Pre-AP Algebra II Math Team Summer Reading for 2021-2022

Total Page:16

File Type:pdf, Size:1020Kb

Pre-AP Algebra II Math Team Summer Reading for 2021-2022 Pre-AP Algebra II Math Team Summer Reading for 2021-2022 Just a little love from Mr. Hurry to you. 1 Table of Contents FORMULAS and DEFINITIONS for MATH TEAM .................. 3 Powers Quizzes .................................................................................. 3 Miscellaneous Algebraic Laws, Rules, Formulas, and Facts ............... 4 Factoring ............................................................................................... 7 Factoring out a greatest common monomial .......................................................... 7 Factoring a difference of two squares ................................................................... 7 Factoring a perfect square trinomials ................................................................... 7 Factoring a trinomial with a lead coefficient of “1” .................................................. 7 Trigonometric Identities and Laws .................................................... 8 Law of Sines & Cosines ................................................................................ 8 Fundamental Identities ............................................................................... 8 Math Team related FORMULAS and DEFINITIONS ........................... 9 Conic Sections (Circles & Parabolas) ................................................. 12 Circles ....................................................................................................... 12 Parabolas .................................................................................................. 13 Graphing “12 Basic Functions” .......................................................... 14 Quiz #1 - Summer Reading Packet ..................................................... 15 2 FORMULAS and DEFINITIONS for MATH TEAM Powers Quizzes Please memorize all of the values listed directly below. You will need to know these by heart without using a pencil to calculate them. You will be given timed tests over these values beginning the first week of school. If you are really fast, you can actually get bonus points (you may need them!). BTW, Flash cards are a great idea. If you are able to complete a quiz like below in under 35 seconds you will be labeled for all eternity as “The Daddy” and will go down in math lore with high honors. If you are able to complete the quiz in under 30 seconds you will be mentioned in the same sentence as “The Great One,” Hamilton Simpson, who not only helped put Homewood on the map as a great math team school, but who also holds the record at 27 seconds. 2 24 392 42 16 52 25 3 28 33 27 43 64 53 125 4 2 16 34 81 44 256 54 625 5 2 32 35 243 45 1024 55 3125 6 2 64 36 729 46 4096 56 15625 27 128 37 2187 28 256 38 6561 29 512 210 1024 211 2048 212 4096 Here is what a sample “powers quiz” will look like. I would practice these this summer. If you can correctly finish a quiz like this in under 2 minutes you’ll be doing A or better work on the quiz. Name______________________________________________ Period_____________ POWERS QUIZ Math Team 1. 212 2. 45 3. 28 4. 54 5. 38 6. 4 6 7. 2 7 8. 2 6 9. 55 10. 56 11. 35 12. 34 13. 210 14. 53 15. 4 4 16. 211 17. 36 18. 37 19. 2 9 20. 25 3 Miscellaneous Algebraic Laws, Rules, Formulas, and Facts 1. You will also need to have memorized the following values… 112 72 49 132 169 192 361 0! 1 242 82 64 142 196 202 400 1! 1 392 92 81 152 225 212 441 2! 1 2 2 42 16 102 100 162 256 222 484 3! 1 2 3 6 52 25 112 121 172 289 232 529 4! 1 2 3 4 24 62 36 122 144 182 324 242 576 5! 1 2 3 4 5 120 252 625 2. factorials n! n n 1 n 2 n 3 2 1 3. double factorial n!! n n 2 n 4 n 6 4 2 when n is even n!! n n 2 n 4 n 6 3 1 when n is odd For example: 7!! 7 5 3 1 105 6!! 6 4 2 48 yy 4. Slope definition: m 21 Slope is the “rate of change” of a line. xx21 A If Ax By C, then slope, m 5. Slope (of a line) B If y mx b, then slope m 6. Point-slope form (of a line) y y11 m x x 2 For example: Determine the equation of a line going through the point 2, 3 having a slope of . 3 2 yx 32 3 2 yx32 3 7. Laws of Exponents (multiplication): m n am a n a m n ab a m b m a m a mn Examples: 4 5 a3 a 5 a 8 ab a 4 b 4 a 3 a 15 4 8. Laws of Exponents (division): mmm amn 1 a a na n m m a a b b Examples: 5 a 5 12 7 aa 6 a12 aa6 6 11 bb = aa12 5 7 9. Laws of Exponents, continued... 1 11 aa0 1 n Examples: x01 x 4 or x 4 an xx44 10. Know how to use the Quadratic Formula if ax2 bx c 0 b b2 4 ac x 2a Example: 2 Solve: 7xx 3 5 0 2 3 3 4 7 5 3 9 140 3 149 x 2 7 14 14 11. Relatively prime - two integers are relatively prime if their greatest common factor is 1. Example: Even though 8 and 9 are not prime, they are considered relatively prime because their greatest common factor is 1. a bi 12. Complex Numbers a real part b= imaginary part 54 i 5 2i 3 Ex) real part is 5 Ex) real part is 5 imaginary part is 4 imaginary part is 2 3 13. Pythagorean Theorem c2 a 2 b 2 22 14. Distance formula (plane) D x2 x 1 y 2 y 1 5 x1 x 2 y 1 y 2 15. Midpoint formula (plane) xymm,, 22 16. Discriminant - the discriminant is the value b2 4 ac coming from the equation ax2 bx c 0. If b2 4 ac >0 then there are two unequal real solutions to the equation If b2 4 ac =0 then there is a real double root to the equation If b2 4 ac <0 then there are two conjugate imaginary roots to the equation Ex) Question: Determine what values of k will give the following equation imaginary roots: 3x2 4 x 2 k 0 Ans: Based on the equation above, a3, b 4, and c 2 k . Therefore, since the equation is supposed to give imaginary roots… b2 40 ac 42 4 3 2k 0 16 24k 0 24k 16 2 k 3 17. Harmonic mean: a number , mh , is the harmonic mean of x and y if 1 11 2 1 1 is the average of and , that is mh xy mh x y An easier way to think about the harmonic mean of two numbers x and y can be found by 2xy 2tt13 mh or t2 xy tt13 This is essentially saying … “two times the product divided by the sum,” ex.) the harmonic mean of 6 and 12 is . 2 6 12 2 6 12 8 6 12 18 nn 1 18. Formula for the Sum of the first n numbers 1 2 3 n 2 Ex) Find the sum of 1 2 3 4 ... 50 or Find the sum of the first 50 terms. nn 1 50 51 Solution: 1275 22 6 n n1 2 n 1 19. Formula for the Sum of the first n squares 12 2 2 3 2 n 2 6 Ex) Find the sum of 12 2 2 3 2 4 2 ... 50 2 or Find the sum of the first 50 squares. n n1 2 n 1 50 51 101 Solution: 42925 66 nn2 12 20. Formula for the Sum of the first n cubes 13 2 3 3 3 n 3 4 Ex) Find the sum of 13 2 3 3 3 4 3 ... 50 3 or Find the sum of the first 50 cubes. nn22 122 50 51 Solution: 1625625 44 Factoring Factoring out a greatest common monomial Ex.) 3xy 12 x2 4x3 6 xy 10 x Factoring a difference of two squares Ex.) x2 25 4xy22 81 2a32 72 ab Factoring a perfect square trinomials Ex.) xx2 10 25 xx2 69 4xx2 12 9 Factoring a trinomial with a lead coefficient of “1” Ex.) xx2 9 14 xx2 4 12 xx2 89 7 Trigonometric Identities and Laws Law of Sines & Cosines Law of sines Law of cosines a2 b 2 c 2 2 bc cos A sinABC sin sin b2 a 2 c 2 2 ac cos B a b c c2 a 2 b 2 2 ab cos C Fundamental Identities Trigonometric Functions Reciprocal Identities Quotient identities y opp sin 1 r hyp sin sin csc tan x adj 1 cos cos cos r hyp sec y opp 1 cos tan tan cot x adj cot sin x adj 1 cot cot y opp tan r hyp 1 sec sec x adj cos r hyp 1 csc csc y opp sin 8 Math Team related FORMULAS and DEFINITIONS 1. Sum of the roots of a polynomial . axn bx n12 cx n yx z 0 b2 nd coefficient rr or 12 a1 st coefficient 2. Product of the roots of a polynomial . axn bx n12 cx n yx z 0 z constant or , if highest power is even a first coeff. rr12 z constant or , if highest power is odd a firstcoeff 3. Sum of the squares of the roots of . axn bx n12 cx n yx z 0 b2 2 ac r2 r 2 r 2 1 2 3 a2 Example for #1-3: For the following polynomial, f x 3 x5 7 x 4 5 x 3 12 x 2 6 x 9, find the . Sum of the roots: Product of the roots: b2 nd coefficient 7 7 constant 9 odd power, so . 3 a1 st coefficient 3 3 first coefficient 3 Sum of the squares of the roots: n n1 n 2 n 3 If ax bx cx dx 0 2 b2 2 ac 7 2 3 5 19 Then a2 32 9 4.
Recommended publications
  • ~Umbers the BOO K O F Umbers
    TH E BOOK OF ~umbers THE BOO K o F umbers John H. Conway • Richard K. Guy c COPERNICUS AN IMPRINT OF SPRINGER-VERLAG © 1996 Springer-Verlag New York, Inc. Softcover reprint of the hardcover 1st edition 1996 All rights reserved. No part of this publication may be reproduced, stored in a re­ trieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Published in the United States by Copernicus, an imprint of Springer-Verlag New York, Inc. Copernicus Springer-Verlag New York, Inc. 175 Fifth Avenue New York, NY lOOlO Library of Congress Cataloging in Publication Data Conway, John Horton. The book of numbers / John Horton Conway, Richard K. Guy. p. cm. Includes bibliographical references and index. ISBN-13: 978-1-4612-8488-8 e-ISBN-13: 978-1-4612-4072-3 DOl: 10.l007/978-1-4612-4072-3 1. Number theory-Popular works. I. Guy, Richard K. II. Title. QA241.C6897 1995 512'.7-dc20 95-32588 Manufactured in the United States of America. Printed on acid-free paper. 9 8 765 4 Preface he Book ofNumbers seems an obvious choice for our title, since T its undoubted success can be followed by Deuteronomy,Joshua, and so on; indeed the only risk is that there may be a demand for the earlier books in the series. More seriously, our aim is to bring to the inquisitive reader without particular mathematical background an ex­ planation of the multitudinous ways in which the word "number" is used.
    [Show full text]
  • Half Companion Sequences of Special Dio 3-Tuples Involving Centered Square Numbers
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-3, September 2019 Half Companion Sequences of Special Dio 3-Tuples Involving Centered Square Numbers C.Saranya , G.Janaki Abstract: In this paper, we construct a sequence of Special Dio IV. METHOD OF ANALYSIS: 3-tuples for centered square numbers involving half companion Case 1: sequences under 3 cases with the properties D(-2), D(-11) & Forming sequence of Special dio 3-tuples for centered D(-26). square numbers of consecutive ranks n and n 1 2 2 Keywords : Diophantine Triples, special dio-tuples,Centered Let a1 CSn n (n 1) & square Number, Integer Sequences. 2 2 a2 CSn1 (n 1) n be Centered Square numbers of rank n and n 1 I. INTRODUCTION respectively such that a1a2 a1 a2 2 is a perfect In Number theory, a Diophantine equation is a polynomial square say 2 . equation, usually in two or more unknowns, with the end goal that solitary the integer solutions are looked for or Let p3 be any non-zero whole number such that contemplated [1-4]. The word Diophantine alludes to the 2 a a a a 2 (1) Greek mathematician of the third century, Diophantus of 1 3 1 3 1 Alexandria, who made an investigation of such conditions and 2 a2a3 a2 a3 2 1 (2) was one of the primary mathematician to bring symbolism Assume x a y an x a y , into variable based mathematics. 1 1 1 1 1 1 2 1 2 2 Various mathematicians considered the problem of the it becomes x a 1a 1y 3 (3) occurrence of Dio triples and quadruples with the property 1 1 2 1 2 D(n) for any integer n and besides for any linear polynomial in Therefore, 1 4n 2n 3 n[5-7].
    [Show full text]
  • Notations Used 1
    NOTATIONS USED 1 NOTATIONS ⎡ (n −1)(m − 2)⎤ Tm,n = n 1+ - Gonal number of rank n with sides m . ⎣⎢ 2 ⎦⎥ n(n +1) T = - Triangular number of rank n . n 2 1 Pen = (3n2 − n) - Pentagonal number of rank n . n 2 2 Hexn = 2n − n - Hexagonal number of rank n . 1 Hep = (5n2 − 3n) - Heptagonal number of rank n . n 2 2 Octn = 3n − 2n - Octagonal number of rank n . 1 Nan = (7n2 − 5n) - Nanogonal number of rank n . n 2 2 Decn = 4n − 3n - Decagonal number of rank n . 1 HD = (9n 2 − 7n) - Hendecagonal number of rank n . n 2 1 2 DDn = (10n − 8n) - Dodecagonal number of rank n . 2 1 TD = (11n2 − 9n) - Tridecagonal number of rank n . n 2 1 TED = (12n 2 −10n) - Tetra decagonal number of rank n . n 2 1 PD = (13n2 −11n) - Pentadecagonal number of rank n . n 2 1 HXD = (14n2 −12n) - Hexadecagonal number of rank n . n 2 1 HPD = (15n2 −13n) - Heptadecagonal number of rank n . n 2 NOTATIONS USED 2 1 OD = (16n 2 −14n) - Octadecagonal number of rank n . n 2 1 ND = (17n 2 −15n) - Nonadecagonal number of rank n . n 2 1 IC = (18n 2 −16n) - Icosagonal number of rank n . n 2 1 ICH = (19n2 −17n) - Icosihenagonal number of rank n . n 2 1 ID = (20n 2 −18n) - Icosidigonal number of rank n . n 2 1 IT = (21n2 −19n) - Icositriogonal number of rank n . n 2 1 ICT = (22n2 − 20n) - Icositetragonal number of rank n . n 2 1 IP = (23n 2 − 21n) - Icosipentagonal number of rank n .
    [Show full text]
  • Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CSUSB ScholarWorks California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 6-2019 Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle Lacey Taylor James California State University - San Bernardino, [email protected] Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Algebra Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation James, Lacey Taylor, "Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle" (2019). Electronic Theses, Projects, and Dissertations. 835. https://scholarworks.lib.csusb.edu/etd/835 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Lacey Taylor James June 2019 Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle A Thesis Presented to the Faculty of California State University, San Bernardino by Lacey Taylor James June 2019 Approved by: Joseph Chavez, Committee Chair Charles Stanton, Committee Member Rolland Trapp, Committee Member Shawnee McMurran, Chair, Department of Mathematics Corey Dunn, Graduate Coordinator iii Abstract This paper will discuss the analogues between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle by utilizing mathematical proving techniques like partial sums, com- mittees, telescoping, mathematical induction and applying George P´olya's perspective.
    [Show full text]
  • Construction of the Diophantine Triple Involving Pentatope Number
    6 III March 2018 http://doi.org/10.22214/ijraset.2018.3535 International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 6 Issue III, March 2018- Available at www.ijraset.com Construction of The Diophantine Triple involving Pentatope Number G. Janaki 1, C. Saranya 2 1 Associate Professor, Department of Mathematics, Cauvery College for Women, Trichy-18 2 Assistant Professor, Department of Mathematics, Cauvery College for Women, Trichy-18 Abstract: We search for three distinct polynomials with integer coefficients such that the product of any two numbers increased by a non-zero integer (or polynomials with integer coefficients) is a perfect square. Keywords: Diophantine triples, Pentatope number, Polynomials & Perfect square. 2010 Mathematics Subject Classification: 11D25. I. INTRODUCTION In Mathematics, a Diophantine equation is a polynomial equation, usually in two or more unknowns, such that only the integer solutions are sought or studied (an integer solution is a solution such that all the unknowns take integer values).The word Diophantine refers to the Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such equations and was one of the first mathematician to introduce symbolism into algebra. The mathematical study of Diophantine problems that Diophantus initiated is now called Diophantine analysis.While individual equations present a kind of puzzle and have been considered throughout history, the formulation of general theories of Diophantine equations (beyond the theory of quadratic forms) was an achievement of the twentieth century. In [1-6], theory of numbers were discussed.
    [Show full text]
  • Numbers 1 to 100
    Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number)
    [Show full text]
  • (30 Points) Imagine You Have a State Space Where a State
    CS 4700: Foundations of Artificial Intelligence Homework 2 Solutions 1. (30 points) Imagine you have a state space where a state is represented by a tuple of three positive integers (i,j,k), and you have three actions: decrease i by 1 (as long as i > 0), decrease j by 1 (as long as j > 0), and decrease k by 1 (as long as k > 0). The goal state is (0,0,0). Assume that a given search method does not revisit states it has already seen, and that whenever there are multiple successors for a given state it first expands the state you get from the action of decreasing i by 1 (if possible), then the action of decreasing j by 1, then k. a. (1 point) What is the branching factor for this problem? 3. You can decrease by 1 either i, j, or k. b. (2 points) Is this state space a graph or a tree? Graph. You can get to the same single state through multiple paths. c. If the initial state is (2,2,2): i. (3 points) Draw the subset of the state space that you can reach from this state. ii. (3 points) Label the states with the numbers 1, 2, 3, …, to show the order in which they would be expanded by depth-first search. iii. (3 points) Label the states with the upper-case letters A, B, C, …, to show the order in which they would be expanded by breadth-first search. iv. (3 points) Label the states with the lower-case letters a, b, c, …, to show the order in which they would be expanded by iterative deepening search.
    [Show full text]
  • International Journal of Engineering Research-Online a Peer Reviewed International Journal Vol.1., Issue.2., 2013 Articles Available Onlne
    International journal of Engineering Research-Online A Peer Reviewed International Journal Vol.1., Issue.2., 2013 Articles available onlne http://www.ijoer.in RESEARCH ARTICLE ISSN: 2321-7758 OBSERVATIONS ON RHOMBIC DODECAHEDRAL NUMBER M.A.GOPALAN 1,V.SANGEETHA*,MANJU SOMANATH 2 1Professor,Department of Mathematics,Srimathi Indira Gandhi College,Trichy-2,India. *Assistant Professor,Dept.of Mathematics, National College,Trichy-1,India. Phone:9790451555,e-mail:[email protected] 2 Assistant Professor,Dept.of Mathematics, National College,Trichy-1,India. Article Received: 16/09/2013 Article Revised on: 20/09/2013 Article Accepted on:21/09/2013 ABSTRACT We obtain different relations among Rhombic Dodecahedral Number and other two, three and four dimensional figurate numbers. Keywords-Polygonal number, Pyramidal number, Centered Polygonal number, Centered Pyramidal number, Rhombic Dodecahedral number, Special numbers. MSC Classification Number: 11D99 V.SANGEETHA Author for Correspondence : Email:prasansangee@ gmail.com INTRODUCTION Fascinated by beautiful and intriguing number polygonal numbers can be summed up to form solid patterns, famous mathematicians, share their three dimensional figurate numbers called Pyramidal insights and discoveries with each other and with numbers [1,4,5and 6].In this communication,we deal readers. Throughout history, number and numbers with a special number called Rhombic Dodecahedral [2,3,7-18] have had a tremendous influence on our Number and various culture and on our language. Polygonal numbers can interesting
    [Show full text]
  • Special Dio-Quadruples Comprising of Centered Square Numbers with Property D(2)
    ADALYA JOURNAL ISSN NO: 1301-2746 SPECIAL DIO-QUADRUPLES COMPRISING OF CENTERED SQUARE NUMBERS WITH PROPERTY D(2) G.Janaki 1 and C.Saranya 2 Associate Professor1, Assistant Professor2, PG & Research Department of Mathematics, Cauvery College for Women(Autonomous),(Affiliated to Bharathidasan University), Trichy-18. E-mail: [email protected] & [email protected] Corresponding Author- C.Saranya, [email protected] Abstract: In this communication, we accomplish special Dio-quadruples comprising of centered square numbers such that the product of any two members of the set subtracted by their sum and increased by 2 is a perfect square. Keywords: Centered Square number, Diophantine quadruples, Pell equation. Notation CSn Centered square number of rank n. Introduction: Numbers are as unbounded as human understanding is confined, so number theory and its differing subfields will keep enthralling the brains of mathematicians for a very long time [1-4]. While individual equations present a kind of riddle and have been considered since the start, the meaning of general theories of Diophantine equations was an achievement of the twentieth century [5-6]. Many mathematicians considered the problem of the presence of Diophantine triples with the property D(n) for any integer n, furthermore for any linear polynomial in n [7-9]. In this specific situation, one may refer for a comprehensive review of various problems on special dio quadruples [10-11]. In this communication, we construct special Dio-quadruples a,b, c0 , c1 involving centered square numbers such that the product of any two members of the set subtracted by their sum and increased by 2 is a perfect square.
    [Show full text]
  • The Algebraic Formulation: Why and How to Use It
    Curved and Layer. Struct. 2015; 2:106–149 Research Article Open Access Elena Ferretti* The Algebraic Formulation: Why and How to Use it Abstract: Finite Element, Boundary Element, Finite Vol- formulation, does not. Under the topological point of view, ume, and Finite Difference Analysis are all commonly used this means that the algebraic formulation preserves infor- in nearly all engineering disciplines to simplify complex mation on the length scales associated with the solution, problems of geometry and change, but they all tend to while the differential formulation does not. On the basis oversimplify. This paper shows a more recent computa- of this observation, it is also proposed to consider that the tional approach developed initially for problems in solid limit provided by the Cancelation Rule for limits is exact mechanics and electro-magnetic field analysis. It is an al- only in the broad sense (i.e., the numerical sense), and gebraic approach, and it offers a more accurate represen- not in the narrow sense (involving also topological infor- tation of geometric and topological features. mation). Moreover, applying the limit process introduces some limitations as regularity conditions must be imposed on the field variables. These regularity conditions, in par- DOI 10.1515/cls-2015-0007 Received July 16, 2014; accepted January 12, 2015 ticular those concerning differentiability, are the price we pay for using a formalism that is both very advanced and easy to manipulate. The Cancelation Rule for limits leads to point-wise 1 Introduction field variables, while the iterative procedure leads to global variables (Section 2.2), which, being associated The computational methods currently used in physics are with elements provided with an extent, are set functions.
    [Show full text]
  • Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle
    California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 6-2019 Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle Lacey Taylor James California State University - San Bernardino Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Algebra Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation James, Lacey Taylor, "Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle" (2019). Electronic Theses, Projects, and Dissertations. 835. https://scholarworks.lib.csusb.edu/etd/835 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Lacey Taylor James June 2019 Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle A Thesis Presented to the Faculty of California State University, San Bernardino by Lacey Taylor James June 2019 Approved by: Joseph Chavez, Committee Chair Charles Stanton, Committee Member Rolland Trapp, Committee Member Shawnee McMurran, Chair, Department of Mathematics Corey Dunn, Graduate Coordinator iii Abstract This paper will discuss the analogues between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle by utilizing mathematical proving techniques like partial sums, com- mittees, telescoping, mathematical induction and applying George P´olya's perspective.
    [Show full text]
  • LATTICE POINTS on the HOMOGENEOUS CONE Z 2= 10X 2
    [Goplan , 2(2): Feb., 2013] ISSN: 2277-9655 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY LATTICE POINTS ON THE HOMOGENEOUS CONE z2 = 10x 2 – 6y 2 M.A. Gopalan *1 , S.Vidhiyalakshmi 2, V.Geetha 3 *1,2 Department of Mathematics, Shrimati Indira Gandhi College,Trichirappalli. Tamilnadu , India. 3Department of Mathematics, Cauvery College For Women,Trichirappalli, Tamilnadu , India. [email protected] Abstract The Cone represented by the homogeneous ternary quadratic equation given by is considered for determining non-zero distinct integral points on it. Four different patterns of solutions, each satisfying the cone under consideration are illustrated. A few interesting properties between the integral solutions on the cone and special number patterns namely,polygonal numbers, star numbers, woodall numbers , pentatope numbers are exhibited. Also, knowing an integral point on the given cone, three different triples of the non-zero distinct integers , each satisfying the given homogeneous cone are obtained. Keywords :Ternary Quadratic, Lattice Points, Homogeneous Cone. MSC2000Subject classification: 11D09 Notations: Special numbers Notations Definitions Star number Sn Regular Polygonal number t m,n Pronic number P n Decagonal number D n Tetra decagonal number TDn Tetrahedral number TH n Pentatope number PT n Centered Pentagonal number CP n HauyRhombicdodecahedral number HRD n Triangular number Tn Woodall number W n Centered Hex number Ct 6,n Introduction The ternary quadratic diophantine equations (homogeneous and non-homogeneous)offer an unlimited field for research by reason of variety [1-2]. For an extensive review of various problems one may refer [3-17]. This communication concerns with yet another interesting ternary quadratic equation representing a homogeneous cone for determining its infinitely many non-zero integral solutions.
    [Show full text]