Cytochromes P450
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impaired Hepatic Drug and Steroid Metabolism in Congenital Adrenal
European Journal of Endocrinology (2010) 163 919–924 ISSN 0804-4643 CLINICAL STUDY Impaired hepatic drug and steroid metabolism in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency Dorota Tomalik-Scharte1, Dominique Maiter2, Julia Kirchheiner3, Hannah E Ivison, Uwe Fuhr1 and Wiebke Arlt School of Clinical and Experimental Medicine, Centre for Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK, 1Department of Pharmacology, University Hospital, University of Cologne, 50931 Cologne, Germany, 2Department of Endocrinology, University Hospital Saint Luc, 1200 Brussels, Belgium and 3Department of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, 89019 Ulm, Germany (Correspondence should be addressed to W Arlt; Email: [email protected]) Abstract Objective: Patients with congenital adrenal hyperplasia due to P450 oxidoreductase (POR) deficiency (ORD) present with disordered sex development and glucocorticoid deficiency. This is due to disruption of electron transfer from mutant POR to microsomal cytochrome P450 (CYP) enzymes that play a key role in glucocorticoid and sex steroid synthesis. POR also transfers electrons to all major drug- metabolizing CYP enzymes, including CYP3A4 that inactivates glucocorticoid and oestrogens. However, whether ORD results in impairment of in vivo drug metabolism has never been studied. Design: We studied an adult patient with ORD due to homozygous POR A287P, the most frequent POR mutation in Caucasians, and her clinically unaffected, heterozygous mother. The patient had received standard dose oestrogen replacement from 17 until 37 years of age when it was stopped after she developed breast cancer. Methods: Both subjects underwent in vivo cocktail phenotyping comprising the oral administration of caffeine, tolbutamide, omeprazole, dextromethorphan hydrobromide and midazolam to assess the five major drug-metabolizing CYP enzymes. -
Regulation of Ribulose-1, 5-Bisphosphate Carboxylase
Plant Physiol. (1993) 102: 21-28 Regulation of Ribulose- 1,5-Bisphosphate Carboxylase/Oxygenase Activity in Response to Reduced Light lntensity in C4 Plants' Rowan F. Sage* and Jeffrey R. Seemann Department of Botany, University of Georgia, Athens, Ceorgia 30602 (R.F.S.); and Department of Biochemistry, University of Nevada, Reno, Nevada 89557 (J.R.S.) tion of Rubisco activity by reversible carbamylation occurs in lhe light-dependent regulation of ribulose-1,5-bisphosphate response to changes in light intensity as well as the concen- carboxylase/oxygenase (Rubisco) activity was studied in 16 species tration of C02and 02,whereas inhibition of Rubisco activity of C, plants representing all three biochemical subtypes and a by CAlP occurs only in response to varying PPFD (Sharkey variety of taxonomic groups. Rubisco regulation was assessed by et al., 1986; Sage et al., 1990; Seemann et al., 1990). At measuring (a) the ratio of initial to total Rubisco activity, which physiological levels of COz in C3 plants (5-10 PM), full reflects primarily the carbamylation state of the enzyme, and (b) carbamylation of Rubisco requires Rubisco activase (Salvucci, total Rubisco activity per mo1 of Rubisco catalytic sites, which 1989; Portis, 1990). In the absence of Rubisco activase, only declines when 2-carboxyarabinitol I-phosphate (CAlP) binds to carbamylated Rubisco. In all species examined, the activity ratio of 20 to 40% of Rubisco catalytic sites are carbamylated under Rubisco declined with a reduction in light intensity, although sub- physiological conditions, leading to a significant inhibition of stantial variation was apparent between species in the degree of photosynthesis (Salvucci, 1989; Portis, 1990). -
SUPPLEMENTARY DATA Data Supplement To
SUPPLEMENTARY DATA Data supplement to Perivascular adipose tissue controls insulin-stimulated perfusion, mitochondrial protein expression and glucose uptake in muscle through adipomuscular microvascular anastomoses Surname first author Turaihi Authors & Affiliations Turaihi, Alexander H MD1; Serné, Erik H, MD PhD2; Molthoff, Carla FM PhD3; Koning, Jasper J PhD4; Knol, Jaco PhD6; Niessen, Hans W MD PhD5; Goumans, Marie Jose TH PhD7; van Poelgeest, Erik M MD1; Yudkin, John S MD PhD8; Smulders, Yvo M MD PhD2; Connie R Jimenez, PhD6; van Hinsbergh, Victor WM PhD1; Eringa, Etto C PhD1 ©2020 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-1066/-/DC1 SUPPLEMENTARY DATA Western immunoblotting Skeletal muscle samples were lysed up in 1D‐sample buffer (10% glycerol, 62.5 mmol/L Tris (pH 6.8), 2% w/v LDS, 2% w/v DTT) and protein concentration was determined using Pierce 660‐nm protein assay (Thermo scientific, Waltham, MA USA 02 451; 22 660) according to the manufacturer's instructions. Heat shock protein 90 immunoblotting was performed by application of samples (5 µg protein) on 4‐15% Criterion TGX gels (Biorad, Veenendaal, the Netherlands, 5 671 084) and semi‐dry blotting onto PVDF membranes (GE Healthcare‐Fisher, RPN1416F), incubated overnight with rat monoclonal HSP90 antibody (1:1000 dilution) after blocking with 5% milk in TBS‐T (137 mM NaCl, 20 mmol/L Tris pH 7.0 and 0.1% (v/v) Tween [Sigma‐Aldrich, P7949]). After 2 hours incubation with anti-rat, horse radish peroxidase-coupled secondary antibody (Thermo Fisher 62-9520), the blot was stained using ECL‐prime (Fisher scientific, 10 308 449) and analysed on an AI‐600 imaging system (GE Healthcare, Life Sciences). -
Table 1. Identified Proteins with Expression Significantly Altered in the Hippocampus of Rats of Exposed Group (Pb) Vs
Table 1. Identified proteins with expression significantly altered in the hippocampus of rats of exposed group (Pb) vs. Control. Fold Change Accession Id a Protein Description Score Pb P35213 14-3-3 protein beta/alpha 85420 −0.835 P62260 14-3-3 protein epsilon 96570 −0.878 P68511 14-3-3 protein eta 85420 −0.844 P68255 14-3-3 protein theta 85420 −0.835 P63102 14-3-3 protein zeta/delta 105051 −0.803 P13233 2',3'-cyclic-nucleotide 3'-phosphodiesterase 151400 1.405 P68035 Actin, alpha cardiac muscle 1 442584 −0.942 P68136 Actin, alpha skeletal muscle 441060 −0.970 P62738 Actin, aortic smooth muscle 438270 −0.970 P60711 Actin, cytoplasmic 1 630104 −0.942 P63259 Actin, cytoplasmic 2 630104 −0.942 P63269 Actin, gamma-enteric smooth muscle 438270 −0.951 Q05962 ADP/ATP translocase 1 60100 −0.554 Q09073 ADP/ATP translocase 2 49102 −0.482 P84079 ADP-ribosylation factor 1 34675 −0.644 P84082 ADP-ribosylation factor 2 22412 −0.644 P61206 ADP-ribosylation factor 3 34675 −0.619 P61751 ADP-ribosylation factor 4 22412 −0.670 P84083 ADP-ribosylation factor 5 22412 −0.625 P04764 Alpha-enolase 46219 −0.951 P23565 Alpha-internexin 9478 1.062 P37377 Alpha-synuclein 89619 −0.771 P13221 Aspartate aminotransferase, cytoplasmic 23661 1.083 P00507 Aspartate aminotransferase, mitochondrial 46049 1.116 P10719 ATP synthase subunit beta, mitochondrial 232442 −0.835 P85969 Beta-soluble NSF attachment protein 9638 1.419 Q63754 Beta-synuclein 66842 −0.779 P11275 Calcium/calmodulin-dependent protein kinase type II subunit alpha 181954 1.105 P08413 Calcium/calmodulin-dependent protein kinase type II subunit beta 80840 1.127 P15791 Calcium/calmodulin-dependent protein kinase type II subunit delta 62682 1.105 Int. -
Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles. -
The Role of Methemoglobin and Carboxyhemoglobin in COVID-19: a Review
Journal of Clinical Medicine Review The Role of Methemoglobin and Carboxyhemoglobin in COVID-19: A Review Felix Scholkmann 1,2,*, Tanja Restin 2, Marco Ferrari 3 and Valentina Quaresima 3 1 Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland 2 Newborn Research Zurich, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; [email protected] 3 Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; [email protected] (M.F.); [email protected] (V.Q.) * Correspondence: [email protected]; Tel.: +41-4-4255-9326 Abstract: Following the outbreak of a novel coronavirus (SARS-CoV-2) associated with pneumonia in China (Corona Virus Disease 2019, COVID-19) at the end of 2019, the world is currently facing a global pandemic of infections with SARS-CoV-2 and cases of COVID-19. Since severely ill patients often show elevated methemoglobin (MetHb) and carboxyhemoglobin (COHb) concentrations in their blood as a marker of disease severity, we aimed to summarize the currently available published study results (case reports and cross-sectional studies) on MetHb and COHb concentrations in the blood of COVID-19 patients. To this end, a systematic literature research was performed. For the case of MetHb, seven publications were identified (five case reports and two cross-sectional studies), and for the case of COHb, three studies were found (two cross-sectional studies and one case report). The findings reported in the publications show that an increase in MetHb and COHb can happen in COVID-19 patients, especially in critically ill ones, and that MetHb and COHb can increase to dangerously high levels during the course of the disease in some patients. -
Mechanism of Inhibition of Cytochrome P450 C21 Enzyme Activity By
European Journal of Endocrinology (2005) 152 95–101 ISSN 0804-4643 CLINICAL STUDY Mechanism of inhibition of cytochrome P450 C21 enzyme activity by autoantibodies from patients with Addison’s disease L Nikfarjam1, S Kominami1, T Yamazaki1, S Chen2, R Hewer2, C Dal Pra2,3, T Nakamatsu2,3, C Betterle4, R Zanchetta4, B Rees Smith2,3 and J Furmaniak2,3 1Faculty of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, 739-8521 Japan, 2FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff CF14 5DU, UK, 3Department of Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK and 4Department of Medical and Surgical Sciences, University of Padua, Via Ospedale Civile 105, 35128 Padua, Italy (Correspondence should be addressed to J Furmaniak, FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff CF14 5DU, UK; Email: fi[email protected]) Abstract Objective: To study possible mechanisms for the inhibition of cytochrome P450 C21 (steroid 21- hydroxylase) enzyme activity by P450 C21 autoantibodies (Abs) in vitro. Design: Two possible mechanisms for the inhibition of P450 C21 enzyme activity by P450 C21 Abs were studied: (a) conformational changes in the P450 C21 molecule induced by Ab binding and (b) the effects of Ab binding to P450 C21 on the electron transfer from the nicotinamide adenine dinu- cleotide phosphate reduced (NADPH) cytochrome P450 reductase (CPR) to P450 C21. Methods: The effect of P450 C21 Ab binding on the conformation of recombinant P450 C21 in yeast microsomes was studied using an analysis of the dithionite-reduced CO difference spectra. The effect of P450 C21 Abs on electron transfer was assessed by analysis of reduction of P450 C21 in the micro- somes in the presence of CO after addition of NADPH. -
Somatic Aging Pathways Regulate Reproductive Plasticity in Caenorhabditis Elegans Maria C Ow, Alexandra M Nichitean, Sarah E Hall*
RESEARCH ARTICLE Somatic aging pathways regulate reproductive plasticity in Caenorhabditis elegans Maria C Ow, Alexandra M Nichitean, Sarah E Hall* Department of Biology, Syracuse University, Syracuse, United States Abstract In animals, early-life stress can result in programmed changes in gene expression that can affect their adult phenotype. In C. elegans nematodes, starvation during the first larval stage promotes entry into a stress-resistant dauer stage until environmental conditions improve. Adults that have experienced dauer (postdauers) retain a memory of early-life starvation that results in gene expression changes and reduced fecundity. Here, we show that the endocrine pathways attributed to the regulation of somatic aging in C. elegans adults lacking a functional germline also regulate the reproductive phenotypes of postdauer adults that experienced early-life starvation. We demonstrate that postdauer adults reallocate fat to benefit progeny at the expense of the parental somatic fat reservoir and exhibit increased longevity compared to controls. Our results also show that the modification of somatic fat stores due to parental starvation memory is inherited in the F1 generation and may be the result of crosstalk between somatic and reproductive tissues mediated by the germline nuclear RNAi pathway. Introduction Evidence indicating that experiences during early development affect behavior and physiology in a stress-specific manner later in life is abundant throughout the animal kingdom (Telang and Wells, *For correspondence: [email protected] 2004; Weaver et al., 2004; Binder et al., 2008; Pellegroms et al., 2009; van Abeelen et al., 2012; Zhao and Zhu, 2014; Canario et al., 2017; Dantzer et al., 2019; Vitikainen et al., 2019). -
Regulation of Vitamin D Metabolizing Enzymes in Murine Renal and Extrarenal Tissues by Dietary Phosphate, FGF23, and 1,25(OH)2D3
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Regulation of vitamin D metabolizing enzymes in murine renal and extrarenal tissues by dietary phosphate, FGF23, and 1,25(OH)2D3 Kägi, Larissa ; Bettoni, Carla ; Pastor-Arroyo, Eva M ; Schnitzbauer, Udo ; Hernando, Nati ; Wagner, Carsten A Abstract: BACKGROUND: The 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) together with parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) regulates calcium (Ca2+) and phosphate (Pi) homeostasis, 1,25(OH)2D3 synthesis is mediated by hydroxylases of the cytochrome P450 (Cyp) family. Vitamin D is first modified in the liver by the 25-hydroxylases CYP2R1 and CYP27A1 and further acti- vated in the kidney by the 1-hydroxylase CYP27B1, while the renal 24-hydroxylase CYP24A1 catalyzes the first step of its inactivation. While the kidney is the main organ responsible for circulating levelsofac- tive 1,25(OH)2D3, other organs also express some of these enzymes. Their regulation, however, has been studied less. METHODS AND RESULTS: Here we investigated the effect of several Pi-regulating factors including dietary Pi, PTH and FGF23 on the expression of the vitamin D hydroxylases and the vitamin D receptor VDR in renal and extrarenal tissues of mice. We found that with the exception of Cyp24a1, all the other analyzed mRNAs show a wide tissue distribution. High dietary Pi mainly upregulated the hep- atic expression of Cyp27a1 and Cyp2r1 without changing plasma 1,25(OH)2D3. FGF23 failed to regulate the expression of any of the studied hydroxylases at the used dosage and treatment length. -
A Three-Component Dicamba O-Demethylase from Pseudomonas Maltophilia, Strain DI-6 GENE ISOLATION, CHARACTERIZATION, and HETEROLOGOUS EXPRESSION*
THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 280, No. 26, Issue of July 1, pp. 24759–24767, 2005 © 2005 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. A Three-component Dicamba O-Demethylase from Pseudomonas maltophilia, Strain DI-6 GENE ISOLATION, CHARACTERIZATION, AND HETEROLOGOUS EXPRESSION* Received for publication, January 18, 2005, and in revised form, March 16, 2005 Published, JBC Papers in Press, April 26, 2005, DOI 10.1074/jbc.M500597200 Patricia L. Herman‡, Mark Behrens, Sarbani Chakraborty, Brenda M. Chrastil, Joseph Barycki, and Donald P. Weeks§ From the Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 65888-0664 Dicamba O-demethylase is a multicomponent enzyme The herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) from Pseudomonas maltophilia, strain DI-6, that cata- has been used to effectively control broadleaf weeds in crops lyzes the conversion of the widely used herbicide di- such as corn and wheat for almost 40 years. Like a number of camba (2-methoxy-3,6-dichlorobenzoic acid) to DCSA other chlorinated organic compounds, dicamba does not persist (3,6-dichlorosalicylic acid). We recently described the in the soil because it is efficiently metabolized by a consortium biochemical characteristics of the three components of of soil bacteria under both aerobic and anaerobic conditions this enzyme (i.e. reductaseDIC, ferredoxinDIC, and oxy- (1–4). Studies with different soil types treated with dicamba genaseDIC) and classified the oxygenase component of have demonstrated that 3,6-dichlorosalicylic acid (DCSA),1 a dicamba O-demethylase as a member of the Rieske non- compound without herbicidal activity, is a major product of the heme iron family of oxygenases. -
Cholesterol Metabolites 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: from Discovery to Clinical Usage
H OH metabolites OH Review Cholesterol Metabolites 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: From Discovery to Clinical Usage Yaping Wang 1, Xiaobo Li 2 and Shunlin Ren 1,* 1 Department of Internal Medicine, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23249, USA; [email protected] 2 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; [email protected] * Correspondence: [email protected]; Tel.: +1-(804)-675-5000 (ext. 4973) Abstract: Oxysterols have long been believed to be ligands of nuclear receptors such as liver × recep- tor (LXR), and they play an important role in lipid homeostasis and in the immune system, where they are involved in both transcriptional and posttranscriptional mechanisms. However, they are increas- ingly associated with a wide variety of other, sometimes surprising, cell functions. Oxysterols have also been implicated in several diseases such as metabolic syndrome. Oxysterols can be sulfated, and the sulfated oxysterols act in different directions: they decrease lipid biosynthesis, suppress inflammatory responses, and promote cell survival. Our recent reports have shown that oxysterol and oxysterol sulfates are paired epigenetic regulators, agonists, and antagonists of DNA methyl- transferases, indicating that their function of global regulation is through epigenetic modification. In this review, we explore our latest research of 25-hydroxycholesterol and 25-hydroxycholesterol 3-sulfate in a novel regulatory mechanism and evaluate the current evidence for these roles. Citation: Wang, Y.; Li, X.; Ren, S. Keywords: oxysterol sulfates; oxysterol sulfation; epigenetic regulators; 25-hydroxysterol; Cholesterol Metabolites 25-hydroxycholesterol 3-sulfate; 25-hydroxycholesterol 3,25-disulfate 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: From Discovery to Clinical Usage. -
Flavin-Containing Monooxygenases: Mutations, Disease and Drug Response Phillips, IR; Shephard, EA
Flavin-containing monooxygenases: mutations, disease and drug response Phillips, IR; Shephard, EA For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/1015 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] Flavin-containing monooxygenases: mutations, disease and drug response Ian R. Phillips1 and Elizabeth A. Shephard2 1School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK 2Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK Corresponding author: Shephard, E.A. ([email protected]). and, thus, contribute to drug development. This review Flavin-containing monooxygenases (FMOs) metabolize considers the role of FMOs and their genetic variants in numerous foreign chemicals, including drugs, pesticides disease and drug response. and dietary components and, thus, mediate interactions between humans and their chemical environment. We Mechanism and structure describe the mechanism of action of FMOs and insights For catalysis FMOs require flavin adenine dinucleotide gained from the structure of yeast FMO. We then (FAD) as a prosthetic group, NADPH as a cofactor and concentrate on the three FMOs (FMOs 1, 2 and 3) that are molecular oxygen as a cosubstrate [5,6]. In contrast to most important for metabolism of foreign chemicals in CYPs FMOs accept reducing equivalents directly from humans, focusing on the role of the FMOs and their genetic NADPH and, thus, do not require accessory proteins.