Visual Perception Glossary

Total Page:16

File Type:pdf, Size:1020Kb

Visual Perception Glossary Visual Perception Glossary Amodal perception The part of an object that is not visible because occlu- ded can be amodally perceived. Amodal perception is different and one step removed from modal percepti- on of real or illusory contours. Apparent motion When an object is presented at two different locati- ons after a brief time interval observers perceive mo- tion. The fi rst empirical investigation was carried out by Sigmund Exner . His aim, as well as the subsequent work by Max Wertheimer , was in establishing that motion was a basic sensation. Attention Refers to the selective processing of some aspect of information, while ignoring other information. The sudden onset of a stimulus can capture attention, but people can also exert some control on where they di- rect their attention. Bi-stable stimulus A particular stimulus that can produce two percepts over time, even though it is unchanged as a stimulus. An example is the Necker cube . Brightness Brightness refers to perception of how much light is coming from a given surface or object. A brighter objects refl ects more light than a less bright object. However perception of brightness is not fully deter- mined by luminance (see Illusory contours). 192 Visual Perception Glossary Cerebral lobe The cerebral cortex of the human brain is divided into four main lobes. Frontal (at the front), occipital (at the back), temporal (on the sides) and parietal (at the top). Consciousness Sorry this is too hard, your guess is as good as mine. Cortex The cortex is the outer layer of the brain . In most mammals the cortex is folded and this allows the surface to have a greater area given in the confi ned space available inside the skull. Figure-ground organisation Perceptual organisation separates regions of an image into fi gures, which belong to the foreground, and ground, which is shapeless. Figures are not necessarily familiar objects. Gestalt With the term Gestalt school we refer to a group of scientists who had a great infl u- ence on psychology. The best-known members are Max Wertheimer , Kurt Koffka , and Wolfgang Köhler . The word Gestalt comes from German and refers to a “whole form” (but it is hard to fi nd a good translation). A central principle is that the mind organises information into global wholes. Many illusions such as apparent motion provide examples of such process of perceptual organisation . Illusion It is hard to defi ne properly what is an illusion. In general it is an event in which ob- servers have a surprising percept, often at odds with what they know and what they expect. Other times the surprise is only possible after studying the physical stimulus and comparing the information in the stimulus (for example luminance) with the percept (for example brightness). Illusory contours Contours that are seen and therefore exist as percepts in locations where there is no change in luminance in the stimulus. They are sometimes also called subjective contours . Luminance Luminance is a measure of light intensity . More specifi cally it is the amount of light that is refl ected from a particular object within a particular angle. The unit of meas- ure is the candela per square metre (cd m–2). Neuroscience Neuroscience is a profoundly multidisciplinary fi eld of study. The scope is the study all aspects of the nervous system. It can be divided in a series of subfi elds such as clinical neuroscience, computational neuroscience, molecular neuroscience, visual neuroscience and many more. Visual Perception Glossary 193 Percept We use this term for a specifi c perceptual experience, such as one of the two inter- pretations of a Necker cube . It is an English word although you need a pretty good dictionary to fi nd it. Psychology It is the study of behaviour and mental processes , including perception , attention , emotion , intelligence , personality and more. This is therefore a very broad range of subjects, what all psychologists share is the use of empirical methodologies. Psychophysics A scientifi c fi eld that investigates the relationship between physical stimuli on the one hand, and sensations and perceptions on the other using a series of psychophysical methods. Psychophysics tries to describe the relationship quantitatively. The founder of Psychophysics was Gustav Theodor Fechner (1801–1887) who published a book titled Elements of Psychophysics in 1860. Sensory modalities This term is for the different senses. Traditionally we list fi ve sensory modalities: sight (vi- sion ) , hearing (audition ) , taste (gustation ) , smell (olfaction ) , and touch (somatosensation ) . Stimulus error Titchener used this term to refer to a pitfall. People often describe what they perceive in terms of what they know of the stimulus, instead of drawing on their perceptual experiences. Subjective contours See Illusory contours. V1 This term refers to the primary visual cortex . This is an area of the brain located in the occipital lobe and is the fi rst area of the cortex to receive visual information. It is also called striate (meaning stripy) cortex, and Broadband area 17. V2 This is an area in the visual cortex next to V1 . In general, neurons in both V1 and V2 are sensitive to edges , orientation , size and colour . V2 is part of a set of extra-striate areas that include V2, V3, V4 and V5. Visual illusion See Illusion for a defi nition. In the case of visual illusions we know of many famous examples involving shape , size , colour , motion and more. Visual system The human visual system is the part of the central nervous system that processes vis- ual information. This system includes the primary visual cortex but also a number of higher areas in both the temporal and the parietal lobes . In humans the visual areas in the broader sense extend to a majority of the cortex. Programming Glossary Algorithm A step-by-step procedure to arrive at a solution given a well-defi ned problem. API An acronym for application programming interface. It provides a set of clear defi nitions and methods of commu- nication between various software components. Well-writ- ten and documented the API and its documentation can serve as a manual for a specifi c programming environment. Argument A value provided to a function with parameters. There- fore the value of a parameter. BASIC Written with capitals it is an acronym (Beginner’s All- purpose Symbolic Instruction Code) for a general-pur- pose, high-level programming language. It was created in 1964 by students at Dartmouth College under the su- pervision of John G. Kemeny and Thomas E. Kurtz . Boolean A type of data that can only have two values: True or False. Named after the English mathematician George Boole (1815–1864) . Bug An unexpected fault, fl aw, or error in a program. Finding and eliminating bugs is called debugging . There are many stories about the origin of the term, often refer- ring to the early history of computing and a program- mer who found a beetle or a moth inside the computer. 196 Programming Glossary C++ C++ (pronounced cee plus plus) is a general-purpose programming language created in 1983 by Bjarne Stroustrup . Unlike Python® it is a compiled language. Class In object-oriented programming , objects are instances of classes, and classes defi ne their type. The API typically provides a large collection of predefi ned classes, but most object-oriented programming languages also offer to the user the possibility to create user-defi ned classes. Comment Within a program a comment is a text that is added to make the program easier for hu- mans to understand. It is therefore an annotation that is not part of the commands to the computer. Usually it is clearly marked as a comment (with special characters and with a different font/colour). In Python anything after # till the end of the line is a comment. Compiler A program that transforms commands written in a programming language into an- other language, often a lower-level machine language . The result of the relevant com- pilation process is an executable program . C, C++ and Pascal are examples of com- piled languages (see also Interpreter ). CPU This acronym (Central Processing Unit) refers to the processor inside a computer that carries out the instructions of a program. Data type A particular kind of data. Different data types can take different values, and different operations can be performed with them. In Python examples of built-in data types are integers , fl oat and strings . Dictionary (Python) In Python a dictionary is a type of variable with keys and values. The values inside a dictionary can be of any type. In a dictionary defi nition, each key is separated from its value by : and the whole thing is enclosed in curly brackets. Float In programming and in Python in particular, fl oat is short for “fl oating point real value”. This is a computer representation of a real number written with a decimal point that divides the integer and fractional parts. Example: 3.14159. Float is also a built-in data type in Python. Function A block of commands that perform a specifi c task. In Python functions are defi ned with def nameOfFunction():. They can have parameters inside the brackets and there- fore take arguments (i.e. values) for these parameters . Functions can also return values, for example total = sum(list). Programming Glossary 197 GPU This acronym (Graphics Processing Unit) refers to specialised circuitry inside a computer that carries out instructions relative to what is displayed on the monitor. Its function is to accelerate the creation of images in a frame buffer in a way that is more effi cient than the general-purpose CPU.
Recommended publications
  • Optical Illusions “What You See Is Not What You Get”
    Optical Illusions “What you see is not what you get” The purpose of this lesson is to introduce students to basic principles of visual processing. Much of the lesson revolves around the use of visual illusions and interactive demonstrations with the students. The overarching theme of this lesson is that perception and sensation are not necessarily the same, and that optical illusions are a way for us to study the way that our visual system works. Furthermore, there are cells in the visual system that specifically respond to particular aspects of visual stimuli, and these cells can become fatigued. Grade Level: 3-12 Presentation time: 15-30 minutes, depending on which activities are chosen Lesson plan organization: Each lesson plan is divided into three sections: Introducing the lesson, Conducting the lesson, and Concluding the lesson. Each lesson has specific principles with associated figures, class discussion (D), and learning activities (A). This lesson plan is provided by the Neurobiology and Behavior Community Outreach Team at the University of Washington: http://students.washington.edu/watari/neuroscience/k12/LessonPlans.html 1 Materials: Computer to display some optical illusions (optional) Checkerboard illusion: Provided on page 8 or available online with explanation at http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html Lilac chaser movie: http://www.scientificpsychic.com/graphics/ as an animated gif or http://www.michaelbach.de/ot/col_lilacChaser/index.html as Adobe Flash and including scientific explanation
    [Show full text]
  • Extending Psychophysics Methods to Evaluating Potential Social Anxiety
    logy ho & P yc s s y Gabay, J Psychol Psychother 2014, 5:1 c P f h o o t DOI: 10.4172/2161-0487.1000167 l h a e n r r a u p o y J Journal of Psychology & Psychotherapy ISSN: 2161-0487 Research Article Article OpenOpen Access Access Extending Psychophysics Methods to Evaluating Potential Social Anxiety Factors in Face of Terrorism Gillie Gabay* College of Management Academic Studies, Rishon Letzion, Israel Abstract Objective: There is an urgent need to develop tools to effectively measure the impact of psychological responses consequent a terror attack or threat. There is also a need to understand the impact both the personal preparedness of each citizen, and acts of counter terrorism by governments. This paper addresses the question ‘how to create a database of the citizen’s mind about anxiety-provoking situations in the face of terrorism’. Approach: The approach is grounded in a combination of experimental design, psychophysics, as a branch of psychology and consumer research. The theoretical foundation is illustrated using a set of fifteen empirical studies using conjoint analysis, which help uncover how people respond to anxiety-provoking situations. The approach identifies the mindset towards terrorism at the level of the individual respondent. This study identifies critical drivers of anxiety; the specific terrorist act; the location of the act; the feelings and the proposed remedies to reduce anxiety. Results: By exploring responses embedded in a general study of ‘dealing with anxiety provoking situations’, the study uncovers the ‘algebra of the individual respondent’s mind; how important the basic fear of terrorism actually is, how important it is to specify the type of terrorism (bombing versus contamination of the food supply), and how fears of terrorism are structured.
    [Show full text]
  • The Effects of Cognition on Pain Perception (Prepared for Anonymous Review.)
    I think it’s going to hurt: the effects of cognition on pain perception (Prepared for anonymous review.) Abstract. The aim of this paper is to investigate whether, or to what extent, cognitive states (such as beliefs or intentions) influence pain perception. We begin with an examination of the notion of cognitive penetration, followed by a detailed description of the neurophysiological underpinnings of pain perception. We then argue that some studies on placebo effects suggest that there are cases in which our beliefs can penetrate our experience of pain. Keywords: pain, music therapy, gate-control theory, cognitive penetration, top-down modularity, perceptual learning, placebo effect 1. Introduction Consider the experience of eating wasabi. When you put wasabi on your food because you believe that spicy foods are tasty, the stimulation of pain receptors in your mouth can result in a pleasant experience. In this case, your belief seems to influence your perceptual experience. However, when you put wasabi on your food because you incorrectly believe that the green paste is mint, the stimulation of pain receptors in your mouth can result in a painful experience rather than a pleasant one. In this case, your belief that the green paste is mint does not seem to influence your perceptual experience. The aim of this paper is to investigate whether, or to what extent, cognitive states (such as beliefs) influence pain perception. We begin with an examination of the notion of cognitive penetration and its theoretical implications using studies in visual perception. We then turn our attention to the perception of pain by considering its neurophysiological underpinnings.
    [Show full text]
  • Visual Perception in Migraine: a Narrative Review
    vision Review Visual Perception in Migraine: A Narrative Review Nouchine Hadjikhani 1,2,* and Maurice Vincent 3 1 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA 2 Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, 41119 Gothenburg, Sweden 3 Eli Lilly and Company, Indianapolis, IN 46285, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-617-724-5625 Abstract: Migraine, the most frequent neurological ailment, affects visual processing during and between attacks. Most visual disturbances associated with migraine can be explained by increased neural hyperexcitability, as suggested by clinical, physiological and neuroimaging evidence. Here, we review how simple (e.g., patterns, color) visual functions can be affected in patients with migraine, describe the different complex manifestations of the so-called Alice in Wonderland Syndrome, and discuss how visual stimuli can trigger migraine attacks. We also reinforce the importance of a thorough, proactive examination of visual function in people with migraine. Keywords: migraine aura; vision; Alice in Wonderland Syndrome 1. Introduction Vision consumes a substantial portion of brain processing in humans. Migraine, the most frequent neurological ailment, affects vision more than any other cerebral function, both during and between attacks. Visual experiences in patients with migraine vary vastly in nature, extent and intensity, suggesting that migraine affects the central nervous system (CNS) anatomically and functionally in many different ways, thereby disrupting Citation: Hadjikhani, N.; Vincent, M. several components of visual processing. Migraine visual symptoms are simple (positive or Visual Perception in Migraine: A Narrative Review. Vision 2021, 5, 20. negative), or complex, which involve larger and more elaborate vision disturbances, such https://doi.org/10.3390/vision5020020 as the perception of fortification spectra and other illusions [1].
    [Show full text]
  • Embodied Visual Recognition: Learning to Move for Amodal Perception
    Embodied Visual Recognition Jianwei Yang1‹, Zhile Ren1‹, Mingze Xu2, Xinlei Chen3, David Crandall2, Devi Parikh1;3 Dhruv Batra1;3 1Georgia Institute of Technology, 2Indiana University, 3Facebook AI Research. https://www.cc.gatech.edu/˜jyang375/evr.html Abstract Passive visual systems typically fail to recognize objects in the amodal setting where they are heavily occluded. In contrast, humans and other embodied agents have the abil- ity to move in the environment, and actively control the viewing angle to better understand object shapes and se- mantics. In this work, we introduce the task of Embodied Visual Recognition (EVR): An agent is instantiated in a 3D Figure 1: The task of Embodied Visual Recognition: An environment close to an occluded target object, and is free agent is spawned close to an occluded target object in a 3D to move in the environment to perform object classification, environment, and asked for visual recognition, i.e., predict- amodal object localization, and amodal object segmenta- ing class label, amodal bounding box and amodal mask of tion. To address this, we develop a new model called Em- the target object. The agent is free to move around to aggre- bodied Mask R-CNN, for agents to learn to move strate- gate information for better visual recognition. gically to improve their visual recognition abilities. We conduct experiments using the House3D environment. Ex- perimental results show that: 1) agents with embodiment Recently, the dominant paradigm for object recognition (movement) achieve better visual recognition performance and amodal perception has been based on single image. than passive ones; 2) in order to improve visual recognition Though leveraging the advances of deep learning, visual abilities, agents can learn strategical moving paths that are systems still fail to recognize object and its shape from sin- different from shortest paths.
    [Show full text]
  • Visual Perceptual Skills
    Super Duper® Handy Handouts!® Number 168 Guidelines for Identifying Visual Perceptual Problems in School-Age Children by Ann Stensaas, M.S., OTR/L We use our sense of sight to help us function in the world around us. It helps us figure out if something is near or far away, safe or threatening. Eyesight, also know as visual perception, refers to our ability to accurately identify and locate objects in our environment. Visual perception is an important component of vision that contributes to the way we see and interpret the world. What Is Visual Perception? Visual perception is our ability to process and organize visual information from the environment. This requires the integration of all of the body’s sensory experiences including sight, sound, touch, smell, balance, and movement. Most children are able to integrate these senses by the time they start school. This is important because approximately 75% of all classroom learning is visual. A child with even mild visual-perceptual difficulties will struggle with learning in the classroom and often in other areas of life. How Are Visual Perceptual Problems Diagnosed? A child with visual perceptual problems may be diagnosed with a visual processing disorder. He/she may be able to easily read an eye chart (acuity) but have difficulty organizing and making sense of visual information. In fact, many children with visual processing disorders have good acuity (i.e., 20/20 vision). A child with a visual-processing disorder may demonstrate difficulty discriminating between certain letters or numbers, putting together age-appropriate puzzles, or finding matching socks in a drawer.
    [Show full text]
  • AN OT's Toolbox : Making the Most out of Visual Processing and Motor Processing Skills
    AN OT’s Toolbox : Making the Most out of Visual Processing and Motor Processing Skills Presented by Beth Kelley, OTR/L, MIMC FOTA 2012 By Definition Visual Processing Motor Processing is is the sequence of steps synonymous with Motor that information takes as Skills Disorder which is it flows from visual any disorder characterized sensors to cognitive by inadequate development processing.1 of motor coordination severe enough to restrict locomotion or the ability to perform tasks, schoolwork, or other activities.2 1. http://en.wikipedia.org/wiki/Visual_ processing 2. http://medical-dictionary.thefreedictionary.com/Motor+skills+disorder Visual Processing What is Visual Processing? What are systems involved with Visual Processing? Is Visual Processing the same thing as vision? Review general anatomy of the eye. Review general functions of the eye. -Visual perception and the OT’s role. -Visual-Motor skills and why they are needed in OT treatment. What is Visual Processing “Visual processing is the sequence of steps that information takes as it flows from visual sensors to cognitive processing1” 1. http://en.wikipedia.org/wiki/Visual_Processing What are the systems involved with Visual Processing? 12 Basic Processes are as follows: 1. Vision 2. Visual Motor Processing 3. Visual Discrimination 4. Visual Memory 5. Visual Sequential Memory 6. Visual Spatial Processing 7. Visual Figure Ground 8. Visual Form Constancy 9. Visual Closure 10. Binocularity 11.Visual Accommodation 12.Visual Saccades 12 Basic Processes are: 1. Vision The faculty or state of being able to see. The act or power of sensing with the eyes; sight. The Anatomy of Vision 6 stages in Development of the Vision system Birth to 4 months 4-6 months 6-8 months 8-12 months 1-2 years 2-3 years At birth babies can see patterns of light and dark.
    [Show full text]
  • Autolay: Benchmarking Amodal Layout Estimation for Autonomous Driving
    2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) October 25-29, 2020, Las Vegas, NV, USA (Virtual) AutoLay: Benchmarking amodal layout estimation for autonomous driving Kaustubh Mani∗1,2, N. Sai Shankar∗1, Krishna Murthy Jatavallabhula3,4, and K. Madhava Krishna1,2 1Robotics Research Center, KCIS, 2IIIT Hyderabad, 3Mila - Quebec AI Institute, Montreal, 4Université de Montréal Fig. 1: Amodal layout estimation is the task of estimating a semantic occupancy map in bird’s eye view, given a monocular image or video. The term amodal implies that we estimate occupancy and semantic labels even for parts of the world that are occluded in image space. In this work, we introduce AutoLay, a new dataset and benchmark for this task. AutoLay provides annotations in 3D, in bird’s eye view, and in image space. A sample annotated sequence (from the KITTI dataset [1]) is shown below. We provide high quality labels for sidewalks, vehicles, crosswalks, and lanes. We evaluate several approaches on sequences from the KITTI [1] and Argoverse [2] datasets. Abstract— Given an image or a video captured from a in [3]). Amodal perception, as studied by cognitive scientists, monocular camera, amodal layout estimation is the task of refers to the phenomenon of “imagining" or “hallucinating" predicting semantics and occupancy in bird’s eye view. The parts of the scene that do not result in sensory stimulation. In term amodal implies we also reason about entities in the scene that are occluded or truncated in image space. While the context of urban driving, we formulate the amodal layout several recent efforts have tackled this problem, there is a estimation task as predicting a bird’s eye view semantic map lack of standardization in task specification, datasets, and from monocular images that explicitly reasons about entities evaluation protocols.
    [Show full text]
  • The Use of Experiential Acceptance in Psychotherapy with Emerging Adults
    Pepperdine University Pepperdine Digital Commons Theses and Dissertations 2015 The use of experiential acceptance in psychotherapy with emerging adults Lauren Ford Follow this and additional works at: https://digitalcommons.pepperdine.edu/etd Recommended Citation Ford, Lauren, "The use of experiential acceptance in psychotherapy with emerging adults" (2015). Theses and Dissertations. 650. https://digitalcommons.pepperdine.edu/etd/650 This Dissertation is brought to you for free and open access by Pepperdine Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Pepperdine Digital Commons. For more information, please contact [email protected], [email protected], [email protected]. Pepperdine University Graduate School of Education and Psychology THE USE OF EXPERIENTIAL ACCEPTANCE IN PSYCHOTHERAPY WITH EMERGING ADULTS A clinical dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Psychology in Clinical Psychology by Lauren Ford, MMFT October, 2015 Susan Hall, J.D., Ph.D. – Dissertation Chairperson This clinical dissertation, written by: Lauren Ford, MMFT under the guidance of a Faculty Committee and approved by its members, has been submitted to and accepted by the Graduate Faculty in partial fulfillment on the requirements for the degree of DOCTOR OF PSYCHOLOGY Doctoral Committee: Susan Hall, J.D., Ph.D., Chairperson Judy Ho, Ph.D. Joan Rosenberg, Ph.D. © Copyright by Lauren Ford (2015) All Rights Reserved
    [Show full text]
  • Psychophysics Postdoctoralassociate Dicarlo Lab Just a Reminder of How You Might Start Thinking About Systems Neuroscience
    Tutorial Kohitij Kar Psychophysics PostdoctoralAssociate DiCarlo Lab Just a reminder of how you might start thinking about systems neuroscience Psychophysics Quantitative study of the relationship between physical stimuli and perception Encoding Decoding Sensory Stimulus Perception models models (e.g. Image: glass of water) Was there water in the glass? Psychophysics Three methods of measuring perception Two alternative forced choice experiments and Signal Detection Theory Brief intro to Amazon Mechanical Turk Psychophysics Three methods of measuring perception Two alternative forced choice experiments and Signal Detection Theory Brief intro to Amazon Mechanical Turk Psychophysics LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02MagnitudeEstimationLineLength_evt.html LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02MagnitudeEstimation_evt.html Magnitude estimation Steven’s power law b Stevens (1957, 1961) developed an equation to try to encapsulate this full range of possible data sets. It is called Stevens’ Power Law P = c * Ib LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02PowerLaw_evt.html Matching LiveSlide Site https://graphics.stanford.edu/courses/cs178/applets/colormatching.html Matching Detection/ Discrimination The method of adjustment LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02MethodOfAdjustment_evt.html The method of adjustment Terrible Method Why? ☒introspectionist/subjective. ☒subjects can be inexperienced Yes/no method of constant stimuli LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02MethodOfConstantStimuli_evt.html
    [Show full text]
  • Susceptibility to Size Visual Illusions in a Non-Primate Mammal (Equus Caballus)
    animals Brief Report Susceptibility to Size Visual Illusions in a Non-Primate Mammal (Equus caballus) Anansi Cappellato 1, Maria Elena Miletto Petrazzini 2, Angelo Bisazza 1,3, Marco Dadda 1 and Christian Agrillo 1,3,* 1 Department of General Psychology, University of Padova, 35131 Padova, Italy; [email protected] (A.C.); [email protected] (A.B.); [email protected] (M.D.) 2 Department of Biomedical Sciences, University of Padova, Via Bassi 58, 35131 Padova, Italy; [email protected] 3 Padua Neuroscience Center, University of Padova, Via Orus 2, 35131 Padova, Italy * Correspondence: [email protected] Received: 30 July 2020; Accepted: 13 September 2020; Published: 17 September 2020 Simple Summary: Visual illusions are commonly used by researchers as non-invasive tools to investigate the perceptual mechanisms underlying vision among animals. The assumption is that, if a species perceives the illusion like humans do, they probably share the same perceptual mechanisms. Here, we investigated whether horses are susceptible to the Muller-Lyer illusion, a size illusion in which two same-sized lines appear to be different in length because of the spatial arrangements of arrowheads presented at the two ends of the lines. Horses showed a human-like perception of this illusion, meaning that they may display similar perceptual mechanisms underlying the size estimation of objects. Abstract: The perception of different size illusions is believed to be determined by size-scaling mechanisms that lead individuals to extrapolate inappropriate 3D information from 2D stimuli. The Muller-Lyer illusion represents one of the most investigated size illusions. Studies on non-human primates showed a human-like perception of this illusory pattern.
    [Show full text]
  • Psychophysical Methods Z
    Course C - Week 5 PSYCHOPHYSICAL METHODS Z. SHI 1 Let’s do a detection task Please identify if the following display contain a letter T. If Yes, please raise your hand! T among Ls 2 1 LX LX LX T X LX + LX 3 LX LX LX 2 LX LX LX X L L X + LX 4 LX LX LX 3 LX LX LX X L L X + LX 5 LX LX LX 4 LX LX TX L X L X + LX 6 LX LX LX 5 LX LX LX X L LX + LX 7 LX TX LX 6 LX LX LX X L L X + LX 8 LX LX LX Results Trial No Yes No 1 (Present) 1 15 2 (Absent) 0 16 3 (Absent) 0 16 4 (Present) 14 2 5 (Present) 16 0 6 (Absent) 0 16 Conditions Presentation time P(‘Yes’) (sec) 1 0.2 1/16 2 0.4 14/16 3 0.6 16/16 9 Stimuli and sensation • Non-linear relation between physics and psychology Undetectable region Saturated region Sensation – psychology Stimulus intensity – physical property • Senses have an operating range 10 Point of subjective equality (PSE) • Is the stimulus vertical? 100% 50% Point of Subjective Equality - PSE % Vertical response 0% 11 Just noticeable difference (JND) • Difference in stimulation that will be noticed in 50% 75% = Upper threshold 25% = Lower threshold % Vertical response – = Uncertainty interval = JND 2 12 JND and sensitivity • Which psychometric function, full or dashed line, exhibits a greater sensitivity? • Dashed - the smaller the JND the greater (steeper) the slope, and greater the sensitivity is 13 Psychometric function • Absolute thresholds (Absolute limen) the level of stimulus intensity at which the subject is able to detect the stimulus.
    [Show full text]