Chembl – Tech Track Session
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ensembl Genomes: Extending Ensembl Across the Taxonomic Space P
Published online 1 November 2009 Nucleic Acids Research, 2010, Vol. 38, Database issue D563–D569 doi:10.1093/nar/gkp871 Ensembl Genomes: Extending Ensembl across the taxonomic space P. J. Kersey*, D. Lawson, E. Birney, P. S. Derwent, M. Haimel, J. Herrero, S. Keenan, A. Kerhornou, G. Koscielny, A. Ka¨ ha¨ ri, R. J. Kinsella, E. Kulesha, U. Maheswari, K. Megy, M. Nuhn, G. Proctor, D. Staines, F. Valentin, A. J. Vilella and A. Yates EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK Received August 14, 2009; Revised September 28, 2009; Accepted September 29, 2009 ABSTRACT nucleotide archives; numerous other genomes exist in states of partial assembly and annotation; thousands of Ensembl Genomes (http://www.ensemblgenomes viral genomes sequences have also been generated. .org) is a new portal offering integrated access to Moreover, the increasing use of high-throughput genome-scale data from non-vertebrate species sequencing technologies is rapidly reducing the cost of of scientific interest, developed using the Ensembl genome sequencing, leading to an accelerating rate of genome annotation and visualisation platform. data production. This not only makes it likely that in Ensembl Genomes consists of five sub-portals (for the near future, the genomes of all species of scientific bacteria, protists, fungi, plants and invertebrate interest will be sequenced; but also the genomes of many metazoa) designed to complement the availability individuals, with the possibility of providing accurate and of vertebrate genomes in Ensembl. Many of the sophisticated annotation through the similarly low-cost databases supporting the portal have been built in application of functional assays. -
Abstracts Genome 10K & Genome Science 29 Aug - 1 Sept 2017 Norwich Research Park, Norwich, Uk
Genome 10K c ABSTRACTS GENOME 10K & GENOME SCIENCE 29 AUG - 1 SEPT 2017 NORWICH RESEARCH PARK, NORWICH, UK Genome 10K c 48 KEYNOTE SPEAKERS ............................................................................................................................... 1 Dr Adam Phillippy: Towards the gapless assembly of complete vertebrate genomes .................... 1 Prof Kathy Belov: Saving the Tasmanian devil from extinction ......................................................... 1 Prof Peter Holland: Homeobox genes and animal evolution: from duplication to divergence ........ 2 Dr Hilary Burton: Genomics in healthcare: the challenges of complexity .......................................... 2 INVITED SPEAKERS ................................................................................................................................. 3 Vertebrate Genomics ........................................................................................................................... 3 Alex Cagan: Comparative genomics of animal domestication .......................................................... 3 Plant Genomics .................................................................................................................................... 4 Ksenia Krasileva: Evolution of plant Immune receptors ..................................................................... 4 Andrea Harper: Using Associative Transcriptomics to predict tolerance to ash dieback disease in European ash trees ............................................................................................................ -
The ELIXIR Core Data Resources: Fundamental Infrastructure for The
Supplementary Data: The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences The “Supporting Material” referred to within this Supplementary Data can be found in the Supporting.Material.CDR.infrastructure file, DOI: 10.5281/zenodo.2625247 (https://zenodo.org/record/2625247). Figure 1. Scale of the Core Data Resources Table S1. Data from which Figure 1 is derived: Year 2013 2014 2015 2016 2017 Data entries 765881651 997794559 1726529931 1853429002 2715599247 Monthly user/IP addresses 1700660 2109586 2413724 2502617 2867265 FTEs 270 292.65 295.65 289.7 311.2 Figure 1 includes data from the following Core Data Resources: ArrayExpress, BRENDA, CATH, ChEBI, ChEMBL, EGA, ENA, Ensembl, Ensembl Genomes, EuropePMC, HPA, IntAct /MINT , InterPro, PDBe, PRIDE, SILVA, STRING, UniProt ● Note that Ensembl’s compute infrastructure physically relocated in 2016, so “Users/IP address” data are not available for that year. In this case, the 2015 numbers were rolled forward to 2016. ● Note that STRING makes only minor releases in 2014 and 2016, in that the interactions are re-computed, but the number of “Data entries” remains unchanged. The major releases that change the number of “Data entries” happened in 2013 and 2015. So, for “Data entries” , the number for 2013 was rolled forward to 2014, and the number for 2015 was rolled forward to 2016. The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences 1 Figure 2: Usage of Core Data Resources in research The following steps were taken: 1. API calls were run on open access full text articles in Europe PMC to identify articles that mention Core Data Resource by name or include specific data record accession numbers. -
Cryptic Inoviruses Revealed As Pervasive in Bacteria and Archaea Across Earth’S Biomes
ARTICLES https://doi.org/10.1038/s41564-019-0510-x Corrected: Author Correction Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes Simon Roux 1*, Mart Krupovic 2, Rebecca A. Daly3, Adair L. Borges4, Stephen Nayfach1, Frederik Schulz 1, Allison Sharrar5, Paula B. Matheus Carnevali 5, Jan-Fang Cheng1, Natalia N. Ivanova 1, Joseph Bondy-Denomy4,6, Kelly C. Wrighton3, Tanja Woyke 1, Axel Visel 1, Nikos C. Kyrpides1 and Emiley A. Eloe-Fadrosh 1* Bacteriophages from the Inoviridae family (inoviruses) are characterized by their unique morphology, genome content and infection cycle. One of the most striking features of inoviruses is their ability to establish a chronic infection whereby the viral genome resides within the cell in either an exclusively episomal state or integrated into the host chromosome and virions are continuously released without killing the host. To date, a relatively small number of inovirus isolates have been extensively studied, either for biotechnological applications, such as phage display, or because of their effect on the toxicity of known bacterial pathogens including Vibrio cholerae and Neisseria meningitidis. Here, we show that the current 56 members of the Inoviridae family represent a minute fraction of a highly diverse group of inoviruses. Using a machine learning approach lever- aging a combination of marker gene and genome features, we identified 10,295 inovirus-like sequences from microbial genomes and metagenomes. Collectively, our results call for reclassification of the current Inoviridae family into a viral order including six distinct proposed families associated with nearly all bacterial phyla across virtually every ecosystem. -
Learning Protein Constitutive Motifs from Sequence Data Je´ Roˆ Me Tubiana, Simona Cocco, Re´ Mi Monasson*
TOOLS AND RESOURCES Learning protein constitutive motifs from sequence data Je´ roˆ me Tubiana, Simona Cocco, Re´ mi Monasson* Laboratory of Physics of the Ecole Normale Supe´rieure, CNRS UMR 8023 & PSL Research, Paris, France Abstract Statistical analysis of evolutionary-related protein sequences provides information about their structure, function, and history. We show that Restricted Boltzmann Machines (RBM), designed to learn complex high-dimensional data and their statistical features, can efficiently model protein families from sequence information. We here apply RBM to 20 protein families, and present detailed results for two short protein domains (Kunitz and WW), one long chaperone protein (Hsp70), and synthetic lattice proteins for benchmarking. The features inferred by the RBM are biologically interpretable: they are related to structure (residue-residue tertiary contacts, extended secondary motifs (a-helixes and b-sheets) and intrinsically disordered regions), to function (activity and ligand specificity), or to phylogenetic identity. In addition, we use RBM to design new protein sequences with putative properties by composing and ’turning up’ or ’turning down’ the different modes at will. Our work therefore shows that RBM are versatile and practical tools that can be used to unveil and exploit the genotype–phenotype relationship for protein families. DOI: https://doi.org/10.7554/eLife.39397.001 Introduction In recent years, the sequencing of many organisms’ genomes has led to the collection of a huge number of protein sequences, which are catalogued in databases such as UniProt or PFAM Finn et al., 2014). Sequences that share a common ancestral origin, defining a family (Figure 1A), *For correspondence: are likely to code for proteins with similar functions and structures, providing a unique window into [email protected] the relationship between genotype (sequence content) and phenotype (biological features). -
DECIPHER: Harnessing Local Sequence Context to Improve Protein Multiple Sequence Alignment Erik S
Wright BMC Bioinformatics (2015) 16:322 DOI 10.1186/s12859-015-0749-z RESEARCH ARTICLE Open Access DECIPHER: harnessing local sequence context to improve protein multiple sequence alignment Erik S. Wright1,2 Abstract Background: Alignment of large and diverse sequence sets is a common task in biological investigations, yet there remains considerable room for improvement in alignment quality. Multiple sequence alignment programs tend to reach maximal accuracy when aligning only a few sequences, and then diminish steadily as more sequences are added. This drop in accuracy can be partly attributed to a build-up of error and ambiguity as more sequences are aligned. Most high-throughput sequence alignment algorithms do not use contextual information under the assumption that sites are independent. This study examines the extent to which local sequence context can be exploited to improve the quality of large multiple sequence alignments. Results: Two predictors based on local sequence context were assessed: (i) single sequence secondary structure predictions, and (ii) modulation of gap costs according to the surrounding residues. The results indicate that context-based predictors have appreciable information content that can be utilized to create more accurate alignments. Furthermore, local context becomes more informative as the number of sequences increases, enabling more accurate protein alignments of large empirical benchmarks. These discoveries became the basis for DECIPHER, a new context-aware program for sequence alignment, which outperformed other programs on largesequencesets. Conclusions: Predicting secondary structure based on local sequence context is an efficient means of breaking the independence assumption in alignment. Since secondary structure is more conserved than primary sequence, it can be leveraged to improve the alignment of distantly related proteins. -
Deep Profiling of Protease Substrate Specificity Enabled by Dual Random and Scanned Human Proteome Substrate Phage Libraries
Deep profiling of protease substrate specificity enabled by dual random and scanned human proteome substrate phage libraries Jie Zhoua, Shantao Lib, Kevin K. Leunga, Brian O’Donovanc, James Y. Zoub,d, Joseph L. DeRisic,d, and James A. Wellsa,d,e,1 aDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158; bDepartment of Biomedical Data Science, Stanford University, Stanford, CA 94305; cDepartment of Biochemistry and Biophysics, University of California, San Francisco, CA 94158; dChan Zuckerberg Biohub, San Francisco, CA 94158; and eDepartment of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158 Edited by Benjamin F. Cravatt, Scripps Research Institute, La Jolla, CA, and approved August 19, 2020 (received for review May 11, 2020) Proteolysis is a major posttranslational regulator of biology inside lysate and miss low abundance proteins and those simply not and outside of cells. Broad identification of optimal cleavage sites expressed in cell lines tested that typically express only half their and natural substrates of proteases is critical for drug discovery genomes (13). and to understand protease biology. Here, we present a method To potentially screen a larger and more diverse sequence that employs two genetically encoded substrate phage display space, investigators have developed genetically encoded substrate libraries coupled with next generation sequencing (SPD-NGS) that phage (14, 15) or yeast display libraries (16, 17). Degenerate DNA allows up to 10,000-fold deeper sequence coverage of the typical six- sequences (up to 107) encoding random peptides were fused to a to eight-residue protease cleavage sites compared to state-of-the-art phage or yeast coat protein gene for a catch-and-release strategy synthetic peptide libraries or proteomics. -
1 Codon-Level Information Improves Predictions of Inter-Residue Contacts in Proteins 2 by Correlated Mutation Analysis 3
1 Codon-level information improves predictions of inter-residue contacts in proteins 2 by correlated mutation analysis 3 4 5 6 7 8 Etai Jacob1,2, Ron Unger1,* and Amnon Horovitz2,* 9 10 11 1The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat- 12 Gan, 52900, 2Department of Structural Biology 13 Weizmann Institute of Science, Rehovot 7610001, Israel 14 15 16 *To whom correspondence should be addressed: 17 Amnon Horovitz ([email protected]) 18 Ron Unger ([email protected]) 19 1 20 Abstract 21 Methods for analysing correlated mutations in proteins are becoming an increasingly 22 powerful tool for predicting contacts within and between proteins. Nevertheless, 23 limitations remain due to the requirement for large multiple sequence alignments (MSA) 24 and the fact that, in general, only the relatively small number of top-ranking predictions 25 are reliable. To date, methods for analysing correlated mutations have relied exclusively 26 on amino acid MSAs as inputs. Here, we describe a new approach for analysing 27 correlated mutations that is based on combined analysis of amino acid and codon MSAs. 28 We show that a direct contact is more likely to be present when the correlation between 29 the positions is strong at the amino acid level but weak at the codon level. The 30 performance of different methods for analysing correlated mutations in predicting 31 contacts is shown to be enhanced significantly when amino acid and codon data are 32 combined. 33 2 34 The effects of mutations that disrupt protein structure and/or function at one site are often 35 suppressed by mutations that occur at other sites either in the same protein or in other 36 proteins. -
Annual Scientific Report 2013 on the Cover Structure 3Fof in the Protein Data Bank, Determined by Laponogov, I
EMBL-European Bioinformatics Institute Annual Scientific Report 2013 On the cover Structure 3fof in the Protein Data Bank, determined by Laponogov, I. et al. (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nature Structural & Molecular Biology 16, 667-669. © 2014 European Molecular Biology Laboratory This publication was produced by the External Relations team at the European Bioinformatics Institute (EMBL-EBI) A digital version of the brochure can be found at www.ebi.ac.uk/about/brochures For more information about EMBL-EBI please contact: [email protected] Contents Introduction & overview 3 Services 8 Genes, genomes and variation 8 Molecular atlas 12 Proteins and protein families 14 Molecular and cellular structures 18 Chemical biology 20 Molecular systems 22 Cross-domain tools and resources 24 Research 26 Support 32 ELIXIR 36 Facts and figures 38 Funding & resource allocation 38 Growth of core resources 40 Collaborations 42 Our staff in 2013 44 Scientific advisory committees 46 Major database collaborations 50 Publications 52 Organisation of EMBL-EBI leadership 61 2013 EMBL-EBI Annual Scientific Report 1 Foreword Welcome to EMBL-EBI’s 2013 Annual Scientific Report. Here we look back on our major achievements during the year, reflecting on the delivery of our world-class services, research, training, industry collaboration and European coordination of life-science data. The past year has been one full of exciting changes, both scientifically and organisationally. We unveiled a new website that helps users explore our resources more seamlessly, saw the publication of ground-breaking work in data storage and synthetic biology, joined the global alliance for global health, built important new relationships with our partners in industry and celebrated the launch of ELIXIR. -
EMBL-EBI Now and in the Future
SureChEMBL: Open Patent Data Chemaxon UGM, Budapest 21/05/2014 Mark Davies ChEMBL Group, EMBL-EBI EMBL-EBI Resources Genes, genomes & variation European Nucleotide Ensembl European Genome-phenome Archive Archive Ensembl Genomes Metagenomics portal 1000 Genomes Gene, protein & metabolite expression ArrayExpress Metabolights Expression Atlas PRIDE Literature & Protein sequences, families & motifs ontologies InterPro Pfam UniProt Europe PubMed Central Gene Ontology Experimental Factor Molecular structures Ontology Protein Data Bank in Europe Electron Microscopy Data Bank Chemical biology ChEMBL ChEBI Reactions, interactions & pathways Systems BioModels BioSamples IntAct Reactome MetaboLights Enzyme Portal ChEMBL – Data for Drug Discovery 1. Scientific facts 3. Insight, tools and resources for translational drug discovery >Thrombin MAHVRGLQLPGCLALAALCSLVHSQHVFLAPQQARSLLQRVRRANTFLEEVRKGNLE Compound RECVEETCSYEEAFEALESSTATDVFWAKYTACETARTPRDKLAACLEGNCAEGLGT NYRGHVNITRSGIECQLWRSRYPHKPEINSTTHPGADLQENFCRNPDSSTTGPWCYT TDPTVRRQECSIPVCGQDQVTVAMTPRSEGSSVNLSPPLEQCVPDRGQQYQGRLAVT THGLPCLAWASAQAKALSKHQDFNSAVQLVENFCRNPDGDEEGVWCYVAGKPGDFGY CDLNYCEEAVEEETGDGLDEDSDRAIEGRTATSEYQTFFNPRTFGSGEADCGLRPLF EKKSLEDKTERELLESYIDGRIVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDR WVLTAAHCLLYPPWDKNFTENDLLVRIGKHSRTRYERNIEKISMLEKIYIHPRYNWR ENLDRDIALMKLKKPVAFSDYIHPVCLPDRETAASLLQAGYKGRVTGWGNLKETWTA NVGKGQPSVLQVVNLPIVERPVCKDSTRIRITDNMFCAGYKPDEGKRGDACEGDSGG Ki = 4.5nM PFVMKSPFNNRWYQMGIVSWGEGCDRDGKYGFYTHVFRLKKWIQKVIDQFGE Bioactivity data Assay/Target APTT = 11 min. 2. Organization, integration, -
Global Cellular Response to Chemotherapy- Induced
RESEARCH ARTICLE elife.elifesciences.org Global cellular response to chemotherapy- induced apoptosis Arun P Wiita1,2, Etay Ziv3,4, Paul J Wiita5, Anatoly Urisman1,6, Olivier Julien1, Alma L Burlingame1, Jonathan S Weissman3,7, James A Wells1,3* 1Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States; 2Department of Laboratory Medicine, University of California, San Francisco, San Francisco, United States; 3Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States; 4Department of Radiology, University of California, San Francisco, San Francisco, United States; 5Department of Physics, The College of New Jersey, Ewing, United States; 6Department of Pathology, University of California, San Francisco, San Francisco, United States; 7Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States Abstract How cancer cells globally struggle with a chemotherapeutic insult before succumbing to apoptosis is largely unknown. Here we use an integrated systems-level examination of transcription, translation, and proteolysis to understand these events central to cancer treatment. As a model we study myeloma cells exposed to the proteasome inhibitor bortezomib, a first-line therapy. Despite robust transcriptional changes, unbiased quantitative proteomics detects production of only a few critical anti-apoptotic proteins against a background of general translation inhibition. Simultaneous ribosome profiling further reveals potential translational regulation of stress response genes. Once the apoptotic machinery is engaged, degradation by caspases is largely independent of upstream bortezomib effects. Moreover, previously uncharacterized non-caspase proteolytic events also participate in cellular deconstruction. Our systems-level data also support co-targeting the anti-apoptotic regulator HSF1 to promote cell death by bortezomib. -
Origin of a Folded Repeat Protein from an Intrinsically Disordered Ancestor
RESEARCH ARTICLE Origin of a folded repeat protein from an intrinsically disordered ancestor Hongbo Zhu, Edgardo Sepulveda, Marcus D Hartmann, Manjunatha Kogenaru†, Astrid Ursinus, Eva Sulz, Reinhard Albrecht, Murray Coles, Jo¨ rg Martin, Andrei N Lupas* Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tu¨ bingen, Germany Abstract Repetitive proteins are thought to have arisen through the amplification of subdomain- sized peptides. Many of these originated in a non-repetitive context as cofactors of RNA-based replication and catalysis, and required the RNA to assume their active conformation. In search of the origins of one of the most widespread repeat protein families, the tetratricopeptide repeat (TPR), we identified several potential homologs of its repeated helical hairpin in non-repetitive proteins, including the putatively ancient ribosomal protein S20 (RPS20), which only becomes structured in the context of the ribosome. We evaluated the ability of the RPS20 hairpin to form a TPR fold by amplification and obtained structures identical to natural TPRs for variants with 2–5 point mutations per repeat. The mutations were neutral in the parent organism, suggesting that they could have been sampled in the course of evolution. TPRs could thus have plausibly arisen by amplification from an ancestral helical hairpin. DOI: 10.7554/eLife.16761.001 *For correspondence: andrei. [email protected] Introduction † Present address: Department Most present-day proteins arose through the combinatorial shuffling and differentiation of a set of of Life Sciences, Imperial College domain prototypes. In many cases, these prototypes can be traced back to the root of cellular life London, London, United and have since acted as the primary unit of protein evolution (Anantharaman et al., 2001; Kingdom Apic et al., 2001; Koonin, 2003; Kyrpides et al., 1999; Orengo and Thornton, 2005; Ponting and Competing interests: The Russell, 2002; Ranea et al., 2006).