The Influence of Abiotic Factors on the Growth Pattern of Monotropa Uniflora" (2017)

Total Page:16

File Type:pdf, Size:1020Kb

The Influence of Abiotic Factors on the Growth Pattern of Monotropa Uniflora SUNY College of Environmental Science and Forestry Digital Commons @ ESF Cranberry Lake Biological Station Environmental and Forest Biology 2017 Session D, 2017 Second Place: The Influence of Abiotic actF ors on the Growth Pattern of Monotropa uniflora Katherine Dami Jennifer Ferlenda Annarose Quinn Follow this and additional works at: https://digitalcommons.esf.edu/clbs Part of the Aquaculture and Fisheries Commons, Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, Entomology Commons, and the Forest Sciences Commons Recommended Citation Dami, Katherine; Ferlenda, Jennifer; and Quinn, Annarose, "Session D, 2017 Second Place: The Influence of Abiotic Factors on the Growth Pattern of Monotropa uniflora" (2017). Cranberry Lake Biological Station. 28. https://digitalcommons.esf.edu/clbs/28 This Presentation is brought to you for free and open access by the Environmental and Forest Biology at Digital Commons @ ESF. It has been accepted for inclusion in Cranberry Lake Biological Station by an authorized administrator of Digital Commons @ ESF. For more information, please contact [email protected], [email protected]. The Influence of Abiotic Factors on the Growth Pattern of Monotropa uniflora By Katherine Dami, Jennifer Ferlenda, Annarose Quinn Introduction • M. uniflora grows in moist conifer or hardwood forests (Kong, 2015). • Evolved from an autotrophic ancestor (Hirce, 1972). • Do not have chlorophyll (Lutz, 1973). • ~4,000 known parasitic plants (Press, 2005) • Associates with fungal species in the family Russulaceae (Massicotte, 2004). • Spend their life underground without light, except for its flowering period when they develop shoots (Tsukaya, 1998). Our Interest Most studies focused on phylogeny… ...we wanted to do something different (Kong, 2015) Hypothesis 1 H1: As canopy cover increases, Monotropa uniflora will grow in larger clusters. H0: Canopy cover has no effect on the growth pattern of Monotropa uniflora. Hypothesis 2 H1: As soil moisture increases, Monotropa uniflora will grow in larger clusters. H0: Soil moisture has no effect on the growth pattern of Monotropa uniflora. Hypothesis 3 H1: As pH decreases, Monotropa uniflora will grow in larger clusters. H0: Soil pH has no effect on the growth pattern of Monotropa uniflora. Experimental Design Independent Variables Dependent Variable • Soil pH • Growth pattern of • Soil temperature M. uniflora (single, • Soil moisture double, triple, etc.) • Leaf litter thickness • Canopy cover Methods Population 2 Soil Moisture Probe (%) Soil Temperature Probe(°C) Spherical Densiometer- Canopy Cover (%) (Pleus & Shuett-Hames, 1998) Ruler- Height (cm) Calipers-Diameter (mm) pH Testing Population 1 Data Results/ Overview of System y= -2.949 + 0.4203x p = 0.209 R2= 1.6% Stem Number Stem Soil Temperature ( ° C) y= 3.133 + 0.2096x p = 0.381 2 R = 0.8% Stem Number Stem Leaf Litter Thickness (cm) y= 9.219 - 1.079x p =0.183 R2 = 0.8% Stem Number Stem Soil pH y= 6.558 - 0.2116x p = 0.016 2 R = 5.8% Stem Number Stem Soil Moisture (%) y= -14.49 + 0.2128x p = 0.019 R2 = 5.6% Stem Number Stem Canopy Cover (%) Discussion • Ecological Theory • Does it support what is known? • Why did we get these results? • Self critique • Follow up studies Conclusion • Canopy cover percentage • Soil moisture percentage • Soil pH • Soil temperature • Leaf litter thickness Fun Facts! References Bidartondo, M.I., & Bruns, T.D. (2002). Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Molecular Ecology, Volume 11 (Issue 3), pp. 557-569. Hirce, E., & Finocchio, A. (1972). Stem and Root Anatomy of Monotropa uniflora. Bulletin of the Torrey Botanical Club, Volume 99(Issue 2), 89-94. doi:10.2307/2484203 Kong, A., Cifuentes, J., Estrada-Torres, A., Guzman-Davalos, L., Garibay-Orijel, R., & Buyck, B.. 2015). Russulaceae Associated with Mycoheterotroph Monotropa uniflora (Ericaceae) in Tlaxcala, Mexico: A Phylogenetic Approach. Cryptogamie, Mycologie. Volume 36 (Issue 4), pp 479-512. Lutz, R., & Sjolund, R. (1973). Monotropa uniflora: Ultrastructural Details of Its Mycorrhizal Habit. American Journal of Botany, 60(4), 339-345. Retrieved from http://www.jstor.org/stable/2441200 Massicotte, H.B., Melville, L.H., & Peterson, R.L. (2004). Structural features of mycorrhizal associations in two members of the Monotropoideae, Monotropa uniflora and Pterospora andromedea. Mycorrhiza. pp. 101-110. Olson, A. Randall. (1980). Seed Morphology of Monotropa uniflora L. (Ericace.ae). American Journal of Botany, Vol. 67, pp. 968-974. Pleus, A.E. and D. Schuett-Hames, 1998. TFW Monitoring Program Methods Manual for the Reference Point Survey. Prepared for the Washington State Dept. of Natural Resources under the Timber, Fish, and Wildlife Agreement. TFW-AM9-98-002. DNR #104. Press, Malcolm C., and Phoenix, Gareth K. Impacts of parasitic plants on natural communities. New Phytologist, Volume 166 (Issue 3), pp. 737-751 Ray, D. L. (2017). Mycorrhizae. Salem Press Encyclopedia Of Science, January, 2017, 2p Tsukaya, Hirokazu. (1998) Flowering time of two saprophytic plants,Monotropa uniflora L. andMonotropastrum humile (D. Don) Hara in Japan. Journal of Plant Research, Volume 111 (Issue 4), pp. 595-597 Acknowledgements Thanks to: • Dr. Fierke • Dr. Bowman • Dr. Schultz • CLBS Pioneers use to ride these babies for miles .
Recommended publications
  • Monotropa Hypopitys L. Yellow Bird's-Nest
    Monotropa hypopitys L. Yellow Bird's-nest Starting references Family Monotropaceae IUCN category (2001) Endangered. Habit Saprophytic ± chlorophyll-less perennial herb. Habitat Leaf litter in shaded woodlands, most frequent under Fagus and Corylus on calcareous substrates, and under Pinus on more acidic soils. Also in damp dune-slacks, where it is usually associated with Salix repens. From 0-395 m. Reasons for decline Distribution in wild Country Locality & Vice County Sites Population (10km2 occurences) (plants) Scotland East Perth 1 Fife & Kinross 1 England North-east Yorkshire 1 West Lancashire 1 S. Northumberland 1 Leicestershire 1 Nottinghamshire 2 Derbyshire 2 S. Lancashire 5 Westmorland 2 South Devon 1 N. Somerset 3 S. Wiltshire 2 Dorset 1 Isle of Wight 2 Hampshire 10 Sussex 3 Kent 3 Surrey 6 Berkshire 5 Oxfordshire 5 Buckinghamshire 4 Suffolk 2 Norfolk 5 Bedfordshire 1 Northamptonshire 1 Gloucestershire 7 Monmouthshire 3 Herefordshire 1 Worcestershire 1 Warwickshire 1 Staffordshire 2 Shropshire 1 Wales Glamorgan 1 Carmarthenshire 4 Merioneth 2 Denbighshire 2 Anglesey 4 Ex situ Collections Gardens close to the region of distribution of the species 1 University of Dundee Botanic Garden 2 Branklyn Garden (NTS) 3 St Andrews Botanic Garden 4 Moor Bank Garden 5 University of Durham Botanic Garden 6 Yorkshire Museum & Gardens 7 Sheffield Botanical Gardens 8 Firs Botanical Grounds 9 University of Manchester Botanical & Exp. Grounds 10 City of Liverpool Botanic Gardens 11 Ness Botanic Gardens 12 Chester Zoological Gardens 13 Treborth Botanic
    [Show full text]
  • Likely to Have Habitat Within Iras That ALLOW Road
    Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing
    [Show full text]
  • Bulletin of the Native Plant Society of Oregon Dedicated to the Enjoyment, Conservation and Study of Oregon’S Native Plants and Habitats
    Bulletin of the Native Plant Society of Oregon Dedicated to the enjoyment, conservation and study of Oregon’s native plants and habitats VOLUME 50, NO. 7 AUGUST/SEPTEMBER 2017 2017 Annual Meeting Recap: Land of Umpqua For an in-depth recap and photos of one Roseburg locales, and Wolf Creek. On Susan Carter (botanist with the Rose- of this year’s annual meeting field trips, Saturday, nine trips included hikes to burg BLM office), Marty Stein (USFS visit Tanya Harvey’s “Plants and Places” Beatty Creek, Bilger Ridge, Fall Creek botanist), and Rod Trotter. blog, westerncascades.com/2017/06/21/ Falls, Hemlock Lake, King Mountain, Field trip participants were treated weather-woes-at-hemlock-lake Limpy Rock, Lookout Mountain, Tah- to views of the regionally unique en- NPSO members traveled to the kenitch Dunes, and Twin Lakes. Partici- demic species, including Calochortus Land of Umpqua June 9–11 for the pants at higher locations were treated coxii (crinite mariposa lily, named for 2017 Annual Meeting, jointly hosted by to a little snow (just enough to enhance Marvin Cox), Calochortus umpquaensis the Umpqua Valley and Corvallis Chap- the fun) but those at lower sites found (Umpqua mariposa lily), and Kalmiopsis ters. This location, situated at a “botani- primarily pleasant (if a bit drizzly) fragrans (fragrant kalmiopsis) along with cal crossroads” between the California weather. Sunday’s adventures trekked the threatened Lupinus oreganus (Kin- Floristic Province and the Vancouverian to the North Bank Preserve, Roseburg caid’s lupine). Noting some highlights Floristic Province, combined with par- locales, Wolf Creek, Beatty Creek, and from one trip, Gail Baker reports from ticular geological formations, allowed Bilger Ridge.
    [Show full text]
  • Final Report
    Report: Les Mehrhoff Botanical Research Award, 2019 Testing the influence of land-use history and forest stand age on the distribution and abundance of parasitic plants at multiple scales Marion Andrews Holmes Background The herbaceous layer makes up over 80% of the plant biodiversity in Eastern Forests and includes a wide variety of life history adaptations (Spicer et al. 2020). Some species found on the forest floor do not conduct photosynthesis, but rather obtain carbon from other organisms. The category of non-photosynthetic plants includes both parasitic species and saprophytes, or plants that feed on dead material. Parasitic relationships may be formed with other vascular plant species or through mycoheterotrophy, a form of parasitism in which species obtain carbon through networks of mycorrhizal fungi (Furman and Trappe 1971, Bidartondo 2005, Leake and Cameron 2010). Some parasites of vascular plants also require the presence of fungal partners for successful establishment (Baird and Riopel 1986). Parasitic plants contribute to ground-layer biodiversity, support wildlife (Johnson et al. 1995), and are a useful model system for testing the influence of host and symbiont- limitation in forest succession. Most deciduous forest in Eastern North America and Northern Europe is second-growth that has regrown after clearance for agriculture and subsequent abandonment (Williams 1989, Hermy and Verheyen 2007). It is therefore necessary to place our understanding of forest ecology in the context of land-use history (Foster et al. 2003). Land-use legacies shape the structure and composition of modern forests, and their effects may last for centuries (Motzkin et al. 1996, Dupouey et al.
    [Show full text]
  • Pigment Composition of Putatively Achlorophyllous Angiosperms
    Plant Pl. Syst. Evol. 210:105-111 (1998) Systematics and Evolution © Springer-Verlag 1998 Printed in Austria Pigment composition of putatively achlorophyllous angiosperms MICHAEL P. CUMMINGS and NICHOLAS A. WELSCHMEYER Received August 15, 1996; in revised version February 10, 1997 Key words: Angiospermae, Lennoaceae, Monotropaceae, Orobanchaceae, Orchidaceae. - Chlorophyll, carotenoid, pigment, high-performance liquid chromatography. Abstract: Chlorophyll and carotenoid pigment composition was determined for ten species of putatively achlorophyllous angiosperms using high-performance liquid chromatography. Four families were represented: Lennoaceae (Pholisma arenarium); Monotropaceae (Allotropa virgata, Monotropa uniflora, Pterospora andromedea, Sarcodes sanguinea); Orobanchaceae (Epifagus virginiana, Orobanche cooperi, O. unißora); Orchidaceae (Cephalanthera austinae, Corallorhiza maculata). Chlorophyll a was detected in all taxa, but chlorophyll b was only detected in Corallorhiza maculata. The relative amount of chlorophyll and chlorophyll-related pigments in these plants is greatly reduced compared to fully autotrophic angiosperms. One of the most conspicuous features of plants is green coloration conferred by the presence of the pigment chlorophyll. However achlorophyllous plants, as their name implies, are thought to lack chlorophyll and other pigments associated with photosynthesis. This lack of chlorophyll is thought to be associated with the nonphotosynthetic habit, and hence the completely heterotrophic nature of holoparasites
    [Show full text]
  • Invisible Connections: Introduction to Parasitic Plants Dr
    Invisible Connections: Introduction to Parasitic Plants Dr. Vanessa Beauchamp Towson University What is a parasite? • An organism that lives in or on an organism of another species (its host) and benefits by deriving nutrients at the other's expense. Symbiosis https://www.superpharmacy.com.au/blog/parasites-protozoa-worms-ectoparasites Food acquisition in plants: Autotrophy Heterotrophs (“different feeding”) • True parasites: obtain carbon compounds from host plants through haustoria. • Myco-heterotrophs: obtain carbon compounds from host plants via Image Credit: Flickr User wackybadger, via CC mycorrhizal fungal connection. • Carnivorous plants (not parasitic): obtain nutrients (phosphorus, https://commons.wikimedia.org/wiki/File:Pin nitrogen) from trapped insects. k_indian_pipes.jpg http://www.welivealot.com/venus-flytrap- facts-for-kids/ Parasite vs. Epiphyte https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ By © Hans Hillewaert /, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6289695 True Parasitic Plants • Gains all or part of its nutrition from another plant (the host). • Does not contribute to the benefit of the host and, in some cases, causing extreme damage to the host. • Specialized peg-like root (haustorium) to penetrate host plants. https://www.britannica.com/plant/parasitic-plant https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ Diversity of parasitic plants Eudicots • Parasitism has evolved independently at least 12 times within the plant kingdom. • Approximately 4,500 parasitic species in Monocots 28 families. • Found in eudicots and basal angiosperms • 1% of the dicot angiosperm species • No monocot angiosperm species Basal angiosperms Annu. Rev. Plant Biol. 2016.67:643-667 True Parasitic Plants https://www.alamy.com/parasitic-dodder-plant-cuscuta-showing-penetration-parasitic-haustor The defining structural feature of a parasitic plant is the haustorium.
    [Show full text]
  • Botanist Interior 43.1
    2011 THE MICHIGAN BOTANIST 129 THE MYCORRHIZAL SYSTEM OF PTEROSPORA ANDROMEDEA (PINE-DROPS) IN WEST MICHIGAN INFERRED FROM DNA SEQUENCE DATA Jianhua Li*, Jeffrey Corajod, Holly Vander Stel, and Austin Homkes Department of Biology Hope College 35 E 12th St., Schaap Science Center, Holland, MI 49423 ABSTRACT Pterospora andromedea is a mycoheterotrophic plant with a disjunct distribution between west - ern and eastern North America and obtains carbon and nutrients indirectly from photosynthetic plants via an ectomycorrhizal fungal bridge. In this study, we used DNA sequence data to determine the or - ganisms involved in the system in West Michigan. Our results suggest that at least two photosyn - thetic plants ( Tsuga and Acer ) are the potential carbon source of the system and that Pterospora is specifically associated with an unidentified species of subgenus Amylopogon of Rhizopogon . Previ - ous studies have shown that seed germination of Pterospora relies on chemical cues from the fungus, implying a dominant role of the fungus in the system. Our field observations suggest that repeated branching of Pterospora roots increases the mass production of the fungal mycelia and lead us to speculate that Pterospora may be a mutualistic partner, not a parasite or exploiter, in the mycorrhizal system. KEYWORDS: Pterospora , nrDNA ITS, rbc L, mutualism, mycorrhizal, subgenus Amylopogon , Rhizopogon . Pterospora andromedea Torr. (pine-drops) is a mycoheterotrophic plant rely - ing on fungal host for germination, growth, and development (Bakshi 1959 ). Molecular studies have shown its close relationship with other myco - heterotrophic plants in Ericaceae such as Monotropa , Allotropa , and Sarcodes (Cullings 1994 ; Kron et al. 2002 ). Pine-drops show a disjunct distribution between the eastern and western North America with an extension in the west to northern Mexico (Bakshi 1959 ).
    [Show full text]
  • Field Trip Plant List
    Location: Castlewood Canyon State Park Date: May 1, 2021 *Questions? Suggestions? Contact us at [email protected] Leader: Audrey Spencer & Suzanne Dingwell Major Group Family Scientific name (Ackerfield) Common name Nativity Notes Ferns and Allies Dryopteridaceae Cystopteris fragilis brittle bladder fern Native Gymnosperms Cupressaceae Juniperus scopulorum Rocky Mountain juniper Native Gymnosperms Pinaceae Pinus ponderosa ponderosa pine Native Gymnosperms Pinaceae Pseudotsuga menziesii Douglas-fir Native Angiosperms Agavaceae Leucocrinum montanum common sand lily Native Angiosperms Agavaceae Yucca glauca Great Plains yucca Native Angiosperms Alliaceae Allium sp. onion Native in fruit Angiosperms Apiaceae Lomatium orientale salt-and-pepper Native Angiosperms Asteraceae Achillea millefolium yarrow Native Angiosperms Asteraceae Arctium minus common burdock Introduced List C Angiosperms Asteraceae Artemisia frigida fringed sagebrush Native Angiosperms Asteraceae Grindelia squarrosa curlycup gumweed Native Angiosperms Asteraceae Heterotheca villosa hairy false goldenaster Native Angiosperms Asteraceae Nothocalais cuspidata sharppoint prairie-dandelion Native Microseris cuspidata (Pursh) Sch. Bip. GBIF 2/28/21 J. Ackerfield Angiosperms Asteraceae Packera fendleri Fendler's ragwort Native Angiosperms Asteraceae Taraxacum officinale dandelion Introduced Angiosperms Boraginaceae Mertensia lanceolata prairie bluebells Native Angiosperms Brassicaceae Alyssum simplex alyssum Introduced Angiosperms Brassicaceae Noccaea fendleri ssp. glauca
    [Show full text]
  • Plant Taxonomy of the Salish and Kootenai Indians of Western Montana
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1974 Plant taxonomy of the Salish and Kootenai Indians of western Montana Jeffrey Arthur Hart The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Hart, Jeffrey Arthur, "Plant taxonomy of the Salish and Kootenai Indians of western Montana" (1974). Graduate Student Theses, Dissertations, & Professional Papers. 6833. https://scholarworks.umt.edu/etd/6833 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. PLANT TAXONOMY OF THE SALISH AND KOOTENAI INDIANS OF WESTERN MONTANA by Jeff Hart B. A., University of Montana, 1971 Presented in partial fulfillment of the requirements for the degree of Master of Arts UNIVERSITY OF MONTANA 1974 Approved by; Chairman, Board of Examiners Date ^ / Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP37634 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Ois»9rt«ition PuWimNng UMI EP37634 Published by ProQuest LLC (2013).
    [Show full text]
  • Pterospora Andromedea Nutt
    Pterospora andromedea Nutt. pine-drops State Distribution Best Survey Period Photo by Daniel C. Nepstad Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Status: State threatened indicated as ‘rare.’ Seventeen occurrences occur on public lands or designated preserves. None of these occurrences, Global and state rank: G5/S2 however, are under specific active protection. Family: Monotropaceae (Indian-pipe) Recognition: Pine-drop lacks chlorophyll and has one to several simple, erect stems, from 3-10 dm tall, bearing Other common names: giant birds nest, Albany beech- numerous scale-like leaves and a terminal raceme of drops numerous nodding flowers. The approx. 6-7 mm long , Synonyms: Monotropa procera Torr. bell-shaped corolla is white while the sepals and vegeta- tive parts of the plant are reddish to maroon. The stem Taxonomy: Pterospora andromeda is the only species in and sepals are glandular-hairy giving the plant a its genus (monotypic). Sometimes included in the clammy-sticky feel. The similar, but more widespread and Pyrolaceae or Ericaceae under subfamily Pyrolaceae, common species Monotropa uniflora (Indian pipe) and M. Pterospora and other species of the Monotropaceae differ hypopithys (pinesap), also lack chlorophyll, but are in their saprophytic (absorb nutrients from dead or decay- typically one half the size of Pterospora or smaller. In ing matter) habit (Voss 1996). addition, the flowers of both Indian pipe and pinesap become erect in fruit, unlike the strongly nodding fruits of Total range: A species primarily of Western North Pterospora. Indian pipe also differs in bearing only a America, pine drops is disjunct in the Great Lakes region single large flower on each stem.
    [Show full text]
  • Systematics, Phylogeography, Fungal Associations, and Photosynthesis
    Systematics, Phylogeography, Fungal Associations, and Photosynthesis Gene Evolution in the Fully Mycoheterotrophic Corallorhiza striata Species Complex (Orchidaceae: Epidendroideae) Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Craig Francis Barrett, M. S. Evolution, Ecology, and Organismal Biology ***** The Ohio State University 2010 Dissertation Committee: Dr. John V. Freudenstein, Advisor Dr. John W. Wenzel Dr. Andrea D. Wolfe Copyright by Craig Francis Barrett 2010 ABSTRACT Corallorhiza is a genus of obligately mycoheterotrophic (fungus-eating) orchids that presents a unique opportunity to study phylogeography, taxonomy, fungal host specificity, and photosynthesis gene evolution. The photosysnthesis gene rbcL was sequenced for nearly all members of the genus Corallorhiza; evidence for pseudogene formation was found in both the C. striata and C. maculata complexes, suggesting multiple independent transitions to complete heterotrophy. Corallorhiza may serve as an exemplary system in which to study the plastid genomic consequences of full mycoheterotrophy due to relaxed selection on photosynthetic apparatus. Corallorhiza striata is a highly variable species complex distributed from Mexico to Canada. In an investigation of molecular and morphological variation, four plastid DNA clades were identified, displaying statistically significant differences in floral morphology. The biogeography of C. striata is more complex than previously hypothesized, with two main plastid lineages present in both Mexico and northern North America. These findings add to a growing body of phylogeographic data on organisms sharing this common distribution. To investigate fungal host specificity in the C. striata complex, I sequenced plastid DNA for orchids and nuclear DNA for fungi (n=107 individuals), and found that ii the four plastid clades associate with divergent sets of ectomycorrhizal fungi; all within a single, variable species, Tomentella fuscocinerea.
    [Show full text]
  • Spring Wildflowers of the Westchester Wilderness
    FLOWERING PLANTS WITHOUT CHLOROPHYLL IN THE PRESERVE S.A. Mori, R.F.C. Naczi & M. Rothman Last update: 11 November 2018 As far as we know there are only four species of flowering plants in the Westchester Wilderness Walk/Zofnass Family Preserve that lack chlorophyll. Dodder (Cuscuta gronovii) was previously placed in the Cuscutaceae but, based on molecular and morphological data, the genus has been retained in the morning glory family (Convolvulaceae). The following two species belong to the Blueberry Family (Ericaceae): Monotropa uniflora (Indian-pipe) and Monotropa hypopithys (pinesap) and a fourth species, beech-drops (Epifagus viriginiana), belongs to the Broom-Rape Family (Orobanchaceae). Because the above species lack chlorophyll, they are not able to photosynthesize and, thus, must rely on other plants for their energy. Plants with chlorophyll are called autotrophs because they produce their own carbohydrates whereas plants without chlorophyll are heterotrophs because they “steal carbohydrates” from autotrophs. The latter get their food in two different sources. They either directly parasitize autotrophic species or they are myco-heterotrophic. In the latter case, mycorrhizal fungi carry carbohydrates from an autotrophic plant to a heterotrophic plant. For example, beech-drops directly take carbohydrates from the roots of American beech trees (Fagus grandifolia) or a mycorrhizal fungus serves as a conduit of carbohydrates from an autotrophic species to Indian-pipe. There are many other variations on these themes, e.g., mistletoe plants (not present in this Preserve) both photosynthesize and parasitize autotrophic plants. According to Evert and Eichhorn (2013), there are nearly 3,000 species of flowering plants that depend upon other plants for the carbohydrates they need for survival.
    [Show full text]