Lighting Control

Total Page:16

File Type:pdf, Size:1020Kb

Lighting Control E Guide Lighting control Building Management Lighting control not only enables System the lighting to be adjusted to suit BACnet the visual requirements but also Lighting controls Module Lighting controls Module LON allows it to shape and interpret KNX DALI Ethernet DMX the architecture. Light scenes are easily set up using the appropri- Luminaires ate software and can be recalled Controlling the light Control systems Devices via an interface. The inclusion of light colours and the time dimen- sion opens up a room for sceno- graphic lighting with dynamic effects. Lighting control systems with sensors or time programs also help adjust the power con- sumption in a room to its usage and thus optimise the economic efficiency of a lighting system. Design examples Edition: 03/01/2010 | Updated version at www.erco.com 279 E Guide Lighting control Controlling the light The atmosphere in a room can be changed by controlling a number of variables. These include basic functions such as switching circuits on and off through to automatically timed colour pro- gressions. Programming the light Functions scenes means that the settings are saved but can be redefined and adjusted to suit changing requirements. Edition: 03/01/2010 | Updated version at www.erco.com 280 E Guide Lighting control | Controlling the light Functions Switching and dimming are two basic functions of a lighting control system that can be used to produce different lighting situations. Luminaires with vari- able light colours also include a colour setting mode. Features Switching Dimming Light colour such as cross-fading and dynamic colour progression are crucial for dynamic lighting designs. Light- ing changes can be initiated and regulated automatically via time and sensor control. Scene Cross-Fading Dynamic colour progression Sequence Timer Sensor Edition: 03/01/2010 | Updated version at www.erco.com 281 E Guide Lighting control | Controlling the light | Functions Switching The easiest situation is to turn the light on and off with a switch or a push-button. For a variety of light scenes different circuits with separate switches are required. Suitably positioned switches result in easier usage. Most lamps produce full light output imme- diately. High-pressure discharge lamps, however, usually have a run-up time of several minutes and an even longer cooling-down period before re-ignition. Edition: 03/01/2010 | Updated version at www.erco.com 282 E Guide Lighting control | Controlling the light | Functions Dimming Dimming is the infinitely variable adjustment of the light output of a light source. It enables the creation of different light scenes, increases the visual comfort and optimises the power consump- tion. Dimming also prolongs the life of incandescent lamps. Thermal radiators such as tung- sten halogen lamps are easily dimmed. Fluorescent lamps and LEDs require special dimmable control gear. Edition: 03/01/2010 | Updated version at www.erco.com 283 E Guide Lighting control | Controlling the light | Functions Light colour The light colour of luminaires with variable colours of light can be defined by hue, satura- tion and brightness. The possible colours depend on the lamp and the lighting technology used. Coloured light can change the atmosphere of a room and high- light individual objects. RGB col- our mixing technology controls the individual primary colours red, green and blue to produce the required light colour. Edition: 03/01/2010 | Updated version at www.erco.com 284 E Guide Lighting control | Controlling the light | Functions Scene A scene is a static lighting situ- ation. It defines the state of all lighting components such as luminaires, light ceilings and light objects with their different switch and dimmer settings. The scenes can be saved in lighting control systems. The user can preset complex luminaire settings and conveniently recall them either manually or automatically. Edition: 03/01/2010 | Updated version at www.erco.com 285 E Guide Lighting control | Controlling the light | Functions Cross-Fading In regard to lighting, cross- fading refers to the transition from one light scene to another. The cross-fading time is the period required for the scene change. It varies between instant change and a transition of several hours. High-contrast scenes with a short cross-fading time gener- ate considerable attention. Subtle transitions with lengthy cross- fading times, on the other hand, are hardly noticeable. The scene change can be initiated by the user, a sensor, or a timer. Edition: 03/01/2010 | Updated version at www.erco.com 286 E Guide Lighting control | Controlling the light | Functions Dynamic colour progression Dynamic colour progression refers to the chronology of colour changes. Within a defined total running time, specific colours are triggered at specified times. There are different options available to repeat this progression, including infinite loop and “forward and back“. Edition: 03/01/2010 | Updated version at www.erco.com 287 E Guide Lighting control | Controlling the light | Functions Sequence A sequence refers to a progression of successive light scenes. The definition of a sequence requires both individual scenes and infor- mation on their transition. A sequence can automatically be repeated once completed or, alternatively, end. Edition: 03/01/2010 | Updated version at www.erco.com 288 E Guide Lighting control | Controlling the light | Functions Timer A timer allows light scenes to be recalled at predefined times. Time and calendar functions provide great flexibility for the automa- tion of scenographic lighting. Specified start and end times, for example, set the lighting to specific shop-opening times or licensing hours. Edition: 03/01/2010 | Updated version at www.erco.com 289 E Guide Lighting control | Controlling the light | Functions Sensor Sensors monitor properties such as brightness or motion and allow an automatic adjust- ment of the lighting to changing ambient conditions. A brightness sensor can be used for daylight- dependent lighting control. Motion sensors register move- ment in the room and control the light depending on activity to reduce power consumption. Edition: 03/01/2010 | Updated version at www.erco.com 290 E Guide Lighting control Control systems Building Management System BACnet Lighting controls Module Lighting controls Module LON KNX DALI Ethernet DMX Luminaires Buildings increasingly use automatic control systems. The lighting is only one component, operation of solar screen equip- ment, air-conditioning and secu- rity systems are others. Special lighting control systems have Lighting control General control Programming the the advantage that they can be systems systems lighting designed to suit the requirements of a lighting design and are less complex than more extensive building control systems. Edition: 03/01/2010 | Updated version at www.erco.com 291 E Guide Lighting control | Control systems Lighting control systems Complexity EIB, LON DALI, DMX 1-10V Price Lighting control systems Switch Luminaire 1 Switch Luminaire 1 Switch Luminaire 1 Relay contact Relay contact Relay contact Circuit Circuit Circuit Lighting control systems switch Neutral conductor Neutral conductor Neutral conductor Transformer, ECG DMX ECG, DMX line 1 DALI Line 1V-10 V Dimmer Dimmer, 2 Actuator and dim luminaires, set up light scenes and manage them in space Potentiometer or extern control system DMX Console and time. The decision to select Other luminaires Other luminaires DALI Controller Other luminaires 1 a specific system depends on the 2 Terminator size of the lighting system, the requirements in regard to con- 1V-10V DMX DALI trollability, user-friendliness and economic considerations. Digital systems that allow lumi- naires to be addressed individu- ally provide great flexibility. Their user-friendly features include easy programming and operation along with a simple installation process. Lighting control systems can be integrated as a subsystem into a building management system. Edition: 03/01/2010 | Updated version at www.erco.com 292 E Guide Lighting control | Control systems | Lighting control systems 1V-10V lamp failure, etc., is not possible Switch Luminaire 1 Electronic Control Gear (ECG) is with the 1V-10V technology. Relay contact controlled by analogue 1V-10V Circuit signals. This technology is widely Neutral conductor ECG used in low-complexity lighting 1V-10 V systems. The dimmer setting is transmitted via a separate control line. The control gear regulates the output of light from the luminaire. Since this type of ECG Potentiometer cannot be addressed, the control or extern circuit for the control line must control system be carefully planned, because its Other luminaires allocation cannot be changed. The grouping of the luminaires is determined by the circuits in the electrical installation. Any change of use requires a new arrangement of the connection and control lines. Feedback on DMX provide feedback on aspects such Switch Luminaire 1 The DMX (Digital Multiplexed) as lamp failure. The DMX 512-A Relay contact digital control protocol is pre- version now allows for bidirec- Circuit dominantly used for stage light- tional communication. Neutral conductor DMX ing. In architectural lighting, this DMX line 1 Dimmer protocol is used for features such 2 as media facades or stage-like room lighting effects. The data is transmitted via a dedicated 5-core cable at a transfer rate of 250 Kbits/s which can control up to 512 channels. Each luminaire DMX Console must have a bus address. When Other luminaires
Recommended publications
  • Application Note AN-50 Linkswitch-PL Family
    Application Note AN-50 LinkSwitch-PL™ Family Design Guide (Flyback Topology) Introduction The LinkSwitch-PL family of highly integrated monolithic off-line may be used in both the flyback or buck-boost topologies switcher ICs enables implementation of single-stage isolated or however only the flyback is covered in this document. Support, non-isolated, power factor corrected, constant current output with a separate PIXls spreadsheet, for the buck-boost topology is drivers for LED lighting applications. Non-isolated designs are planned and will be covered in a separate application note. compatible with low cost TRIAC based dimmers and provide In addition to this application note, the reader may also find the >300:1 dimming range. The low component count simplifies Reference Design Kits (RDKs) useful. Each contains a fully meeting space constraints of LED retrofit designs (e.g. A19 and functional engineering prototype board, engineering report and candelabra lamp sizes) while the >0.9 PF, low THD and harmonic device samples. Further details on downloading PI Expert, input currents allows a single driver design to be used worldwide. obtaining an RDK, reviewing additional Design Example Reports (DERs) and updates to this document can be found at www. Scope powerint.com. This application note is intended for engineers designing an Basic Circuit Configuration isolated or non-isolated AC to DC power supply driving a A typical application schematic is shown below for a TRIAC constant current LED load. It provides step-by-step guidance on dimmable, non-isolated LED driver. Circuit blocks required for the use of the PIXls design spreadsheet, part of the PI Expert™ interface with TRIAC based phase angle control dimmers are software suite, selection of key components and optimization of labeled Passive, Active Damper, and Bleeder and can be designs especially for TRIAC based dimmers.
    [Show full text]
  • Contract No. IST 2005-034891 Hydra
    Contract No. IST 2005-034891 Hydra Networked embedded system middleware for heterogeneous physical devices in a distributed architecture D3.1 Existing applications, services, devices and standards Integrated Project SO 2.5.3 Embedded systems Project start date: 1st July 2006 Duration: 48 months Published by the Hydra Consortium 2007-02-20 - version 1.0 Lead Contractor: CNet Svenska AB Project co-funded by the European Commission within the Sixth Framework Programme (2002 -2006) Dissemination Level: Confidential Hydra D3.1 Existing applications, services, devices and standards Document file: D3.1_v10.doc Work package: WP3 – Architecture Design Specification Task: T3.1 - Analysis of existing applications, services, devices and standards: Gather, analyse and harmonise existing devices, services, standards, systems and applications. Document owner: CNet Svenska AB Document history: Version Author(s) Date Changes made 0.2 Matts Ahlsén, Peter 10-10- Initial structure defined Rosengren 2006 0.3 Matts Ahlsén, Peter 04-11- Updates before WP3 kick-off Rosengren 2006 meeting 0.5 Matts Ahlsén, Peter 20-12- Chapter on KNX and other Rosengren. Peeter Kool, 2006 standards added. Appendix on Pablo Antolin Rafael intelligent homes added. 0.7 Matts Ahlsén, Peter 21-12- Chapter on devices in agriculture Rosengren. Peeter Kool, 2006 added Pablo Antolin Rafael, Klaus Marius Hansen 0.9 Matts Ahlsén, Peter 18-01- Conclusions added Rosengren. Peeter Kool, 2007 Pablo Antolin Rafael, Klaus Marius Hansen 0.95 Matts Ahlsén, Peter 19-01- Peer-reviewed by FIT. Documented Rosengren. Peeter Kool, 2007 updated. Pablo Antolin Rafael, Klaus Marius Hansen 0.99 Matts Ahlsén, Peter 20-02- Peer-reviewed by FIT (second Rosengren.
    [Show full text]
  • Designing LED Drivers for the Challenges of Phase Cut Dimmers
    ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others.
    [Show full text]
  • The Principles of Dimming Leading Edge Dimming – Triac and Thyristor
    The Principles Of Dimming An artificial light source such as a lamp or one or more lamps in a fitting (luminaire) will be specified for a purpose. Often this purpose will need a lot of light but may be too much at other times. This is nothing new, candle lamps used mechanical screens and oil lamps adjustable wicks. Aesthetic, artistic, mood setting, visual comfort, or energy saving are all valid reasons for changing lighting levels, or in other words dimming the lamps. Dimming an electric lamp is achieved by reducing the current and thereby the power to the lamp. Early dimmers used series resistance but this generates a lot of heat and is inefficient. All modern dimmers use semiconductor technology and digital control with typical losses of less than 2% of full load. Mains “chopping” or Phase Control The most widely used form of dimming is phase control. Phase control dimming uses a switching device to “chop” the supply such that only part of each half cycle Normal line voltage, full power for the load of the AC mains supply is applied to the load. For the remaining part the switch is open and no power is applied to the load. The amount of power to the load is therefore determined by the phase angle of the AC supply at which the switching occurs and thereby altering the ratio of off to on time from always open, no power, to allows closed, full power. The switching is synchronised to each half cycle to minimise the visual impact of momentarily turning the lamp off.
    [Show full text]
  • Lonworks® Platform Revision 2
    Introduction to the LonWorks® Platform revision 2 ® 078-0183-01B Echelon, LON, LonWorks, LonMark, NodeBuilder, , LonTalk, Neuron, 3120, 3150, LNS, i.LON, , ShortStack, LonMaker, the Echelon logo, and are trademarks of Echelon Corporation registered in the United States and other countries. LonSupport, , , OpenLDV, Pyxos, LonScanner, LonBridge, and Thinking Inside the Box are trademarks of Echelon Corporation. Other trademarks belong to their respective holders. Neuron Chips, Smart Transceivers, and other OEM Products were not designed for use in equipment or systems which involve danger to human health or safety or a risk of property damage and Echelon assumes no responsibility or liability for use of the Neuron Chips in such applications. Parts manufactured by vendors other than Echelon and referenced in this document have been described for illustrative purposes only, and may not have been tested by Echelon. It is the responsibility of the customer to determine the suitability of these parts for each application. ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Echelon Corporation. Printed in the United States of America. Copyright
    [Show full text]
  • Wireless Lighting Control System
    Wireless Lighting Control System Patient Rooms and Healthcare Introducing PathWave — an EnOcean-based wireless lighting control system that lets you remotely power on/off or dim any* of Pathway Lighting’s fixtures that use 0-10V dimming. PathWave Advanced Features and Benefits: Two-way Wireless Communication A fixture-based relay communicates wirelessly with an occupancy sensor, one or more rocker switches, or both. The relay receives dimming control commands, which it then translates into 0-10V analog dimming signals for the LED driver. Benefit Wirelessly controls virtually any fixture that uses 0-10V dimming LED driver, without the added labor and material costs associated with additional wiring. Self-powered Rocker Switch Low-profile single or double rocker switch provides wireless control, and requires no electricity or battery power, to remotely power on/off or dim lighting in any space. Benefit No additional power required means reduced operating costs and a more environmentally friendly solution. Wireless technology enables mounting or storing the switch wherever convenient. Easy On-site System Set Up Associate one or more rocker switches to a single fixture or a group of fixtures, establish fixture groupings, or set up system parameters, using a PC and an optional USB programming dongle with the PathWave Software Application. Benefit System set up is easy and takes minutes to complete. It is future-proof – should changes in the way the space is used in the future require new fixture groupings, or new switches need to be added, the system can be reprogrammed at any time – all without the need for fixture rewiring, running additional wires or disrupting occupancy.
    [Show full text]
  • Implementation of LED Control System Based on Zigbee Network for Energy-Saving
    International Conference on Computer, Electrical and Communication Engineering (ICCECE'2015) June 18-19, 2015 Pattaya (Thailand) Implementation of LED control system based on Zigbee network for energy-saving Sang Woo Jung1, Jun Yeong Lee2, Seung Hyeop Yang3, Seung Hyun Paik4, and Hong Bae Park5 device does the same operation at the same time so unnecessary Abstract—In this paper, we study human body detecting using lighting devises are still turned on [6]-[8]. PIR sensor and design LED control system based on star network In this paper, a new LED control system which consists of topology of Zigbee. The human body detecting information using PIR human body detecting using PIR sensor, LED lighting, Zigbee sensor is transmitted to the status monitoring system, and the network, and power control system is proposed. The LED management system controls the LED lighting devices based on control system separates the lighting area, and the separated transmitted information. The information and control signals are lighting devises are interconnected by Zigbee network. The transmitted using Zigbee network. The structure of the proposed LED control system is suitable for energy-saving because the LED lighting LED control board cooperates with the nearby others, and the devices are controlled by area. operation is determined through their communication. So the LED lighting devices are controlled by area and are determined Keywords—human body detecting, PIR sensor, LED control whether to be turned on or not. system, Zigbee network, energy-saving The organization of this paper is as follows. In section 2, we describe a component of the LED control system, a flowchart I.
    [Show full text]
  • Outdoor Lighting Control System Fundamentals
    OUTDOOR LIGHTING CONTROL SYSTEM FUNDAMENTALS 9:00am Sunday 5/3/2015 Mark Wilbur, GE Lighting Solutions Michael Poplawski, Pacific Northwest National Laboratory ATTENDEE SURVEY: BACKGROUND 3 Manufacturer Municipal user Utility user Contractor, Consultant Market Analyst Investment, Finance Other ATTENDEE SURVEY: BACKGROUND 4 Manufacturer experience User experience Lighting control system Installed system Lighting control sub-system Pilot project Lighting control component Demonstration project Luminaire Mock-up Other Technical review None ATTENDEE SURVEY: EXPECTATIONS 5 General education Features and options of commercially available products Value propositions Barriers to adoption Planning a project Specific questions Market analysis WHO IS THIS COURSE DESIGNED FOR? 6 • Specifiers, owners, and operators of outdoor lighting systems • System integrators, start-up and commissioning agents • Manufacturers of non-lighting equipment that could get integrated into networked outdoor lighting systems A (NETWORKED) OUTDOOR LIGHTING CONTROL SYSTEM 7 NETWORKED CONTROL SYSTEMS 8 • Network (from IES TM-23-11): A group of systems that function cooperatively and/or interdependently to provide a chain of command for lighting control • Field Device Network: typically a Local Area Network (LAN) that connects and enables communication between (exclusively) Field Devices • Backhaul Network: typically a Wide Area Network (WAN) that connects and facilitates communication between (at a minimum) one or more Field Device networks with a
    [Show full text]
  • C-Bus Application Note Function Rooms and Ballrooms
    C-Bus Application Note Function Rooms and Ballrooms Overview A function venue or hotel will generally include large spaces purpose designed and built for holding functions. Function rooms and Ballrooms are designed for multiple uses including; corporate meetings, presentations, or large seated dinners like wedding or gala events. The spaces may be smaller purpose designed rooms, or be built as a larger space which can be partitioned appropriately. Regardless, each space needs to be flexible from a lighting and audio visual perspective. A lighting control system will allow the venue flexible control of a room or multiple joined rooms. The user will benefit from professional, seamless and intuitive control of the room for events, particular to the type of event required. One of the key elements required of the lighting control system, is the smooth transition between lighting scenes and specific modes that can be easily customised and adapted according to events and time of day. When designing the room’s functionality a lighting control system will provide the lighting designer the ability to deliver concepts and scenes that showcase the function areas full potential. With the correct lighting control strategy energy efficiency gains can be achieved, providing additional benefits and savings to the building owner. All of this can be achieved using a Clipsal C-Bus system. Example Area Layout & Features Features: • Dimmable LED fittings • Dimmable Compact Fluorescent Light fittings (CFL) • Motorised blinds • Motorised projector screen • C-Bus
    [Show full text]
  • Schneider Electric DIGEST
    Table of Contents Section 5 Lighting Control And Integrated Home Systems Lighting Control Product Overview One Line Overview 5-2, 5-3 New! Clipsal Keypads, Touch Screens and Accessories Neo Keypads 5-4 Saturn Keypads 5-5 DLT Keypads 5-6 LIGHTING CONTROL AND CONTROL LIGHTING Touch Screens 5-7 INTEGRATED HOME SYSTEMS Multi Room Audio 5-8–5-10 Hand Held Remote Controls 5-10 5 Clipsal Controls, page 5-4 Thermostats 5-11 Sensors 5-12 Input Units 5-13 Relays 5-14 Dimmers 5-15 System Units 5-16, 5-17 New! Enclosures 5-18 Area Lighting Panels 5-19 Software 5-20 New! Occupancy Sensors Occupancy Sensors, page 5-21 Wall Switch Occupancy Sensors 5-21 Ceiling Mount Occupancy Sensors 5-22 Wall Mount Occupancy Sensors 5-22 Fixture Mounted Sensors and Controls 5-23 Powerlink Integrated Control Systems Overview 5-24 Components 5-25, 5-26 Device Power Supply 5-26 Device Router 5-26 Factory Assembled Panels 5-27 Square D Structured Wiring System Powerlink Lighting Control Panelboards, page 5-24 Square D Multilink Structured Wiring System 5-28 Structured Wiring Systems, page 5-28 © 2009 Schneider Electric 5-1 All Rights Reserved Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com Overview Lighting Control www.squaredlightingcontrol.com 5 Square D Occupancy Sensors, Powerlink and Clipsal control systems can be used independently or combined to provide the optimal lighting control solution for your home or business INTEGRATED HOME SYSTEMS
    [Show full text]
  • Stage Lighting Technician Handbook
    The Stage Lighting Technician’s Handbook A compilation of general knowledge and tricks of the lighting trade Compiled by Freelancers in the entertainment lighting industry The Stage Lighting Technician's Handbook Stage Terminology: Learning Objectives/Outcomes. Understanding directions given in context as to where a job or piece of equipment is to be located. Applying these terms in conjunction with other disciplines to perform the work as directed. Lighting Terms: Learning Objectives/Outcome Learning the descriptive terms used in the use and handling of different types of lighting equipment. Applying these terms, as to the location and types of equipment a stagehand is expected to handle. Electrical Safety: Learning Objectives/Outcomes. Learning about the hazards, when one works with electricity. Applying basic safety ideas, to mitigate ones exposure to them in the field. Electricity: Learning Objectives/Outcomes. Learning the basic concepts of what electricity is and its components. To facilitate ones ability to perform the mathematics to compute loads, wattages and the like in order to safely assemble, determine electrical needs and solve problems. Lighting Equipment Learning Objectives/Outcomes. Recognize the different types of lighting equipment, use’s and proper handling. Gain basic trouble shooting skills to successfully complete a task. Build a basic understanding of applying these skills in the different venues that we work in to competently complete assigned tasks. On-sight Lighting Techniques Learning Objectives/Outcomes. Combing the technical knowledge previously gained to execute lighting request while on site, whether in a ballroom or theatre. Approaches, to lighting a presentation to aspects of theatrical lighting to meet a client’s expectations.
    [Show full text]
  • LIGHTING CONTROL HISTORY Their Immediate Technological Predecessors
    not exist if preset boards had not been LIGHTING CONTROL HISTORY their immediate technological predecessors. AND The first type of control for electrical MODERN PROGRAMMING lighting was simply a bank of switches STRATAGIES that turned the lights on and off. Not surprisingly, artists in the theatre were not entirely satisfied with the “lights up, lights Modern lighting control methods are down,” nature of switches in controlling governed by complex computer systems lighting for sensitive scenes. Not long that make it possible to operate hundreds after the use of electric lighting became of lights at one time. They also make it widespread, resistance dimmers were possible to use the many digital lights and developed so that it was possible to fade in accessories developed over the past two and out of scenes. Fading indicates that decades. Although each manufacturer has the lighting change occurs over a period of its own particular method of handling time, which is an important element in technical issues, the core technology that lighting design. The term blackout is used makes all of them work is basically the to describe what happens when all of the same. This chapter is not intended to be stage lights go out instantly. (or as fast as an exhaustive review of every OEM system the cooling filaments will allow) on the market, but rather as an overview Although blackouts are frequently used to of the basic philosophy that is used in indicate a sudden end to the action on designing digital products for the control stage, they are not appropriate for most of stage lighting.
    [Show full text]