutes. We found that reliably suppressing the inducer weakens afterimage strength. Paradoxically, trial-to-trial variability in visibility did not correlate with the intensity of afterimage. As afterimages are enhanced when attention is withdrawn from the adaptor, the opposite effects between awareness and attention were demonstrated. Second, we examined visual motion processing outside the focus of spatial, top-down attention using a dual-task paradigm. Attentional effects in motion processing were characterized by our novel wavelet motion stimuli. Our stimuli effectively activate neurons in the first stage of motion processing, while they are poor stimuli for higher motion processing. Using a contrast-masking paradigm, we found that attention mainly affected the strength of inhibition for high-contrast motion stimuli in an orientation- specific, but not direction-specific manner, presumably reflecting the physiological properties for divisive inhibition within the primary visual cortex. Third, we characterized the role of awareness in classical aversive conditioning. Subjects associated previously neutral auditory stimuli (CS) with aversive mild electric shocks (US). We used skin conductance response, an index for autonomic arousal, as implicit measure for vii the conditioned response. In delay conditioning, CS was paired with delayed but overlapping US, while in trace conditioning CS was followed by US after a three-second temporal gap. We intermixed these two CSs with another control CS that never predicted US to examine whether awareness plays different roles depending on the temporal relationships between CS and US. Subjects expressed their shock expectancy using their gaze direction, from which we inferred the onset of awareness of CS-US contingency. By aligning the skin conductance response with the onset of awareness, we found that trace, but not delay, conditioning coincided with the onset of awareness. viii Table of contents ACKNOWLEDGEMENT ...............................................................................................................III ABSTRACT ....................................................................................................................................... VI TABLE OF CONTENTS..............................................................................................................VIII LIST OF FIGURES.........................................................................................................................XII LIST OF TABLES .........................................................................................................................XIII LIST OF ABBREVIATIONS ...................................................................................................... XIV CHAPTER 1........................................................................................................................................ XIV CHAPTER 2........................................................................................................................................ XIV CHAPTER 3........................................................................................................................................ XIV CHAPTER 4........................................................................................................................................ XIV 1. GENERAL INTRODUCTION..................................................................................................1 1.1. THE NEURONAL CORRELATES OF CONSCIOUSNESS.............................................................. 1 1.2. OUR THREE APPROACHES TO THE SEARCH FOR THE NCC ................................................. 3 1.3. STRUCTURE OF THE THESIS ..................................................................................................... 8 2. ROLE OF AWARENESS AND ATTENTION IN THE FORMATION OF NEGATIVE AFTERIMAGES..................................................................................................................................9 2.1. OVERVIEW ................................................................................................................................. 9 2.2. SUMMARY................................................................................................................................. 12 2.3. INTRODUCTION........................................................................................................................ 13 2.4. CHARACTERIZING CONTINUOUS FLASH SUPPRESSION (CFS) ......................................... 16 2.4.1. EXPERIMENT 1: PROLONGED INVISIBILITY BY CFS...........................................................
Recommended publications
  • Extending Psychophysics Methods to Evaluating Potential Social Anxiety
    logy ho & P yc s s y Gabay, J Psychol Psychother 2014, 5:1 c P f h o o t DOI: 10.4172/2161-0487.1000167 l h a e n r r a u p o y J Journal of Psychology & Psychotherapy ISSN: 2161-0487 Research Article Article OpenOpen Access Access Extending Psychophysics Methods to Evaluating Potential Social Anxiety Factors in Face of Terrorism Gillie Gabay* College of Management Academic Studies, Rishon Letzion, Israel Abstract Objective: There is an urgent need to develop tools to effectively measure the impact of psychological responses consequent a terror attack or threat. There is also a need to understand the impact both the personal preparedness of each citizen, and acts of counter terrorism by governments. This paper addresses the question ‘how to create a database of the citizen’s mind about anxiety-provoking situations in the face of terrorism’. Approach: The approach is grounded in a combination of experimental design, psychophysics, as a branch of psychology and consumer research. The theoretical foundation is illustrated using a set of fifteen empirical studies using conjoint analysis, which help uncover how people respond to anxiety-provoking situations. The approach identifies the mindset towards terrorism at the level of the individual respondent. This study identifies critical drivers of anxiety; the specific terrorist act; the location of the act; the feelings and the proposed remedies to reduce anxiety. Results: By exploring responses embedded in a general study of ‘dealing with anxiety provoking situations’, the study uncovers the ‘algebra of the individual respondent’s mind; how important the basic fear of terrorism actually is, how important it is to specify the type of terrorism (bombing versus contamination of the food supply), and how fears of terrorism are structured.
    [Show full text]
  • Gilaie-Dotan, Sharon; Rees, Geraint; Butterworth, Brian and Cappelletti, Marinella
    Gilaie-Dotan, Sharon; Rees, Geraint; Butterworth, Brian and Cappelletti, Marinella. 2014. Im- paired Numerical Ability Affects Supra-Second Time Estimation. Timing & Time Perception, 2(2), pp. 169-187. ISSN 2213-445X [Article] http://research.gold.ac.uk/23637/ The version presented here may differ from the published, performed or presented work. Please go to the persistent GRO record above for more information. If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Goldsmiths, University of London via the following email address: [email protected]. The item will be removed from the repository while any claim is being investigated. For more information, please contact the GRO team: [email protected] Timing & Time Perception 2 (2014) 169–187 brill.com/time Impaired Numerical Ability Affects Supra-Second Time Estimation Sharon Gilaie-Dotan 1,∗, Geraint Rees 1,2, Brian Butterworth 1 and Marinella Cappelletti 1,3,∗ 1 UCL Institute of Cognitive Neuroscience, 17 Queen Square, London, WC1N 3AR, UK 2 Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK 3 Psychology Department, Goldsmiths College, University of London, UK Received 24 September 2013; accepted 11 March 2014 Abstract It has been suggested that the human ability to process number and time both rely on common magni- tude mechanisms, yet for time this commonality has mainly been investigated in the sub-second rather than longer time ranges. Here we examined whether number processing is associated with timing in time ranges greater than a second. Specifically, we tested long duration estimation abilities in adults with a devel- opmental impairment in numerical processing (dyscalculia), reasoning that any such timing impairment co-occurring with dyscalculia may be consistent with joint mechanisms for time estimation and num- ber processing.
    [Show full text]
  • The Use of Experiential Acceptance in Psychotherapy with Emerging Adults
    Pepperdine University Pepperdine Digital Commons Theses and Dissertations 2015 The use of experiential acceptance in psychotherapy with emerging adults Lauren Ford Follow this and additional works at: https://digitalcommons.pepperdine.edu/etd Recommended Citation Ford, Lauren, "The use of experiential acceptance in psychotherapy with emerging adults" (2015). Theses and Dissertations. 650. https://digitalcommons.pepperdine.edu/etd/650 This Dissertation is brought to you for free and open access by Pepperdine Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Pepperdine Digital Commons. For more information, please contact [email protected], [email protected], [email protected]. Pepperdine University Graduate School of Education and Psychology THE USE OF EXPERIENTIAL ACCEPTANCE IN PSYCHOTHERAPY WITH EMERGING ADULTS A clinical dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Psychology in Clinical Psychology by Lauren Ford, MMFT October, 2015 Susan Hall, J.D., Ph.D. – Dissertation Chairperson This clinical dissertation, written by: Lauren Ford, MMFT under the guidance of a Faculty Committee and approved by its members, has been submitted to and accepted by the Graduate Faculty in partial fulfillment on the requirements for the degree of DOCTOR OF PSYCHOLOGY Doctoral Committee: Susan Hall, J.D., Ph.D., Chairperson Judy Ho, Ph.D. Joan Rosenberg, Ph.D. © Copyright by Lauren Ford (2015) All Rights Reserved
    [Show full text]
  • Neural Correlates of Consciousness
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: The Year in Cognitive Neuroscience Neural correlates of consciousness Geraint Rees UCL Institute of Cognitive Neuroscience and Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom Address for correspondence: Professor Geraint Rees, UCL Institute of Cognitive Neuroscience, 17 Queen Square, London WC1N 3AR, UK. [email protected] Jon Driver’s scientific work was characterized by an innovative combination of new methods for studying mental processes in the human brain in an integrative manner. In our collaborative work, he applied this approach to the study of attention and awareness, and their relationship to neural activity in the human brain. Here I review Jon’s scientific work that relates to the neural basis of human consciousness, relating our collaborative work to a broader scientific context. I seek to show how his insights led to a deeper understanding of the causal connections between distant brain structures that are now believed to characterize the neural underpinnings of human consciousness. Keywords: fMRI; vision; consciousness; awareness; neglect; extinction for noninvasive measurement of human brain Introduction activity such as functional magnetic resonance Our awareness of the external world is central to imaging (fMRI), positron emission tomography, our everyday lives. People consistently and univer- electroencephalography (EEG), and magnetoen- sally use verbal and nonverbal reports to indicate cephalography (MEG) can reveal the neural sub- that they have subjective experiences that reflect the strates of sensory processing in the human brain, sensory properties of objects in the world around and together we used these approaches to explore them.
    [Show full text]
  • Psychophysics Postdoctoralassociate Dicarlo Lab Just a Reminder of How You Might Start Thinking About Systems Neuroscience
    Tutorial Kohitij Kar Psychophysics PostdoctoralAssociate DiCarlo Lab Just a reminder of how you might start thinking about systems neuroscience Psychophysics Quantitative study of the relationship between physical stimuli and perception Encoding Decoding Sensory Stimulus Perception models models (e.g. Image: glass of water) Was there water in the glass? Psychophysics Three methods of measuring perception Two alternative forced choice experiments and Signal Detection Theory Brief intro to Amazon Mechanical Turk Psychophysics Three methods of measuring perception Two alternative forced choice experiments and Signal Detection Theory Brief intro to Amazon Mechanical Turk Psychophysics LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02MagnitudeEstimationLineLength_evt.html LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02MagnitudeEstimation_evt.html Magnitude estimation Steven’s power law b Stevens (1957, 1961) developed an equation to try to encapsulate this full range of possible data sets. It is called Stevens’ Power Law P = c * Ib LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02PowerLaw_evt.html Matching LiveSlide Site https://graphics.stanford.edu/courses/cs178/applets/colormatching.html Matching Detection/ Discrimination The method of adjustment LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02MethodOfAdjustment_evt.html The method of adjustment Terrible Method Why? ☒introspectionist/subjective. ☒subjects can be inexperienced Yes/no method of constant stimuli LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02MethodOfConstantStimuli_evt.html
    [Show full text]
  • Phenomenal Consciousness As Scientific Phenomenon? a Critical Investigation of the New Science of Consciousness
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by D-Scholarship@Pitt PHENOMENAL CONSCIOUSNESS AS SCIENTIFIC PHENOMENON? A CRITICAL INVESTIGATION OF THE NEW SCIENCE OF CONSCIOUSNESS by Justin M. Sytsma BS in Computer Science, University of Minnesota, 2003 BS in Neuroscience, University of Minnesota, 1999 MA in Philosophy, University of Pittsburgh, 2008 MA in History and Philosophy of Science, University of Pittsburgh, 2008 Submitted to the Graduate Faculty of School of Arts & Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2010 UNIVERSITY OF PITTSBURGH SCHOOL OF ARTS & SCIENCES This dissertation was presented by Justin M. Sytsma It was defended on August 5, 2010 and approved by Peter Machamer, PhD, Professor, History and Philosophy of Science Anil Gupta, PhD, Distinguished Professor, Philosophy Jesse Prinz, PhD, Distinguished Professor, City University of New York Graduate Center Dissertation Co-Director: Edouard Machery, PhD, Associate Professor, History and Philosophy of Science Dissertation Co-Director: Kenneth Schaffner, PhD, Distinguished University Professor, History and Philosophy of Science ii Copyright © by Justin Sytsma 2010 iii PHENOMENAL CONSCIOUSNESS AS SCIENTIFIC PHENOMENON? A CRITICAL INVESTIGATION OF THE NEW SCIENCE OF CONSCIOUSNESS Justin Sytsma, PhD University of Pittsburgh, 2010 Phenomenal consciousness poses something of a puzzle for philosophy of science. This puzzle arises from two facts: It is common for philosophers (and some scientists) to take its existence to be phenomenologically obvious and yet modern science arguably has little (if anything) to tell us about it. And, this is despite over 20 years of work targeting phenomenal consciousness in what I call the new science of consciousness.
    [Show full text]
  • Atypical Intrinsic Neural Timescale in Autism Takamitsu Watanabe1,2*, Geraint Rees1,3, Naoki Masuda4*
    RESEARCH ARTICLE Atypical intrinsic neural timescale in autism Takamitsu Watanabe1,2*, Geraint Rees1,3, Naoki Masuda4* 1Institute of Cognitive Neuroscience, University College London, London, United Kingdom; 2RIKEN Centre for Brain Science, Wako, Japan; 3Wellcome Trust Centre for Human Neuroimaging, University College London, London, United Kingdom; 4Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom Abstract How long neural information is stored in a local brain area reflects functions of that region and is often estimated by the magnitude of the autocorrelation of intrinsic neural signals in the area. Here, we investigated such intrinsic neural timescales in high-functioning adults with autism and examined whether local brain dynamics reflected their atypical behaviours. By analysing resting-state fMRI data, we identified shorter neural timescales in the sensory/visual cortices and a longer timescale in the right caudate in autism. The shorter intrinsic timescales in the sensory/visual areas were correlated with the severity of autism, whereas the longer timescale in the caudate was associated with cognitive rigidity. These observations were confirmed from neurodevelopmental perspectives and replicated in two independent cross-sectional datasets. Moreover, the intrinsic timescale was correlated with local grey matter volume. This study shows that functional and structural atypicality in local brain areas is linked to higher-order cognitive symptoms in autism. DOI: https://doi.org/10.7554/eLife.42256.001
    [Show full text]
  • Psychophysical Methods Z
    Course C - Week 5 PSYCHOPHYSICAL METHODS Z. SHI 1 Let’s do a detection task Please identify if the following display contain a letter T. If Yes, please raise your hand! T among Ls 2 1 LX LX LX T X LX + LX 3 LX LX LX 2 LX LX LX X L L X + LX 4 LX LX LX 3 LX LX LX X L L X + LX 5 LX LX LX 4 LX LX TX L X L X + LX 6 LX LX LX 5 LX LX LX X L LX + LX 7 LX TX LX 6 LX LX LX X L L X + LX 8 LX LX LX Results Trial No Yes No 1 (Present) 1 15 2 (Absent) 0 16 3 (Absent) 0 16 4 (Present) 14 2 5 (Present) 16 0 6 (Absent) 0 16 Conditions Presentation time P(‘Yes’) (sec) 1 0.2 1/16 2 0.4 14/16 3 0.6 16/16 9 Stimuli and sensation • Non-linear relation between physics and psychology Undetectable region Saturated region Sensation – psychology Stimulus intensity – physical property • Senses have an operating range 10 Point of subjective equality (PSE) • Is the stimulus vertical? 100% 50% Point of Subjective Equality - PSE % Vertical response 0% 11 Just noticeable difference (JND) • Difference in stimulation that will be noticed in 50% 75% = Upper threshold 25% = Lower threshold % Vertical response – = Uncertainty interval = JND 2 12 JND and sensitivity • Which psychometric function, full or dashed line, exhibits a greater sensitivity? • Dashed - the smaller the JND the greater (steeper) the slope, and greater the sensitivity is 13 Psychometric function • Absolute thresholds (Absolute limen) the level of stimulus intensity at which the subject is able to detect the stimulus.
    [Show full text]
  • A Randomized Controlled Feasibility Study Evaluating Neurofeedback
    Activity or connectivity? A randomized controlled feasibility study evaluating neurofeedback training in Huntington’s disease Downloaded from https://academic.oup.com/braincomms/advance-article-abstract/doi/10.1093/braincomms/fcaa049/5824291 by guest on 09 May 2020 Marina Papoutsi PhD* (1), Joerg Magerkurth PhD (2), Oliver Josephs PhD (3), Sophia E Pépés PhD (4), Temi Ibitoye (1), Ralf Reilmann MD, PhD (5, 6), Nigel Hunt FDS, PhD (7), Edwin Payne (7), Nikolaus Weiskopf PhD (3, 8), Douglas Langbehn MD, PhD (9), Geraint Rees MD, PhD† (3, 10), Sarah J Tabrizi MD, PhD † (1, 11) (1) UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, UK, (2) Birkbeck-UCL Centre for Neuroimaging, University College London, London, UK, (3) Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, UK, (4) University of Oxford, UK, (5) George Huntington Institute and Dept. of Radiology University of Muenster, Germany, (6) Section for Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Germany, (7) Eastman Dental Institute, University College London, UK, (8) Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, (9) Carver College of Medicine, University of Iowa, USA, (10) Institute of Cognitive Neuroscience, University College London, UK, (11) UK Dementia Research Institute at University College London, UK † Equal senior authors * Corresponding author: Dr Marina Papoutsi Email: [email protected] Address: UCL Huntington’s disease centre, Russell Square House, 10-12 Russell Square, London, WC1B 5EH, UK Running title: Neurofeedback training in Huntington’s disease © The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain.
    [Show full text]
  • The Human Superior Colliculus: Neither Necessary
    Commentary/Merker: Consciousness without a cerebral cortex malformations that may vary with respect to time of onset, patho- genesis, and organization of any cortical remnants that may be present (Halsey 1987); and survival beyond six months is rare (McAbee et al. 2000). In the presently reported cases, the extent of cortical damage is unclear, so the extent to which any behaviors reflect mesodiencephalic structures alone in these individuals is not known. Moreover, responsiveness to the environment is a capacity exhibited by nearly any organism with a central nervous system, and cannot be unambiguously taken as a marker of consciousness. Verbal or manual reports are generally considered the primary criterion that can establish The human superior colliculus: Neither whether a percept is conscious (Weiskrantz 1997). Such beha- necessary, nor sufficient for consciousness? viors, demonstrating intentionality, are not clearly evident in the present observations and many of the reported behaviors could be generated unconsciously or reflexively. This emphasizes DOI: 10.1017/S0140525X0700115X both the difficulty in determining whether an individual unable Susanne Watkins and Geraint Rees or unwilling to give verbal or manual reports is conscious (Owen et al. 2006), and the consequent need to explore the possi- Wellcome Trust Centre for Neuroimaging and Institute for Cognitive Neuroscience, University College London, London WC1 N 3AR, United bility that non-invasive biomarkers of consciousness might be Kingdom. developed to permit such inference. s.watkins@fil.ion.ucl.ac.uk g.rees@fil.ion.ucl.ac.uk Three indirect lines of evidence also suggest that SC activation http://www.fil.ion.ucl.ac.uk/grees in humans may not be necessary, either, for changes in the con- tents of consciousness to occur.
    [Show full text]
  • Psychophysics & a Brief Intro to the Nervous System
    Psychophysics & a brief intro to the nervous system Jonathan Pillow Perception (PSY 345 / NEU 325) Princeton University, Fall 2017 Lec. 3 Outline for today: • psychophysics • Weber-Fechner Law • Signal Detection Theory • basic neuroscience overview The Dawn of Psychophysics Gustav Fechner (1801–1887) often considered founder of experimental psychology psychophysics mind matter • scientific theory of the relationship between mind and matter Fechner’s law The Dawn of Psychophysics Ernst Weber (1795–1878) “Weber’s Law” • law about how stimulus intensity relates to detectability of stimulus changes • As stimulus intensity increases, magnitude of change must increase proportionately to remain noticeable Example: 1 pound change in a 20 pound weight = .05 is just as detectable as 0.2 pound change in a 4 pound weight = .05 The Dawn of Psychophysics Ernst Weber (1795–1878) Weber Fraction • ratio of change magnitude to stimulus magnitude that is required for detecting the change change in stimulus stimulus intensity = .05 Q: what’s the smallest change in a 100 pound weight could you detect? = .05 The Dawn of Psychophysics Ernst Weber (1795–1878) Weber Fraction • ratio of change magnitude to stimulus magnitude that is required for detecting the change Just-Noticeable Difference (JND) • smallest magnitude change that can be detected = .05 Q: what’s the smallest change in a 100 pound weight could you detect? = .05 Look at Fechner’s law again: A little math (don’t freak out) Fechner’s law: percept stimulus differentiate both sides intensity intensity change in Weber’s law: stimulus intensity change in percept intensity So detectability (“how much the percept changes”) is determined by the ratio of stimulus change dR to stimulus intensity R.
    [Show full text]
  • Chapter 4 – Wilhelm Wundt and the Founding of Psychology
    CHAPTER 6 – GERMAN PSYCHOLOGISTS OF THE 19TH & EARLY 20TH CENTURIES Dr. Nancy Alvarado German Rivals to Wundt Ernst Weber & Gustav Fechner -- psychophysicists Hermann Ebbinghaus -- memory Franz Brentano Carl Stumpf Oswald Kulpe Weber & Fechner Ernst Weber (1795-1878) Weber published “De tactu” describing the minimum amount of tactile stimulation needed to experience a sensation of touch – the absolute threshold. Using weights he found that holding versus lifting them gave different results (due to muscles involved). He used a tactile compass to study how two-point discrimination varied across the body. On the fingertip .22 cm, on the lips .30 cm, on the back 4.06 cm. Just Noticeable Difference (JND) Weber studied how much a stimulus must change in order for a person to sense the change. How much heavier must a weight be in order for a person to notice that it is heavier? This amount is called the just noticeable difference JND The JND is not fixed but varies with the size of the weights being compared. R k JND can be expressed as a ratio: R where R is stimulus magnitude and k is a constant and R means the change in R ( usually means change) Gustav Fechner (1801-1887) Fechner related the physical and psychological worlds using mathematics. Fechner (1860) said: “Psychophysics, already related to physics by name must on one hand be based on psychology, and [on] the other hand promises to give psychology a mathematical foundation.” (pp. 9-10) Fechner extended Weber’s work because it provided the right model for accomplishing this. Fechner’s Contribution Fechner called Weber’s finding about the JND “Weber’s Law.” Fechner’s formula describes how the sensation is related to increases in stimulus size: S k log R where S is sensation, k is Weber’s constant and R is the magnitude of a stimulus The larger the stimulus magnitude, the greater the amount of difference needed to produce a JND.
    [Show full text]