Part X: Appendices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mammalian Chromosomes Volume8
AN ATLAS OF MAMMALIAN CHROMOSOMES VOLUME8 T.C.HSU KURT BENIRSCHKE Section of Cytology, Department Department of Obstetries of Biology, The University of & Gynecology, School of Medicine, Texas M. D. Anderson Hospital and University of California, San Diego, Tumor Institute, Houston, Texas La Jolla, California SPRINGER SCIENCE+BUSINESS MEDIA, LLC 1974 ~ All rights reserved, especially that of translation into foreign languages. It is also forbidden to reproduce this book, either whole or in part, by photomechanical means (photostat, microfilm, and/or microcard) or by other procedure without written permission from Springer Science+Business Media, LLC Library of Congress Catalog Card Number 67-19307 © 1974 by Springer Science+Business Media New York Originally published by Springer-Verlag New York Heidelberg Berlin in 1974 ISBN 978-1-4684-7995-9 ISBN 978-1-4615-6432-4 (eBook) DOI 10.1007/978-1-4615-6432-4 Introduction to Volume 8 This series of Mammalian Chromosomes started before the advent of many revolutionary procedures for chromosome characterization. During the last few years, conventional karyotyping was found to be inadequate because the various ban ding techniques ofIer much more precise information. Unfortu nately, it is not feasible to induce banding from old slides, so that wh at was reported with conventional straining methods must remain until new material can be obtained. We present, in this volume, a few of these. We consider presenting the ban ding patterns of a few more important species such as man, mouse, rat, etc., in our future volumes. As complete sets (male and female ) of karyotypes are more and more diffi cult to come by, we begin to place two species in the same genus on one plate. -
Implications of Climate Change for Food-Caching Species
Demographic and Environmental Drivers of Canada Jay Population Dynamics in Algonquin Provincial Park, ON by Alex Odenbach Sutton A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Alex O. Sutton, April 2020 ABSTRACT Demographic and Environmental Drivers of Canada Jay Population Dynamics in Algonquin Provincial Park, ON Alex Sutton Advisor: University of Guelph, 2020 Ryan Norris Knowledge of the demographic and environmental drivers of population growth throughout the annual cycle is essential to understand ongoing population change and forecast future population trends. Resident species have developed a suite of behavioural and physiological adaptations that allow them to persist in seasonal environments. Food-caching is one widespread behavioural mechanism that involves the deferred consumption of a food item and special handling to conserve it for future use. However, once a food item is stored, it can be exposed to environmental conditions that can either degrade or preserve its quality. In this thesis, I combine a novel framework that identifies relevant environmental conditions that could cause cached food to degrade over time with detailed long-term demographic data collected for a food-caching passerine, the Canada jay (Perisoreus canadensis), in Algonquin Provincial Park, ON. In my first chapter, I develop a framework proposing that the degree of a caching species’ susceptibility to climate change depends primarily on the duration of storage and the perishability of food stored. I then summarize information from the field of food science to identify relevant climatic variables that could cause cached food to degrade. -
Final Report, Joint Fire Science Program, AFP 2004-2
Final report, Joint Fire Science Program, AFP 2004-2 Project Number: 04-2-1-95 Project Title: The influences of post-fire salvage logging on wildlife populations. Project Location: Davis Lake Fire, Deschutes National Forest in central Oregon Co-Principal Investigators: John P. Hayes and John Cissel. Contact Information: (541) 737-0946; [email protected] This final report details findings to date, and lists proposed and accomplished deliverables. Details on the study background, objectives, and methods are presented in the Annual Report of the Co-operative Forest Ecology Research (CFER) program (at http://www.fsl.orst.edu/cfer/research/pubs/06AnnualReport/pdfs/Manning.pdf) which can be considered a contribution to the final report. SUMMARY OF FINDINGS TO DATE Bird population responses • A total of 34 species of birds registered during two seasons of point counts. Of these, 15 species and one genus were abundant enough to warrant analysis. • Significant effects of salvage logging on bird abundance were demonstrated for 6 species. • For species whose abundances did differ, differences were probably related to effects on foraging and nesting habitat components. • Several species (brown creepers, yellow-rumped warblers, and 2 species of woodpeckers) were more abundant in unsalvaged stands. The western wood pewee also trended in that direction. While this response might be expected for woodpeckers and creepers which feed primarily on insects found in dead trees, and which nest in cavities of dead trees, the responses of warblers and pewees is harder to explain. • Species which feed and nest primarily on the ground, specifically the fox sparrow and the dark-eyed junco, were more abundant in salvaged stands. -
Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2. -
Status of Birds of Oak Creek Wildlife Area
Status of Birds of Oak Creek Wildlife Area Abundance Seasonal Occurance *Species range included in C = Common r= Resident Oak Creek WLA but no U = Uncommon s = Summer Visitor documentation of species R = Rare w= Winter Visitor m=Migrant Common Name Genus Species Status Common Loon* Gavia immer Rw Pied-billed Grebe Podilymbus podiceps Cr Horned Grebe Podiceps auritus Um Eared Grebe Podiceps nigricollis Us Western Grebe Aechmorphorus occidentalis Us Clark's Grebe* Aechmorphorus clarkii Rm Double-crested Cormorant Phalocrorax auritus Um American Bittern* Botaurus lentiginosus Us Great Blue Heron Arden herodias Cr Black-crowned Night-Heron Nycticorax nycticorax Cr Tundra Swan Cygnus columbiaus Rw Trumpeter Swan Cygnus buccinator Am Greater White-fronted Anser albifrons Rm Goose* Snow Goose Chen caerulescens Rw Canada Goose Branta canadensis Cr Green-winged Teal Anas crecca Ur Mallard Anas Platyrynchos Cr Northen Pintail Anas acuta Us Blue-winged Teal Anas discors Rm Cinnamon Teal Anas cyanoptera Us Northern Shoveler Anas clypeata Cr Gadwall* Anas strepere Us Eurasian Wigeon* Anas Penelope Rw American Wigeon Anas Americana Cr Wood Duck Aix sponsa Ur Redhead Aythya americana Uw Canvasback Aythya valisineria Uw Ring-necked Duck Aythya collaris Uw Greater Scaup* Aythya marila Rw Leser Scaup Aythya affinis Uw Common Goldeneye Bucephala clangula Uw Barrow's Goldeneye Bucephala islandica Rw Bufflehead Bucephala albeola Cw Harlequin Duck Histrionicus histrionicus Rs White-winged Scoter Melanitta fusca Rm Hooded Merganser Lophodytes Cucullatus Rw -
Red Tree Vole High Priority Site Management Recommendation
High-Priority Site Management Recommendations for the Red Tree Vole (Arborimus longicaudus) Version 1.0 April 2016 Photo by Nick Hatch Author Rob Huff is the conservation planning coordinator for the interagency special status and sensitive species program, USDI Oregon/Washington Bureau of Land Management and USDA Region 6 Forest Service, PO Box 2965, Portland, OR 97208. USDI Bureau of Land Management, Oregon USDI Bureau of Land Management, California USDA Forest Service Region 6 USDA Forest Service Region 5 Executive summary Management status The red tree vole (Arborimus longicaudus) is a small arboreal microtine that is endemic to the coniferous forests of western Oregon and northwestern California (Howell 1926, Maser 1966, Verts and Carraway 1998). Red tree voles are a category C survey and manage species under the Northwest Forest Plan (USDA and USDI 2001). As such, surveys are required for their nests prior to habitat-disturbing activities, but not all red tree vole sites require protection to provide for a reasonable assurance of species persistence. Sites needing protection to meet that persistence objective and sites not needing protection are called high-priority and non-high priority sites, respectively. Few attempts have been made to discriminate between high- and non-high priority sites; therefore most red tree vole sites are currently protected. The US Fish and Wildlife Service determined that listing the red tree vole as a distinct population segment north of the Siuslaw River in the Oregon Coast Ranges under the Endangered Species Act was warranted but precluded (USDI FWS 2011). The population segment was added to the USFWS candidate species list which triggered the inclusion of red tree voles within this geographic area to the BLM special status and Forest Service sensitive species lists. -
MAMMALS of WASHINGTON Order DIDELPHIMORPHIA
MAMMALS OF WASHINGTON If there is no mention of regions, the species occurs throughout the state. Order DIDELPHIMORPHIA (New World opossums) DIDELPHIDAE (New World opossums) Didelphis virginiana, Virginia Opossum. Wooded habitats. Widespread in W lowlands, very local E; introduced from E U.S. Order INSECTIVORA (insectivores) SORICIDAE (shrews) Sorex cinereus, Masked Shrew. Moist forested habitats. Olympic Peninsula, Cascades, and NE corner. Sorex preblei, Preble's Shrew. Conifer forest. Blue Mountains in Garfield Co.; rare. Sorex vagrans, Vagrant Shrew. Marshes, meadows, and moist forest. Sorex monticolus, Montane Shrew. Forests. Cascades to coast, NE corner, and Blue Mountains. Sorex palustris, Water Shrew. Mountain streams and pools. Olympics, Cascades, NE corner, and Blue Mountains. Sorex bendirii, Pacific Water Shrew. Marshes and stream banks. W of Cascades. Sorex trowbridgii, Trowbridge's Shrew. Forests. Cascades to coast. Sorex merriami, Merriam's Shrew. Shrub steppe and grasslands. Columbia basin and foothills of Blue Mountains. Sorex hoyi, Pygmy Shrew. Many habitats. NE corner (known only from S Stevens Co.), rare. TALPIDAE (moles) Neurotrichus gibbsii, Shrew-mole. Moist forests. Cascades to coast. Scapanus townsendii, Townsend's Mole. Meadows. W lowlands. Scapanus orarius, Coast Mole. Most habitats. W lowlands, central E Cascades slopes, and Blue Mountains foothills. Order CHIROPTERA (bats) VESPERTILIONIDAE (vespertilionid bats) Myotis lucifugus, Little Brown Myotis. Roosts in buildings and caves. Myotis yumanensis, Yuma Myotis. All habitats near water, roosting in trees, buildings, and caves. Myotis keenii, Keen's Myotis. Forests, roosting in tree cavities and cliff crevices. Olympic Peninsula. Myotis evotis, Long-eared Myotis. Conifer forests, roosting in tree cavities, caves and buildings; also watercourses in arid regions. -
Federal Register/Vol. 76, No. 198
63720 Federal Register / Vol. 76, No. 198 / Thursday, October 13, 2011 / Proposed Rules DEPARTMENT OF THE INTERIOR and Wildlife Service, Oregon Fish and sent a letter to Noah Greenwald, Center Wildlife Office, 2600 S.E. 98th Ave., for Biological Diversity, acknowledging Fish and Wildlife Service Suite 100, Portland, OR 97266; our receipt of the petition and providing telephone 503–231–6179; facsimile our determination that emergency 50 CFR Part 17 503–231–6195. Please submit any new listing was not warranted for the species [Docket No. FWS–R1–ES–2008–0086; information, materials, comments, or at that time. 92210–5008–3922–10–B2] questions concerning this finding to the On October 28, 2008, we published a above street address. 90-day finding for the dusky tree vole in Endangered and Threatened Wildlife FOR FURTHER INFORMATION CONTACT: Paul the Federal Register (73 FR 63919). We and Plants; 12-Month Finding on a Henson, Ph.D., Field Supervisor, U.S. found that the petition presented Petition To List a Distinct Population Fish and Wildlife Service, Oregon Fish substantial information indicating that Segment of the Red Tree Vole as and Wildlife Office (see ADDRESSES listing one of the following three entities Endangered or Threatened section). If you use a as endangered or threatened may be telecommunications device for the deaf warranted: AGENCY: Fish and Wildlife Service, (1) The dusky tree vole subspecies of (TDD), call the Federal Information Interior. the red tree vole; ACTION: Notice of 12-month petition Relay Service (FIRS) at 800–877–8339. (2) The North Oregon Coast DPS of finding. -
Induced Spatial Heterogeneity in Forest Canopies: Responses of Small Mammals
INDUCED SPATIAL HETEROGENEITY IN FOREST CANOPIES: RESPONSES OF SMALL MAMMALS ANDREW B. CAREY,1 Pacific Northwest Research Station, U.S. Forest Service, 3625 93rd Avenue S.W., Olympia, WA 98512, USA SUZANNE M. WILSON, Pacific Northwest Research Station, U.S. Forest Service, 3625 93rd Avenue S.W., Olympia, WA 98512, USA Abstract: We hypothesized that creating a mosaic of interspersed patches of different densities of canopy trees in a second-growth Douglas-fir (Pseudotsuga menziesiz) forest would accelerate development of biocomplexity (diversity in ecosystem structure, composition, and processes) by promoting spatial heterogeneity in understory, midstory, and canopy, compared to typical managed forests. In turn, increased spatial heterogeneity was expected to promote variety in fine-scale plant associations, foliage height diversity, and abundance of small mammals. Three years following treatment, understory species richness and herb cover were greater with variable-density thinning than without. Midstory and canopy species did not have time to develop significant differences between treatments. Variable-density thinning resulted in larger populations of deer mice (Peromyscus maniculatus), a species associated with understory shrubs; creeping voles (Microtus oregonz), a species associated with herbaceous vegetation, and vagrant shrews (Sorex vagrans), a species usually associated with openings but common in old growth. No forest-floor small-mammal species, including those associated with old-growth forest, declined in abundance following variable-density thinning. Annual variation in population size was not related to treatment. Variable-density thinning may accelerate the development of biocomplexity in second-growth forest by promoting spatial heterogeneity and compositional diversity in the plant community, increasing diversity and abundance of small mammals, and similarly affecting other vertebrate communities. -
Life History Account for Creeping Vole
California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group CREEPING VOLE Microtus oregoni Family: MURIDAE Order: RODENTIA Class: MAMMALIA M137 Written by: P. Brylski, J. Harris Reviewed by: H. Shellhammer Edited by: R. Duke, S. Granholm DISTRIBUTION, ABUNDANCE, AND SEASONALITY In California, the creeping vole is found in the northwest corner of the state from Del Norte and Siskiyou cos. south to Mendocino Co., including the extreme western portions of Tehama and Shasta cos. Common to abundant in herbaceous and shrubby understories of riparian and coniferous forests, including burned and clearcut areas. Also common at times in grassland and wet meadow habitats (Goertz 1964, Gashwiler 1972), as well as cropland. SPECIFIC HABITAT REQUIREMENTS Feeding: Feeds on grasses and forbs from ground surface, and some underground fungi (Maser et al. 1978). Cover: Seeks cover in ground litter, dense herbaceous undergrowth, and in burrows and log cavities. Burrows are excavated in soft soil. Occasionally, the burrows of other small mammals (particularly moles) are used. Reproduction: A nest of dried grass is constructed in burrow. Water: Probably does not require free water. Pattern: Prefers herbaceous habitat or shrublands with herbaceous openings, with soft soil for burrowing. Early successional stages of burned and cutover areas at the edge of coniferous forests support the highest densites. SPECIES LIFE HISTORY Activity Patterns: Yearlong activity. Mainly nocturnal, but probably forages near nest throughout the day. Seasonal Movements/Migration: None. Home Range: In Oregon clearcuts, home ranges averaged 0.06 ha (0.14 ac) for males, and 0.09 ha (0.22 ac) for females (Gashwiler 1972). -
Life History Account for Siskiyou Chipmunk
California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group SISKIYOU CHIPMUNK Tamias siskiyou Family: SCIURIDAE Order: RODENTIA Class: MAMMALIA M058 Written by: C. Polite, T. Harvey Reviewed by: M. White Edited by: M. White DISTRIBUTION, ABUNDANCE AND SEASONALITY Locally common, permanent resident of mixed conifer, redwood, and Douglas-fir forests from sea level to 2000 m (0-6562 ft) in the northwestern region of the Klamath and North Coast Ranges (Johnson 1943). SPECIFIC HABITAT REQUIREMENTS Feeding: Herbivorous; forages principally on log-strewn forest floors and into adjacent chaparral; climbs freely on trunks and lower branches of large trees (Johnson 1943). Food habits of T. siskiyou unknown, but the closely related T. senex feeds on fungi and seeds of forbs, shrubs, and conifers. Cover: Uses brush, logs, stumps, snags, thickets, rock piles, and burrows as cover. Reproduction: Lines burrows with dry grass and moss. Also uses tree nests while raising young. Water: No data found. Pattern: Uses conifer forests, especially in mature, open stands with shrubs and large-diameter logs, stumps, and snags available. SPECIES LIFE HISTORY Activity Patterns: Diurnal activity. May become torpid during winter months. Seasonal Movements/Migration: Not migratory Home Range: In Washington, home ranges of T. townsendii females overlapped very little, suggesting exclusive use (Meredith 1972). In Oregon, home ranges varied from 0.5-1.0 ha (1.25-2.47 ac) (Gashwiler 1965). Territory: No data found; probably same as home range (Meredith 1972). Reproduction: Breeds from April to July; most births occur in May. One litter/yr of 4-5 young (range 3-6). -
Northern Short−Tailed Shrew (Blarina Brevicauda)
FIELD GUIDE TO NORTH AMERICAN MAMMALS Northern Short−tailed Shrew (Blarina brevicauda) ORDER: Insectivora FAMILY: Soricidae Blarina sp. − summer coat Credit: painting by Nancy Halliday from Kays and Wilson's Northern Short−tailed Shrews have poisonous saliva. This enables Mammals of North America, © Princeton University Press them to kill mice and larger prey and paralyze invertebrates such as (2002) snails and store them alive for later eating. The shrews have very limited vision, and rely on a kind of echolocation, a series of ultrasonic "clicks," to make their way around the tunnels and burrows they dig. They nest underground, lining their nests with vegetation and sometimes with fur. They do not hibernate. Their day is organized around highly active periods lasting about 4.5 minutes, followed by rest periods that last, on average, 24 minutes. Population densities can fluctuate greatly from year to year and even crash, requiring several years to recover. Winter mortality can be as high as 90 percent in some areas. Fossils of this species are known from the Pliocene, and fossils representing other, extinct species of the genus Blarina are even older. Also known as: Short−tailed Shrew, Mole Shrew Sexual Dimorphism: Males may be slightly larger than females. Length: Range: 118−139 mm Weight: Range: 18−30 g http://www.mnh.si.edu/mna 1 FIELD GUIDE TO NORTH AMERICAN MAMMALS Least Shrew (Cryptotis parva) ORDER: Insectivora FAMILY: Soricidae Least Shrews have a repertoire of tiny calls, audible to human ears up to a distance of only 20 inches or so. Nests are of leaves or grasses in some hidden place, such as on the ground under a cabbage palm leaf or in brush.