Circinotrichum Sinense, a New Asexual Fungus from Hubei, China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Novosti Sistematiki Nizshikh Rastenii 53(2): 315–332
Новости систематики низших растений — Novosti sistematiki nizshikh rastenii 53(2): 315–332. 2019 Checklist of ascomycetous microfungi of the Nuratau Nature Reserve (Uzbekistan) I. M. Mustafaev, N. Yu. Beshko, M. M. Iminova Institute of Botany of Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan Corresponding author: I. M. Mustafaev, [email protected] Abstract. A checklist of ascomycetous microfungi of the Nuratau Nature Reserve (Nuratau Mountains, Uzbekistan) was compiled for the first time as a result of field research conducted in 2009–2017. In total, 197 species, 3 varieties and 51 forms of micromycetes belonging to 66 genera and 30 families have been identified. Among them 19 species (Asteromella tanaceti, Camarospori- um achilleae, Diplocarpon alpestre, Diplodia celtidis, Hendersonia ephedrae, Mycosphaerella artemi- siae, Neopseudocercosporella capsellae, Phoma hedysari, P. mororum, Phyllosticta prostrata, P. silenes, P. trifolii, Ramularia trifolii, Rhabdospora eremuri, Selenophoma nebulosa, Septoria cyperi, S. dauci, S. ranunculacearum, S. trifolii) and one form (Erysiphe cichoracearum f. tanaceti) were found for the first time for the mycobiota of Uzbekistan. 30 species of microfungi were recorded on 31 new host plants. The most abundant species are representatives of the cosmopolitan genera Ramularia, Sep- toria, Erysiphe, Leveillula, Mycosphaerella, Phoma, Cytospora, Sphaerotheca, Phyllosticta and Mars- sonina. The annotated checklist includes data on host plant, location, date and collection number of every species. Keywords: Ascomycetes, biodiversity, host plants, mycobiota, micromycetes, new records, Nuratau Mountains. чек-лист сумчатых микромицетов нуратинского природного заповедника (узбекистан) и. м. мустафаев, н. Ю. Бешко, м. м. иминова институт ботаники академии наук республики узбекистан, ташкент, узбекистан Автор для переписки: и. м. мустафаев, [email protected] Резюме. -
Thyronectria Revisited and Re-Instated
Persoonia 33, 2014: 182–211 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X685211 Persistent hamathecial threads in the Nectriaceae, Hypocreales: Thyronectria revisited and re-instated W.M. Jaklitsch1, H. Voglmayr1,2 Key words Abstract Based on type studies and freshly collected material we here re-instate the genus Thyronectria (Nec- triaceae, Hypocreales). Species of this genus were recently for the most part classified in the genera Pleonectria act (Nectriaceae) or Mattirolia (Thyridiaceae), because Thyronectria and other genera had been identified as members Ascomycota of the Thyridiaceae due to the presence of paraphyses. Molecular phylogenies based on several markers (act, ITS, Hypocreales LSU rDNA, rpb1, rpb2, tef1, tub) revealed that the Nectriaceae contain members whose ascomata are characterised Mattirolia by long, more or less persistent, apical paraphyses. All of these belong to a single genus, Thyronectria, which thus Nectriaceae has representatives with hyaline, rosy, green or even dark brown and sometimes distoseptate ascospores. The new species type species of Thyronectria, T. rhodochlora, syn. T. patavina, syn. T. pyrrhochlora is re-described and illustrated. Pleonectria Within the Nectriaceae persistent, apical paraphyses are common in Thyronectria and rarely also occur in Nectria. pyrenomycetes The genus Mattirolia is revised and merged with Thyronectria and also Thyronectroidea is regarded as a synonym rpb1 of Thyronectria. The three new species T. asturiensis, T. caudata and T. obscura are added to the genus. Species rpb2 recently described in Pleonectria as well as some species of Mattirolia are combined in the genus, and a key to tef1 Thyronectria is provided. Five species are epitypified. -
Beltrania-Like Taxa from Thailand
Cryptogamie, Mycologie, 2017, 38 (3): 301-319 © 2017 Adac. Tous droits réservés Beltrania-like taxa from Thailand Chuan-Gen LIN a, d,Kevin D. HYDE a, d, Saisamorn LUMYONG b &Eric H. C. MCKENZIE c* aCenter of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand bDepartment of Biology,Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand cLandcareResearch Manaaki Whenua, Private Bag 92170, Auckland, New Zealand dSchool of Science, Mae Fah Luang University,Chiang Rai 57100, Thailand Abstract – Four Beltrania-like taxa, viz., Beltrania rhombica, Beltraniella fertilis, Beltraniopsis longiconidiophora sp. nov. and Hemibeltrania cinnamomi were identified during asurvey of hyphomycetes in Thailand. Each species is provided with adescription and amolecular analysis. The new species is introduced based on morphological and molecular differences and compared with similar taxa. Beltraniella fertilis and H. cinnamomi are new records for Thailand. Beltrania-complex /Beltraniaceae /Phylogeny /Taxonomy /Xylariomycetidae InTroducTIon The family Beltraniaceae Nann. was introduced by Nannizzi in 1934 to accommodate the genus Beltrania Penz. and some similar genera, and the tribe Beltranieae was treated as asynonym of this family (Pirozynski, 1963). Presently, eight genera, viz., Beltrania, Beltraniella Subram., Beltraniopsis Bat. &J.L. Bezerra, Hemibeltrania Piroz., Parapleurotheciopsis P.M. Kirk, Porobeltraniella Gusmão, Pseudobeltrania Henn. and Subramaniomyces Varghese &V.G. Rao, are accepted in the family (Crous et al.,2015b; Maharachchikumbura et al.,2015, 2016; Rajeshkumar et al.,2016a). The conidia of these genera are very distinctive, often being biconic, with or without ahyaline equatorial, subequatorial or supraequatorial band, and with or without swollen separating cells. The unbranched or branched conidiophores and/or setae arise from radially lobed basal cells (Ellis, 1971, 1976; Seifert et al.,2011). -
An Updated Phylogeny of Sordariomycetes Based on Phylogenetic and Molecular Clock Evidence
Fungal Diversity DOI 10.1007/s13225-017-0384-2 An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence 1,2 3 1,2 Sinang Hongsanan • Sajeewa S. N. Maharachchikumbura • Kevin D. Hyde • 2 4 1 3 Milan C. Samarakoon • Rajesh Jeewon • Qi Zhao • Abdullah M. Al-Sadi • Ali H. Bahkali5 Received: 30 April 2017 / Accepted: 17 May 2017 Ó School of Science 2017 Abstract The previous phylogenies of Sordariomycetes by divergence period (i.e. 200–300 MYA) can be used as M.E. Barr, O.E. Eriksson and D.L. Hawksworth, and T. criteria to judge when a group of related taxa evolved and Lumbsch and S. Huhndorf, were mainly based on mor- what rank they should be given. In this paper, we provide phology and thus were somewhat subjective. Later outlines an updated classification of accepted subclasses, orders of by T. Lumbsch and S. Huhndorf, and Maharachchikum- Sordariomycetes and use divergence times to provide bura and co-authors, took into account phylogenetic evi- additional evidence to stabilize ranking of taxa in the class. dence. However, even these phylogenetic driven We point out and discuss discrepancies where the phylo- arrangements for Sordariomycetes, were somewhat sub- genetic tree conflicts with the molecular clock. jective, as the arrangements in trees depended on many variables, such as number of taxa, different gene regions Keywords Class Á Classification Á Divergence times Á and methods used in the analyses. What is needed is extra Phylogenetics Á Ranking evidence to help standardize ranking in the fungi. Esti- mation of divergence times using molecular clock methods Introduction has been proposed for providing additional rational for higher ranking of taxa. -
Commelina Communis
Commelina communis Commelina communis Asiatic dayflower Introduction The genus Commelina has approximately 100 species worldwide, distributed primarily in tropical and temperate regions. Eight species occur in China[60][167] . Species of Commelina in China Flower of Commelina communis. (Photo pro- Scientific Name Scientific Name vided by LBJWC, Albert, F. W. Frick, Jr.) C. auriculata Bl. C. maculata Edgew. C. bengalensis L. C. paludosa Bl. roadsides [60]. C. communis L. C. suffruticosa Bl. Distribution C. diffusa Burm. f. C. undulata R. Br. C. communis is widely distributed in China, [60] but no records are reported stalk, often hirsute-ciliate marginally, Taxonomy for its distribution in Qinghai, Xinjiang, and acute apically. Cyme inflorescence [6][116][167] Family: Commelinaceae Hainan, and Tibet . has one flower near the top, with dark Genus: Commelina L. blue petals and membranous sepals 5 Economic Importance mm long. Capsules are elliptic, 5–7 Description Commelina communis has caused serious mm, and two-valved. The two seeds Commelina communis is an annual damage in the orchards of northeastern in each valve are brown-yellow, 2–3 [96] herb with numerous branched, creeping China . C. communis is used in Chinese mm long, irregularly pitted, flat-sided, [60] stems, which are minutely pubescent herbal medicine. and truncate at one end[60][167]. distally, 1 m long. Leaves are lanceolate to ovate-lanceolate, 3–9 cm long and Related Species 1.5–2 cm wide. Involucral bracts Habitat C. diffusa occurs in forests, thickets C. communis prefers moist, shady forest grow opposite the leaves. Bracts are and moist areas of southern China and edges. -
Pseudodidymellaceae Fam. Nov.: Phylogenetic Affiliations Of
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 87: 187–206 (2017). Pseudodidymellaceae fam. nov.: Phylogenetic affiliations of mycopappus-like genera in Dothideomycetes A. Hashimoto1,2, M. Matsumura1,3, K. Hirayama4, R. Fujimoto1, and K. Tanaka1,3* 1Faculty of Agriculture and Life Sciences, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan; 2Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan; 3The United Graduate School of Agricultural Sciences, Iwate University, 18–8 Ueda 3 chome, Morioka, 020-8550, Japan; 4Apple Experiment Station, Aomori Prefectural Agriculture and Forestry Research Centre, 24 Fukutami, Botandaira, Kuroishi, Aomori, 036-0332, Japan *Correspondence: K. Tanaka, [email protected] Abstract: The familial placement of four genera, Mycodidymella, Petrakia, Pseudodidymella, and Xenostigmina, was taxonomically revised based on morphological observations and phylogenetic analyses of nuclear rDNA SSU, LSU, tef1, and rpb2 sequences. ITS sequences were also provided as barcode markers. A total of 130 sequences were newly obtained from 28 isolates which are phylogenetically related to Melanommataceae (Pleosporales, Dothideomycetes) and its relatives. Phylo- genetic analyses and morphological observation of sexual and asexual morphs led to the conclusion that Melanommataceae should be restricted to its type genus Melanomma, which is characterised by ascomata composed of a well-developed, carbonaceous peridium, and an aposphaeria-like coelomycetous asexual morph. Although Mycodidymella, Petrakia, Pseudodidymella, and Xenostigmina are phylogenetically related to Melanommataceae, these genera are characterised by epi- phyllous, lenticular ascomata with well-developed basal stroma in their sexual morphs, and mycopappus-like propagules in their asexual morphs, which are clearly different from those of Melanomma. -
Commercialized Non-Camellia Tea Traditional Function And
Acta Pharmaceutica Sinica B 2014;4(3):227–237 Chinese Pharmaceutical Association Institute of Materia Medica, Chinese Academy of Medical Sciences Acta Pharmaceutica Sinica B www.elsevier.com/locate/apsb www.sciencedirect.com ORIGINAL ARTICLE Commercialized non-Camellia tea: traditional function and molecular identification Ping Longa,b, Zhanhu Cuia,b, Yingli Wanga,b, Chunhong Zhangb, Na Zhangb, Minhui Lia,b,n, Peigen Xiaoc,d,nn aNational Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China bBaotou Medical College, Baotou 014060, China cSchool of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China dInstitute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China Received 10 November 2013; revised 16 December 2013; accepted 10 February 2014 KEY WORDS Abstract Non-Camellia tea is a part of the colorful Chinese tea culture, and is also widely used as beverage and medicine in folk for disease prevention and treatment. In this study, 37 samples were Non-Camellia tea; Traditional function; collected, including 33 kinds of non-Camellia teas and 4 kinds of teas (Camellia). Traditional functions of Molecular identification; non-Camellia teas were investigated. Furthermore, non-Camellia teas of original plants were characterized BLASTN; and identified by molecular methods. Four candidate regions (rbcL, matK, ITS2, psbA-trnH) were Phylogenetic tree amplified by polymerase chain reaction. In addition, DNA barcodes were used for the first time to discriminate the commercial non-Camellia tea and their adulterants, and to evaluate their safety. This study showed that BLASTN and the relevant phylogenetic tree are efficient tools for identification of the commercial non-Camellia tea and their adulterants. -
Evidence That the Gemmae of Papulaspora Sepedonioides Are Neotenous Perithecia in the Melanosporales
Mycologia, 100(4), 2008, pp. 626–635. DOI: 10.3852/08-001R # 2008 by The Mycological Society of America, Lawrence, KS 66044-8897 Evidence that the gemmae of Papulaspora sepedonioides are neotenous perithecia in the Melanosporales Marie L. Davey1 modates ascomycetes producing asexual thallodic Akihiko Tsuneda propagules that at some point in their development Randolph S. Currah are heterogenous and differentiated into a core of Department of Biological Sciences, University of Alberta, enlarged, often darkly pigmented central cells that is Edmonton, Alberta, Canada T6G 2E9 surrounded by smaller, mostly hyaline sheathing cells (Weresub and LeClair 1971, Kirk et al 2001). The diagnostic propagules of Papulaspora have been Abstract: Papulaspora sepedonioides produces large referred to as bulbils, small sclerotia, conidia and multicellular gemmae with several, thick-walled cen- papulospores (Weresub and LeClair 1971) but herein tral cells enclosed within a sheath of smaller thin- are classified under the generalized term ‘‘gemmae’’, walled cells. Phylogenetic analysis of the large subunit in reference to their function as multicellular asexual rDNA indicates P. sepedonioides has affinities to the reproductive structures. Melanosporales (Hypocreomycetidae). The develop- The phylogenetic affinities of members of Papulas- ment of gemmae in P. sepedonioides was characterized pora are largely unresolved, although Papulaspora by light and scanning and transmission electron anamorphs have been reported for species of microscopy and was similar to previous ontogenetic Melanospora and Ceratostoma (Ceratostomataceae, studies of ascoma development in the Melanospor- Melanosporales sensu Hibbett et al 2007) (Bainier ales. However instead of giving rise to ascogenous 1907, Hotson 1917, Weresub and LeClair 1971) and a tissues the central cells of the incipient gemma species of Chaetomium (Chaetomiaceae, Sordariales) became darkly pigmented, thick walled and filled (Zang et al 2004). -
Camellia Sinensis (L.) Kuntze (7)
“As Primeiras Camélias Asiáticas a Chegarem a Portugal e à Europa”. Armando Oliveira António Sanches (1623), Planisfério. 1 O género Camellia L. está praticamente confinado ao sul da China (80% de todas as espécies) e à região do sul da Ásia que inclui as Filipinas e as zonas do noroeste do arquipélago da Indonésia, com a inclusão do Japão e partes da Coreia. Estima-se que praticamente 20% das espécies de Camellia se encontram no Vietname. A região fitogeográfica do sul da Ásia é composta pela China, Laos, Mianmar (ex-Birmânia), Tailândia, Camboja e Vietname. 1 (Huang et al., 2016) 106 • A proposta taxonómica de Linnaeus (1835), “Sistema Natura”, permitiu-nos obter uma mais fácil e rápida identificação das espécies. • Baseia-se numa classificação dita binomial que atribui nomes compostos por duas palavras, quase sempre recorrendo ao latim. Adaptado de Fairy Lake Botanical Garden Flora (2018) 2 Reino Filo Classe Ordem Família Género Espécies/Variedades Cultivares Camellia caudata Wall. (11) Camellia drupifera Lour. (4) Dicotiledóneas Antófitas Camellia euryoides Lindl. (7) Vegetal (a semente Ericales (25) Theaceaes (12) Camellia (102+40) (que dão flor) contém 2 ou mais Camellia japonica L. cotilédones) Camellia kissi Wall. (11) Camellia oleifera Abel (6) Camellia rosaeflora Hook. (1) Camellia sasanqua Thunb. Camellia sinensis (L.) Kuntze (7) • A 1ª parte do nome é referente ao género da espécie em causa e a 2ª parte identifica a espécie dentro de um determinado género. Adaptado de Fairy Lake Botanical Garden Flora (2018) 2 Ordem Família -
Allometric Models for Aboveground Biomass of Six Common Subtropical Shrubs and Small Trees
Allometric Models for Aboveground Biomass of Six Common Subtropical Shrubs and Small Trees Cheng Huang Anhui Agricultural University https://orcid.org/0000-0002-4163-745X Chun Feng Anhui Agricultural University Yuhua Ma Anhui Agricultural University Hua Liu Anhui Agricultural University Zhaocheng Wang Anhui Agricultural University Shaobo Yang Anhui Agriculture University: Anhui Agricultural University Wenjing Wang Anhui Agricultural University Songling Fu Anhui Agricultural University Han Y. H. Chen ( [email protected] ) Anhui Agricultural University https://orcid.org/0000-0001-9477-5541 Research Keywords: aboveground biomass, allometric models, shrubs; small trees, subtropical forests Posted Date: June 8th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-573830/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Loading [MathJax]/jax/output/CommonHTML/jax.js Page 1/14 Abstract Background: The aboveground biomass (AGB) of shrubs and small trees is the main component for the productivity and carbon storage of understory vegetation in subtropical natural secondary forests. However, few allometric models exist for shrubs and small trees, even though they can accurately evaluate understory vegetative biomass. Methods: To estimate the ABG of six common shrub and small tree species, we utilized harvesting to sample 206 individuals, and developed species-specic and multi-species allometric models based on four predictors including height (H), stem diameter (D), crown area (Ca), and wood density (ρ). Results: As expected, these six shrub and small tree species possessed greater biomass in their stems in contrast to branches, with the lowest biomass in the leaves. Species-specic allometric models that employed D and the combined variables of D2H and ρDH as predictors, could accurately estimate the components and total AGB, with R2 values ranging from between 0.602 and 0.971. -
Once Again on Discosphaerina
Karstenia 39:59-63, 1999 Once again on Discosphaerina LENNART HOLM, KERSTIN HOLM and MARGARET E. BARR HOLM, L., HOLM, K. & BARR, M.E. 1999: Once again on Discosphaerina.- Karste nia 39: 59-63. Helsinki. ISSN 0453-3402 Discosphaerina Hohn. is reinstated as a valid generic name, typified by D. discophora Hohn., for some small, amerosporous, unitunicate Ascomycetes that fit best within the family Hyponectriaceae. The new combinations D. niesslii (Kunze ex Rehm) L. Holm, K. Holm & M.E. Barr, and D. lonicerae (Dearn. & Barthol.) L. Holm, K. Holm & M.E. Barr are made, and the new species D. sorbi L. Holm, K. Holm & M.E. Barr is described. Guignardia Viala & Ravaz, nom. cons., is accepted for similar small, am erosporous but bitunicate Ascomycetes in the Dothideaceae. Key words: Ascomycetes, Hyponectriaceae, Dothideaceae, taxonomy, morphology Lennart Holm & Kerstin Holm, Botanical Museum, Uppsala University, No rbyvdgen 16, SE-752 36 Uppsala, Sweden Margaret E. Barr, 9475 inverness Road, Sidney, British Columbia, Canada V8L 5GB Introduction Within the past few years, we have been puzzled Arwidssonia B. Erikss. is similar by habit in by several amerosporous ascomycetes that lack leaves and by the collabent lenticular ascomata a defined ostiole and periphyses, and open irreg that open by three to five lobes. Arwidssonia ularly between cells in the upper region of as empetri (Rehm) B. Erikss. is a phragmosporous comata. The small ascomata are sphaeroid, often taxon. The hymenium does exhibit paraphyses, collabent on drying, and are visible as dark sunk and the ascus apices are amyloid after pretreat en dots in the affected tissues. -
Kadoorie Farm and Botanic Garden, 2004. Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001
Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 Kadoorie Farm and Botanic Garden in collaboration with Zhongshan University Zhaoqing Forestry Bureau February 2004 South China Forest Biodiversity Survey Report Series: No. 37 (Online Simplified Version) Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 Editors Bosco P.L. Chan, Ng Sai-Chit, Michael W.N. Lau and John R. Fellowes Contributors Kadoorie Farm and Botanic Garden: Michael W.N. Lau (ML) Bosco P.L. Chan (BC) John R. Fellowes (JRF) Lee Kwok Shing (LKS) Ng Sai-Chit (NSC) Roger Kendrick (RCK) Zhongshan University: Chang Hong (CH) Voluntary specialists: Graham T. Reels (GTR) Keith D.P. Wilson (KW) Background The present report details the findings of a trip to Northwest Guangdong by members of Kadoorie Farm and Botanic Garden (KFBG) in Hong Kong and their colleagues, as part of KFBG's South China Biodiversity Conservation Programme (renamed the China Programme in 2003). The overall aim of the programme is to minimise the loss of forest biodiversity in the region, and the emphasis in the first three years is on gathering up-to-date information on the distribution and status of fauna and flora. Citation Kadoorie Farm and Botanic Garden, 2004. Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 . South China Forest Biodiversity Survey Report Series (Online Simplified Version): No. 37. KFBG, Hong Kong SAR, ii + 33 pp. Copyright Kadoorie Farm and Botanic Garden Corporation Lam Kam Road, Tai Po, N.T., Hong Kong February 2004 - i - Contents Objectives …………………………………………………………………………………….