Continuum Mechanics Course Notes

Total Page:16

File Type:pdf, Size:1020Kb

Continuum Mechanics Course Notes MAE 5100 - Continuum Mechanics Course Notes Prof. Brandon Runnels, University of Colorado Colorado Springs Contents LECTURE 1 0 Introduction 1.1 0.1 Motivation . 1.1 0.2 Notation . 1.2 0.2.1 Sets . 1.2 0.2.2 Proof notation . 1.2 1 Tensor Analysis 1.2 1.1 Index notation and the Einstein summation convention . 1.3 1.1.1 Vector equality . 1.4 1.1.2 Inner product . 1.4 1.1.3 Kronecker delta . 1.4 1.1.4 Components of a vector . 1.5 1.1.5 Norm of a vector . 1.5 1.1.6 Permutation tensor . 1.5 1.1.7 Cross product . 1.5 LECTURE 2 1.1.8 Notation . 2.1 1.2 Mappings and tensors . 2.1 1.2.1 Second order tensors . 2.1 1.2.2 Index notation . 2.2 1.2.3 Dyadic product . 2.2 1.2.4 Tensor components . 2.3 1.2.5 Higher order tensors . 2.3 1.2.6 Transpose . 2.3 1.2.7 Trace (first invariant) . 2.3 1.2.8 Determinant (third invariant) . 2.4 LECTURE 3 1.2.9 Inverse . 3.1 1.2.10 The special orthogonal group . 3.1 1.3 Tensor calculus . 3.1 1.3.1 Gradient . 3.2 1.3.2 Divergence . 3.2 1.3.3 Laplacian . 3.2 1.3.4 Curl . 3.3 1.3.5 Gateaux derivatives . 3.3 1.3.6 Notation . 3.3 1.3.7 Evaluating derivatives . 3.4 LECTURE 4 1.4 The divergence theorem . 4.1 1.5 Curvilinear coordinates . 4.2 All content © 2016-2018, Brandon Runnels 1 MAE 5100 - Continuum Mechanics Course Notes University of Colorado Colorado Springs https://canvas.uccs.edu/courses/22031 1.5.1 The metric tensor . 4.2 1.5.2 Orthonormalized basis . 4.3 1.5.3 Change of basis . 4.3 1.6 Calculus in curvilinear coordinates . 4.4 1.6.1 Gradient . 4.4 LECTURE 5 1.6.2 Divergence . 5.1 1.6.3 Curl . 5.2 1.7 Tensor transformation rules . 5.2 2 Kinematics of Deformation 5.3 LECTURE 6 2.1 Eulerian and Lagrangian frames . 6.1 2.2 Time-dependent deformation . 6.2 2.2.1 The material derivative . 6.3 2.3 Kinematics of local deformation . 6.4 LECTURE 7 2.4 Metric changes . 7.1 2.4.1 Change of length . 7.1 2.4.2 Change of angle . 7.1 2.4.3 Determinant identities . 7.2 2.4.4 Change of volume . 7.2 2.4.5 Change of area . 7.3 LECTURE 8 2.5 Tensor decomposition . 8.2 2.5.1 Eigenvalues and Eigenvectors . 8.2 2.5.2 Symmetric and positive definite tensors . 8.3 2.5.3 Spectral theorem (symmetric tensors) . 8.3 LECTURE 9 2.5.4 Spectral theorem (general case) . 9.2 2.5.5 Functions of tensors . 9.2 2.5.6 Polar decomposition . 9.3 2.6 Principal deformations . 9.3 LECTURE 10 2.7 Compatibility . 10.1 2.7.1 Continuous case . 10.1 2.7.2 Discontinuous case (Hadamard) . 10.3 2.8 Other deformation measures . 10.4 LECTURE 11 2.9 Linearized kinematics . 11.1 2.9.1 Linearized metric changes . 11.2 2.9.2 Small strain compatibility . 11.4 LECTURE 12 2.10 The spatial/Eulerian picture . 12.1 3 Conservation Laws 12.2 LECTURE 13 3.1 Conservation of Mass . 13.1 3.1.1 Control volume . 13.2 3.2 Conservation of linear momentum . 13.2 3.2.1 Forces, tractions, and stress tensors . 13.2 LECTURE 14 3.2.2 Balance laws . 14.1 3.2.3 Navier-Stokes momentum equations . 14.2 LECTURE 15 3.3 Conservation of angular momentum . 15.1 LECTURE 16 3.4 Conservation of energy . 16.1 3.4.1 Energetic quantities . 16.1 All content © 2016-2018, Brandon Runnels 2 MAE 5100 - Continuum Mechanics Course Notes University of Colorado Colorado Springs https://canvas.uccs.edu/courses/22031 3.4.2 Balance laws . 16.3 LECTURE 17 3.4.3 Power-conjugate pairs . 17.1 3.5 Second law of thermodynamics . 17.2 3.5.1 Introduction to statistical thermodynamics and entropy . 17.2 LECTURE 18 3.5.2 Internal entropy generation . 18.2 3.5.3 Continuum formulation . 18.3 3.6 Review and summary . 18.4 LECTURE 19 4 Constitutive Theory 19.1 4.1 Introduction to the calculus of variations . 19.1 LECTURE 20 4.1.1 Stationarity condition . 20.1 4.2 Variational formulation of linear momentum balance . 20.2 LECTURE 21 4.3 Material frame indifference . 21.1 4.4 Elastic modulus tensor . 21.1 4.5 Elastic material models . 21.2 4.5.1 Useful identities . 21.2 LECTURE 22 4.5.2 Pseudo-Linear . 22.1 4.5.3 Compressible neo-Hookean . 22.1 LECTURE 23 4.6 Internal constraints . 23.1 4.6.1 Review of Lagrange multipliers . 23.1 4.6.2 Examples of internal constraints . 23.2 4.6.3 Lagrange multipliers in the variational formulation of balance laws . 23.2 4.7 Linearized constitutive theory . 23.3 4.7.1 Major & minor symmetry and Voigt notation . 23.4 4.7.2 Material symmetry . 23.5 LECTURE 24 4.7.3 The Cauchy-Navier equation and linear elastodynamics . 24.1 4.8 Thermodynamics of solids and the Coleman-Noll framework . 24.1 LECTURE 25 4.8.1 Other thermodynamic potentials . ..
Recommended publications
  • An Approximate Nodal Is Developed to Calculate the Change of •Laatio Constants Induced by Point Defect* in Hep Metals
    1 - INTBOPUCTIOB the elastic conatants.aa well aa othernmechanieal pro partita of* IC/79/lW irradiated materiale (are vary sensitive to tne oonoantration of i- INTERNAL REPORT (Limited distribution) rradiation produced point defeota.One of the firat eatimatee of thla effect waa done by Dienea [l"J who aiaply averaged over the whole la- International Atomic Energy Agency ttice the locally changed interatoalo bonds due to the pxesense of" and the defect.With tola nodal ha predioted an inoreaee of the alaatle United Nations Educational Scientific and Cultural Organization constant* of about 10* par atonic f of interatitlala in Ou and a da. oreaee of l]t par at. % of vacanolea. INTERNATIONAL CENTRE FOE THEORETICAL PHYSICS Later on,experlaental etudiea by Konlg at al.[2]and wanal lilgar* very large decrease a of about 5O}( per at.)t of Vrenlcal dafaota.fha theory waa than iaproved in order to relate the change of a la* tic con a tan t a to the defect lnduoed change of force oonatanta and tno equivalent aethoda were devalopedi the energy-»athod of ludwig [4] CHANGE OF ELASTIC CONSTANTS and the t-aatrix method of Slllot et al.C ?]. INDUCED BY FOIMT DEFECTS IN hep CRYSTALS * Iheoretioal eetlnates for oublo oryetala have been oarrie* out by Ludwig[4] for the caae of vacancleafby Piatorlueld for intarati- Carlos Tome •• tiala and by Sederloaa et al.t?] for duabell interotitiala. International Centre for Theoretical Physics, Trieste, Italy. Re thaoretloal work baa been done ao far for hexagonal cryatmlaj and the experimental neaeurentanta (available only for Kg) ax* eona- ABSTRACT what crude t8,9i,ayan though in the last few.
    [Show full text]
  • Gravitation in the Surface Tension Model of Spacetime
    IARD 2018 IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1239 (2019) 012010 doi:10.1088/1742-6596/1239/1/012010 Gravitation in the surface tension model of spacetime H A Perko1 1Office 14, 140 E. 4th Street, Loveland, CO, USA 80537 E-mail: [email protected] Abstract. A mechanical model of spacetime was introduced at a prior conference for describing perturbations of stress, strain, and displacement within a spacetime exhibiting surface tension. In the prior work, equations governing spacetime dynamics described by the model show some similarities to fundamental equations of quantum mechanics. Similarities were identified between the model and equations of Klein-Gordon, Schrödinger, Heisenberg, and Weyl. The introduction did not explain how gravitation arises within the model. In this talk, the model will be summarized, corrected, and extended for comparison with general relativity. An anisotropic elastic tensor is proposed as a constitutive relation between stress energy and curvature instead of the traditional Einstein constant. Such a relation permits spatial geometric terms in the mechanical model to resemble quantum mechanics while temporal terms and the overall structure of tensor equations remain consistent with general relativity. This work is in its infancy; next steps are to show how the anisotropic tensor affects cosmological predictions and to further explore if geometry and quantum mechanics can be related in more than just appearance. 1. Introduction The focus of this research is to find a mechanism by which spacetime might curl, warp, or re-configure at small scales to provide a geometrical explanation for quantum mechanics while remaining consistent with gravity and general relativity.
    [Show full text]
  • Arxiv:1704.01012V1 [Cond-Mat.Mtrl-Sci] 1 Apr 2017 Is the Second Most Important Material After Silicon
    Symmetry and Piezoelectricity: Evaluation of α-Quartz coefficients C. Tannous Laboratoire des Sciences et Techniques de l'Information, de la Communication et de la Connaissance, UMR-6285 CNRS, Brest Cedex3, FRANCE Piezoelectric coefficients of α-Quartz are derived from symmetry arguments based on Neumann's Principle with three different methods: Fumi, Landau-Lifshitz and Royer-Dieulesaint. While Fumi method is tedious and Landau-Lifshitz requires additional physical principles to evaluate the piezo- electric coefficients, Royer-Dieulesaint is the most elegant and most efficient of the three techniques. PACS numbers: 77.65.-j, 77.65.Bn, 77.84.-s Keywords: Piezoelectricity, piezoelectric constants, piezoelectric materials I. INTRODUCTION AND MOTIVATION Physics students are exposed to various types of symmetry [1] and conservation laws in Graduate/Undergraduate Mechanics and Electromagnetism with Lorentz transformation and Gauge symmetries, in Graduate/Undergraduate Quantum Mechanics during the study of Atoms and Molecules. In undergraduate courses such as Special Relativity, Lorentz Transformation is used to unify symmetries between Mechanics and Electromagnetism. In Graduate High Energy Physics, the CPT theorem where C denotes charge conjugation (Q ! −Q), P is parity (r ! −r) and T is time reversal (t ! −t) as well as Gauge symmetry (Ai ! Ai + @iχ) provide an important insight into the role of symmetry in the building blocks of matter and unification of fundamental forces and interaction between particles. Graduate/undergraduate Solid State Physics provide a direct illustration of how Crystal Symmetry plays a fun- damental role in the determination of physical constants and transport coefficients as well as conservation and sim- plification of physical laws. The relation between symmetry and dispersion relations through Kramers theorem (T symmetry) is another example of the power of symmetry in Solid State physics.
    [Show full text]
  • A Some Basic Rules of Tensor Calculus
    A Some Basic Rules of Tensor Calculus The tensor calculus is a powerful tool for the description of the fundamentals in con- tinuum mechanics and the derivation of the governing equations for applied prob- lems. In general, there are two possibilities for the representation of the tensors and the tensorial equations: – the direct (symbolic) notation and – the index (component) notation The direct notation operates with scalars, vectors and tensors as physical objects defined in the three dimensional space. A vector (first rank tensor) a is considered as a directed line segment rather than a triple of numbers (coordinates). A second rank tensor A is any finite sum of ordered vector pairs A = a b + ... +c d. The scalars, vectors and tensors are handled as invariant (independent⊗ from the choice⊗ of the coordinate system) objects. This is the reason for the use of the direct notation in the modern literature of mechanics and rheology, e.g. [29, 32, 49, 123, 131, 199, 246, 313, 334] among others. The index notation deals with components or coordinates of vectors and tensors. For a selected basis, e.g. gi, i = 1, 2, 3 one can write a = aig , A = aibj + ... + cidj g g i i ⊗ j Here the Einstein’s summation convention is used: in one expression the twice re- peated indices are summed up from 1 to 3, e.g. 3 3 k k ik ik a gk ∑ a gk, A bk ∑ A bk ≡ k=1 ≡ k=1 In the above examples k is a so-called dummy index. Within the index notation the basic operations with tensors are defined with respect to their coordinates, e.
    [Show full text]
  • Cauchy Tetrahedron Argument and the Proofs of the Existence of Stress Tensor, a Comprehensive Review, Challenges, and Improvements
    CAUCHY TETRAHEDRON ARGUMENT AND THE PROOFS OF THE EXISTENCE OF STRESS TENSOR, A COMPREHENSIVE REVIEW, CHALLENGES, AND IMPROVEMENTS EHSAN AZADI1 Abstract. In 1822, Cauchy presented the idea of traction vector that contains both the normal and tangential components of the internal surface forces per unit area and gave the tetrahedron argument to prove the existence of stress tensor. These great achievements form the main part of the foundation of continuum mechanics. For about two centuries, some versions of tetrahedron argument and a few other proofs of the existence of stress tensor are presented in every text on continuum mechanics, fluid mechanics, and the relevant subjects. In this article, we show the birth, importance, and location of these Cauchy's achievements, then by presenting the formal tetrahedron argument in detail, for the first time, we extract some fundamental challenges. These conceptual challenges are related to the result of applying the conservation of linear momentum to any mass element, the order of magnitude of the surface and volume terms, the definition of traction vectors on the surfaces that pass through the same point, the approximate processes in the derivation of stress tensor, and some others. In a comprehensive review, we present the different tetrahedron arguments and the proofs of the existence of stress tensor, discuss the challenges in each one, and classify them in two general approaches. In the first approach that is followed in most texts, the traction vectors do not exactly define on the surfaces that pass through the same point, so most of the challenges hold. But in the second approach, the traction vectors are defined on the surfaces that pass exactly through the same point, therefore some of the relevant challenges are removed.
    [Show full text]
  • A Manifold Learning Approach to Data-Driven Computational Mechanics
    A Manifold Learning Approach to Data-Driven Computational Mechanics Ruben Ibanez, Emmanuelle Abisset-Chavanne, Jose Vicente Aguado, David Gonzalez, Elías Cueto, Francisco Chinesta To cite this version: Ruben Ibanez, Emmanuelle Abisset-Chavanne, Jose Vicente Aguado, David Gonzalez, Elías Cueto, et al.. A Manifold Learning Approach to Data-Driven Computational Mechanics. 13e colloque national en calcul des structures, Université Paris-Saclay, May 2017, Giens, Var, France. hal-01926477 HAL Id: hal-01926477 https://hal.archives-ouvertes.fr/hal-01926477 Submitted on 19 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CSMA 2017 13ème Colloque National en Calcul des Structures 15-19 Mai 2017, Presqu’île de Giens (Var) A Manifold Learning Approach to Data-Driven Computational Me- chanics R. Ibañez1, E. Abisset-Chavanne1, J.V. Aguado1, D. Gonzalez2, E. Cueto2, F. Chinesta1 1 ICI Institute, Ecole Centrale Nantes, {Ruben.Ibanez-Pinillo,Emmanuelle.Abisset-Chavanne,Jose.Aguado-Lopez,Francisco.Chinesta}@ec-nantes.fr 2 Aragon Institute of Engineering Research, Universidad de Zaragoza, Spain, {gonzal;ecueto}@unizar.es Résumé — Standard simulation in classical mechanics is based on the use of two very different types of equations.
    [Show full text]
  • Stress Components Cauchy Stress Tensor
    Mechanics and Design Chapter 2. Stresses and Strains Byeng D. Youn System Health & Risk Management Laboratory Department of Mechanical & Aerospace Engineering Seoul National University Seoul National University CONTENTS 1 Traction or Stress Vector 2 Coordinate Transformation of Stress Tensors 3 Principal Axis 4 Example 2019/1/4 Seoul National University - 2 - Chapter 2 : Stresses and Strains Traction or Stress Vector; Stress Components Traction Vector Consider a surface element, ∆ S , of either the bounding surface of the body or the fictitious internal surface of the body as shown in Fig. 2.1. Assume that ∆ S contains the point. The traction vector, t, is defined by Δf t = lim (2-1) ∆→S0∆S Fig. 2.1 Definition of surface traction 2019/1/4 Seoul National University - 3 - Chapter 2 : Stresses and Strains Traction or Stress Vector; Stress Components Traction Vector (Continued) It is assumed that Δ f and ∆ S approach zero but the fraction, in general, approaches a finite limit. An even stronger hypothesis is made about the limit approached at Q by the surface force per unit area. First, consider several different surfaces passing through Q all having the same normal n at Q as shown in Fig. 2.2. Fig. 2.2 Traction vector t and vectors at Q Then the tractions on S , S ′ and S ′′ are the same. That is, the traction is independent of the surface chosen so long as they all have the same normal. 2019/1/4 Seoul National University - 4 - Chapter 2 : Stresses and Strains Traction or Stress Vector; Stress Components Stress vectors on three coordinate plane Let the traction vectors on planes perpendicular to the coordinate axes be t(1), t(2), and t(3) as shown in Fig.
    [Show full text]
  • On the Geometric Character of Stress in Continuum Mechanics
    Z. angew. Math. Phys. 58 (2007) 1–14 0044-2275/07/050001-14 DOI 10.1007/s00033-007-6141-8 Zeitschrift f¨ur angewandte c 2007 Birkh¨auser Verlag, Basel Mathematik und Physik ZAMP On the geometric character of stress in continuum mechanics Eva Kanso, Marino Arroyo, Yiying Tong, Arash Yavari, Jerrold E. Marsden1 and Mathieu Desbrun Abstract. This paper shows that the stress field in the classical theory of continuum mechanics may be taken to be a covector-valued differential two-form. The balance laws and other funda- mental laws of continuum mechanics may be neatly rewritten in terms of this geometric stress. A geometrically attractive and covariant derivation of the balance laws from the principle of energy balance in terms of this stress is presented. Mathematics Subject Classification (2000). Keywords. Continuum mechanics, elasticity, stress tensor, differential forms. 1. Motivation This paper proposes a reformulation of classical continuum mechanics in terms of bundle-valued exterior forms. Our motivation is to provide a geometric description of force in continuum mechanics, which leads to an elegant geometric theory and, at the same time, may enable the development of space-time integration algorithms that respect the underlying geometric structure at the discrete level. In classical mechanics the traditional approach is to define all the kinematic and kinetic quantities using vector and tensor fields. For example, velocity and traction are both viewed as vector fields and power is defined as their inner product, which is induced from an appropriately defined Riemannian metric. On the other hand, it has long been appreciated in geometric mechanics that force should not be viewed as a vector, but rather a one-form.
    [Show full text]
  • Stress and Strain
    Stress and strain Stress Lecture 2 – Loads, traction, stress Mechanical Engineering Design - N.Bonora 2018 Stress and strain Introduction • One important step in mechanical design is the determination of the internal stresses, once the external load are assigned, and to assess that they do not exceed material allowables. • Internal stress - that differ from surface or contact stresses that are generated where the load are applied - are those associated with the internal forces that are created by external loads for a body in equilibrium. • The same concept holds for complex geometry and loads. To evaluate these stresses is not a a slender block of material; (a) under the action of external straightforward matter, suffice to say here that forces F, (b) internal normal stress σ, (c) internal normal and they will invariably be non-uniform over a shear stress surface, that is, the stress at some particle will differ from the stress at a neighbouring particle Mechanical Engineering Design - N.Bonora 2018 Stress and strain Tractions and the Physical Meaning of Internal Stress • All materials have a complex molecular microstructure and each molecule exerts a force on each of its neighbors. The complex interaction of countless molecular forces maintains a body in equilibrium in its unstressed state. • When the body is disturbed and deformed into a new equilibrium position, net forces act. An imaginary plane can be drawn through the material • The force exerted by the molecules above the plane on the material below the plane and can be attractive or repulsive. Different planes can be taken through the same portion of material and, in general, a different force will act on the plane.
    [Show full text]
  • 2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations
    2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations 2.1 Introduction In metal forming and machining processes, the work piece is subjected to external forces in order to achieve a certain desired shape. Under the action of these forces, the work piece undergoes displacements and deformation and develops internal forces. A measure of deformation is defined as strain. The intensity of internal forces is called as stress. The displacements, strains and stresses in a deformable body are interlinked. Additionally, they all depend on the geometry and material of the work piece, external forces and supports. Therefore, to estimate the external forces required for achieving the desired shape, one needs to determine the displacements, strains and stresses in the work piece. This involves solving the following set of governing equations : (i) strain-displacement relations, (ii) stress- strain relations and (iii) equations of motion. In this chapter, we develop the governing equations for the case of small deformation of linearly elastic materials. While developing these equations, we disregard the molecular structure of the material and assume the body to be a continuum. This enables us to define the displacements, strains and stresses at every point of the body. We begin our discussion on governing equations with the concept of stress at a point. Then, we carry out the analysis of stress at a point to develop the ideas of stress invariants, principal stresses, maximum shear stress, octahedral stresses and the hydrostatic and deviatoric parts of stress. These ideas will be used in the next chapter to develop the theory of plasticity.
    [Show full text]
  • Math45061: Solution Sheet1 Iii
    1 MATH45061: SOLUTION SHEET1 III 1.) Balance of angular momentum about a particular point Z requires that (R Z) ρV˙ d = LZ . ZΩ − × V The moment about the point Z can be decomposed into torque due to the body force, F , and surface traction T : LZ = (R Z) ρF d + (R Z) T d ; ZΩ − × V Z∂Ω − × S and so (R Z) ρV˙ d = (R Z) ρF d + (R Z) T d . (1) ZΩ − × V ZΩ − × V Z∂Ω − × S If linear momentum is in balance then ρV˙ d = ρF d + T d ; ZΩ V ZΩ V Z∂Ω S and taking the cross product with the constant vector Z Y , which can be brought inside the integral, − (Z Y ) ρV˙ d = (Z Y ) ρF d + (Z Y ) T d . (2) ZΩ − × V ZΩ − × V Z∂Ω − × S Adding equation (2) to equation (1) and simplifying (R Y ) ρV˙ d = (R Y ) ρF d + (R Y ) T d . ZΩ − × V ZΩ − × V Z∂Ω − × S Thus, the angular momentum about any point Y is in balance. If body couples, L, are present then they need to be included in the angular mo- mentum balance as an additional term on the right-hand side L d . ZΩ V This term will be unaffected by the argument above, so we need to demonstrate that the body couple distribution is independent of the axis about which the angular momentum balance is taken. For a body couple to be independent of the body force, the forces that constitute the couple must be in balance because otherwise an additional contribution to the body force would result.
    [Show full text]
  • Irreducible Matrix Resolution of the Elasticity Tensor for Symmetry Systems
    Irreducible matrix resolution of the elasticity tensor for symmetry systems Yakov Itin Inst. Mathematics, Hebrew Univ. of Jerusalem, Givat Ram, Jerusalem 91904, Israel, and Jerusalem College of Technology, Jerusalem 91160, Israel, email: [email protected] December 11, 2018, file ElastMatrix1.tex Abstract In linear elasticity, a fourth order elasticity (stiffness) tensor of 21 independent com- ponents completely describes deformation properties of a material. Due to Voigt, this tensor is conventionally represented by a 6 × 6 symmetric matrix. This classical matrix representation does not conform with the irreducible decomposition of the elasticity tensor. In this paper, we construct two alternative matrix representations. The 3 × 7 matrix representation is in a correspondence with the permutation transformations of indices and with the general linear transformation of the basis. An additional repre- sentation of the elasticity tensor by three 3 × 3 matrices is suitable for description the irreducible decomposition under the rotation transformations. We present the elasticity tensor of all crystal systems in these compact matrix forms and construct the hierarchy diagrams based on this representation. Key index words: anisotropic elasticity tensor, irreducible decomposition, matrix repre- sentation. Mathematics Subject Classification: 74B05, 15A69, 15A72. Contents arXiv:1812.03367v1 [physics.class-ph] 8 Dec 2018 1 Introduction2 2 Matrix representations3 2.1 Voigt’s representation . .4 2.2 An alternative representation . .4 1 Y. Itin Irreducible matrix resolution of the elasticity tensor 2 3 Irreducible decomposition5 3.1 GL(3)-decomposition . .5 3.2 SO(3; R)-decomposition . .8 3.2.1 Cauchy part . .8 3.2.2 Non-Cauchy part . 10 3.3 Irreducible decomposition .
    [Show full text]