Continuum Mechanics Course Notes

Continuum Mechanics Course Notes

MAE 5100 - Continuum Mechanics Course Notes Prof. Brandon Runnels, University of Colorado Colorado Springs Contents LECTURE 1 0 Introduction 1.1 0.1 Motivation . 1.1 0.2 Notation . 1.2 0.2.1 Sets . 1.2 0.2.2 Proof notation . 1.2 1 Tensor Analysis 1.2 1.1 Index notation and the Einstein summation convention . 1.3 1.1.1 Vector equality . 1.4 1.1.2 Inner product . 1.4 1.1.3 Kronecker delta . 1.4 1.1.4 Components of a vector . 1.5 1.1.5 Norm of a vector . 1.5 1.1.6 Permutation tensor . 1.5 1.1.7 Cross product . 1.5 LECTURE 2 1.1.8 Notation . 2.1 1.2 Mappings and tensors . 2.1 1.2.1 Second order tensors . 2.1 1.2.2 Index notation . 2.2 1.2.3 Dyadic product . 2.2 1.2.4 Tensor components . 2.3 1.2.5 Higher order tensors . 2.3 1.2.6 Transpose . 2.3 1.2.7 Trace (first invariant) . 2.3 1.2.8 Determinant (third invariant) . 2.4 LECTURE 3 1.2.9 Inverse . 3.1 1.2.10 The special orthogonal group . 3.1 1.3 Tensor calculus . 3.1 1.3.1 Gradient . 3.2 1.3.2 Divergence . 3.2 1.3.3 Laplacian . 3.2 1.3.4 Curl . 3.3 1.3.5 Gateaux derivatives . 3.3 1.3.6 Notation . 3.3 1.3.7 Evaluating derivatives . 3.4 LECTURE 4 1.4 The divergence theorem . 4.1 1.5 Curvilinear coordinates . 4.2 All content © 2016-2018, Brandon Runnels 1 MAE 5100 - Continuum Mechanics Course Notes University of Colorado Colorado Springs https://canvas.uccs.edu/courses/22031 1.5.1 The metric tensor . 4.2 1.5.2 Orthonormalized basis . 4.3 1.5.3 Change of basis . 4.3 1.6 Calculus in curvilinear coordinates . 4.4 1.6.1 Gradient . 4.4 LECTURE 5 1.6.2 Divergence . 5.1 1.6.3 Curl . 5.2 1.7 Tensor transformation rules . 5.2 2 Kinematics of Deformation 5.3 LECTURE 6 2.1 Eulerian and Lagrangian frames . 6.1 2.2 Time-dependent deformation . 6.2 2.2.1 The material derivative . 6.3 2.3 Kinematics of local deformation . 6.4 LECTURE 7 2.4 Metric changes . 7.1 2.4.1 Change of length . 7.1 2.4.2 Change of angle . 7.1 2.4.3 Determinant identities . 7.2 2.4.4 Change of volume . 7.2 2.4.5 Change of area . 7.3 LECTURE 8 2.5 Tensor decomposition . 8.2 2.5.1 Eigenvalues and Eigenvectors . 8.2 2.5.2 Symmetric and positive definite tensors . 8.3 2.5.3 Spectral theorem (symmetric tensors) . 8.3 LECTURE 9 2.5.4 Spectral theorem (general case) . 9.2 2.5.5 Functions of tensors . 9.2 2.5.6 Polar decomposition . 9.3 2.6 Principal deformations . 9.3 LECTURE 10 2.7 Compatibility . 10.1 2.7.1 Continuous case . 10.1 2.7.2 Discontinuous case (Hadamard) . 10.3 2.8 Other deformation measures . 10.4 LECTURE 11 2.9 Linearized kinematics . 11.1 2.9.1 Linearized metric changes . 11.2 2.9.2 Small strain compatibility . 11.4 LECTURE 12 2.10 The spatial/Eulerian picture . 12.1 3 Conservation Laws 12.2 LECTURE 13 3.1 Conservation of Mass . 13.1 3.1.1 Control volume . 13.2 3.2 Conservation of linear momentum . 13.2 3.2.1 Forces, tractions, and stress tensors . 13.2 LECTURE 14 3.2.2 Balance laws . 14.1 3.2.3 Navier-Stokes momentum equations . 14.2 LECTURE 15 3.3 Conservation of angular momentum . 15.1 LECTURE 16 3.4 Conservation of energy . 16.1 3.4.1 Energetic quantities . 16.1 All content © 2016-2018, Brandon Runnels 2 MAE 5100 - Continuum Mechanics Course Notes University of Colorado Colorado Springs https://canvas.uccs.edu/courses/22031 3.4.2 Balance laws . 16.3 LECTURE 17 3.4.3 Power-conjugate pairs . 17.1 3.5 Second law of thermodynamics . 17.2 3.5.1 Introduction to statistical thermodynamics and entropy . 17.2 LECTURE 18 3.5.2 Internal entropy generation . 18.2 3.5.3 Continuum formulation . 18.3 3.6 Review and summary . 18.4 LECTURE 19 4 Constitutive Theory 19.1 4.1 Introduction to the calculus of variations . 19.1 LECTURE 20 4.1.1 Stationarity condition . 20.1 4.2 Variational formulation of linear momentum balance . 20.2 LECTURE 21 4.3 Material frame indifference . 21.1 4.4 Elastic modulus tensor . 21.1 4.5 Elastic material models . 21.2 4.5.1 Useful identities . 21.2 LECTURE 22 4.5.2 Pseudo-Linear . 22.1 4.5.3 Compressible neo-Hookean . 22.1 LECTURE 23 4.6 Internal constraints . 23.1 4.6.1 Review of Lagrange multipliers . 23.1 4.6.2 Examples of internal constraints . 23.2 4.6.3 Lagrange multipliers in the variational formulation of balance laws . 23.2 4.7 Linearized constitutive theory . 23.3 4.7.1 Major & minor symmetry and Voigt notation . 23.4 4.7.2 Material symmetry . 23.5 LECTURE 24 4.7.3 The Cauchy-Navier equation and linear elastodynamics . 24.1 4.8 Thermodynamics of solids and the Coleman-Noll framework . 24.1 LECTURE 25 4.8.1 Other thermodynamic potentials . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    114 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us