Chapter I INTRODUCTION

Total Page:16

File Type:pdf, Size:1020Kb

Chapter I INTRODUCTION Chapter I INTRODUCTION INTRODUCTION Number Theory, usually referred to as the Queen of Mathematics is one of the oldest, the largest and the fascinating branches of Pure Mathematics. It has been a matter of attraction to various mathematicians and to the lovers of Mathematics since antiquity. Probably, the mankind has been fascinated by numbers (integers) since discovery of counting. In other words, human beings have been able to get the excitement and thrill of Numbers. Throughout history, numbers have a tremendous influence on our culture and on our language[6,8,16,65,70].“When I considered what people generally want in calculating, I found that it always is a number”, said Mohammed Ben Musa Al-Khawarizmi. (From the treasure of Mathematics, P.420; H.O.Midonich, Philosophical Library, 1965). Number is the essence of mathematical calculation. The ancient Greeks established it as a subject which they called Arithmetic. Until the middle of the twentieth century, Number Theory was considered to be the purest area of Mathematics and least likely sullied by applications. Now the subject is an exciting mix of ideas pursued for their own interest and a rather exotic variety of applications [2,9,78,80,83,85,91,92,93,94,95]. Every layman can appreciate the excitement of Mathematics by playing systematically with integers and geometrical forms, discovering patterns in them and trying to prove more. In fact, Number Theory is the great and rich intellectual heritage of mankind and is essentially a man made world to meet his ideals of intellectual perfection wherein we discover beautiful patterns in numbers and space. Integers exhibit fascinating properties, they form sequences and they form patterns. Recognizing number patterns is also an important problem solving skill. Working with number patterns leads to the concept of functions in Mathematics, a formal description of the 1 Chapter I INTRODUCTION relationships among different quantities. The greatest fascination lies in the limitless supply of exciting, non-routine and challenging problems they have provided [1,3,4,5,7,10,11,12,13,14,25,28,29,31,33,35,67,68,69,74,75,76,77,84,87, 88,89,90]. Geometric integer sequences are the significant integers that can be represented as geometrical forms such as triangle, square, pentagon, hexagon, centered hexagon, star and so on prominently found in scriptures. On-Line Encyclopedia of Integer Sequences is an excellent site that has a huge searchable database of such integer sequences. The Mathematics of the Pythagorean times covers many of the topics in algebra as well as in geometry. The foundations for number theory, as a discipline were laid by the Greek mathematician Pythagoras and his disciples known as the Pythagoreans. The Pythagorean brotherhood believed that “everything is number” and some numbers have mystical powers. The Pythagoreans have been credited with the invention of amicable numbers, perfect numbers, figurate numbers and Pythagorean triples or Pythagorean Triangles. Since there is a one-one correspondence between Pythagorean triples and Pythagorean Triangles, we may use them interchangeably. Particularly, the study of Pythagorean triples is fascinating. They have been studied from different angles and many methods of generating Pythagorean triples have been proposed in [17,20,21,22,23,26,27,36,58,59,60,61,62,63,82,86,96]. In fact, Number Theory is a treasure house in which the search for many hidden relations and properties among numbers form a treasure hunt. A bit of attention at various times on the branch of Pythagorean mathematics and their relationships with many areas of mathematics have been carried due to the fact that they are figurate numbers which according to the Pythagorean brotherhood was a geometry of aggregates of points but not of lines as in Euclidean geometry. The numbers that can be represented by a regular geometric arrangement of equally spaced points are called 2 Chapter I INTRODUCTION figurate numbers or polygonal numbers. A few examples of polygonal numbers are Triangular, Pentagonal, Hexagonal, Octagonal, Heptagonal, Decagonal and so on.Some basic concepts and properties among a few polygonal numbers are presented in [15,18,19,24,30,32,34,64,66,71,72,73,79,81]. This has been a topic of keen interest to many Mathematicians worldwide for several centuries because of its historical importance and they offer good applications in the fields of Pattern Classification, Graph Theory and so on. In particular centered Hexagonal numbers have practical applications in Materials Logistics Management such as, in packing round items into larger round containers and Vienna Sausages into round cans. The study of figurate numbers continues to be a source of interest to both amateur and professional Mathematicians as they can be studied both algebraically and geometrically. These numbers have motivated us to search for new varieties of patterns of special numbers. It is therefore towards this end, we search for interesting properties among different patterns in two dimensional figurate (polynomial) numbers, three dimensional figurate (pyramidal) numbers,four dimensional figurate numbers and special numbers such as Kynea numbers, Schröder numbers, Magna numbers and so on. This dissertation consists of 7 chapters. Chapter I provides the historical background and necessary literature survey for the varieties of number patterns. In Chapters II-VII, different number patterns and their related properties are presented. In Chapter II, special patterns of Pythagorean triangles are analyzed in Sections (A), (B) and (C). In Section (A) [37], the patterns of Pythagorean triangles for each of which one leg exceeds k times the other leg by an arbitrary positive constant are analyzed. Also, patterns of Pythagorean triangles, where, in 3 Chapter I INTRODUCTION each of which, the hypotenuse is k times a leg added with an arbitrary non-zero integer, are presented in appendix. Section (B) [44] generates patterns of pairs of Pythagorean triangles with equal perimeters. A few examples are also illustrated. As the polygonal numbers form a branch of Pythagorean Mathematics, in Section (C) [45] varieties of relation between the legs of Pythagorean triangle and special polygonal numbers are exhibited in a tabular form. Chapter III consists of three Sections (A), (B) and (C). Section (A) [41] deals star numbers whose base is a hexagon. The recurrence relation among the star square numbers is presented. The ranks of star numbers, such that each star number decreased by unity representing a square integer or twelve times a square integer are obtained. Section (B) [39] concerns with some interesting observations on centered hexagonal numbers. In particular, the ranks of three centered hexagonal numbers in arithmetic progression are obtained. Explicit formulas for the ranks of centered hexagonal numbers which are simultaneously equal to Nanogonal numbers are presented. In Section(C) [43], formulas for obtaining the ranks of centered hexagonal numbers which are simultaneously equal to centered triangular, centered square, centered pentagonal, centered heptagonal, centered octagonal, centered nanogonal, centered decagonal, centered hendecagonal, centered dodecagonal, centered tridecagonal, centered tetradecagonal, centered pentadecagonal,centered hexadecagonal, centered heptadecagonal, centered octadecagonal, centered nanodecagonal, centered icosagonal numbers are presented. The corresponding recurrence relations satisfied by the ranks are also given. Chapter IV consists of 4 Sections (A), (B), (C) and (D). In Section (A) [40], generalized integer sequence on Jacobsthal numbers is generated from the 4 Chapter I INTRODUCTION =β + α α≠ β αβ > recurrence relation Jn+2 J n + 1 J n , ( , 0 ) with the initial = = conditions J0 aJ , 1 b where a, b not zeros simultaneously. Various relations among the members of the above sequence are given. It can be noted that, for the particular values of a and b , the sequences of Jacobsthal numbers and Jacobsthal Lucas numbers are deduced. In Section (B) [38], different sequences of numbers are generated from the =++α β γ αβγ > recurrence relation Pn+3 P n + 2 P n + 1 P n ( ,, 0 ) with initial = = = conditions P0 AP , 1 BP , 2 C assuming different values for A , B and C . Particularly, Perrin, Padovan and Sofo integer sequences are deduced and in each case, a few interesting relations are given. Also, three more new integer sequences are deduced. In Section (C) [46], an explicit formula representing the general term of the sequence whose members are generated from the difference equation TRIn( +=39) TRIn( +− 226) TRIn( ++ 124) TRIn( ) with initial conditions TRI (1) = 1 ,TRI(2) = 2 , TRI (3) = 3 . A few interesting relations among the members of the above sequence are given. In Section (D) [47], explicit formulae representing the general terms for the following two sequences given by: (i) A( n ) : 2,9,50,289,1682,... 16 196 2704 (ii) B( n ):1, ,9, ,121, ,1681,... 6 6 6 are obtained. Various relations among the elements of the sequences {A( n ) } and {B( n ) } are correspondingly exhibited. Chapter V consisting of 4 Sections (A), (B), (C) and (D) deals with three dimensional figurate numbers. The first three sections are concerned with 5 Chapter I INTRODUCTION Pyramidal numbers and the fourth section is on Stella Octangular Numbers whose base polygon is an octahedral number. Section (A) [48] concerns with triangular pyramidal (tetrahedral) number. Varieties of interesting relations among these numbers are exhibited. In Section (B) [52] relations between Pentagonal Pyramidal numbers of successive ranks have been analyzed. Also, some identities relating pentagonal pyramidal numbers and Jacobsthal numbers are presented. In Section (C) [53], a few interesting relations between the hexagonal pyramidal numbers and other special pyramidal numbers are presented. In Section (D) [57], a fascinating three dimensional figurate number called Stella Octangular Number which is constructed by adjoining tetrahedral numbers to all the eight faces of an octahedral number is analyzed. Various interesting relations between Stella Octangular numbers and figurate numbers of dimensions two, three and four are illustrated.
Recommended publications
  • Induction for Tetrahedral Numbers
    Induction for Tetrahedral Numbers Teacher Notes and Answers 7 8 9 10 11 12 TI-84PlusCE™ Investigation Student 50 min Teacher Notes: “Inductive Tetrahedrals” is part two of this three-part series. [Refer to Inductive Whole Numbers for Part One]. Part two follows a similar format to part one but is slightly more challenging from an algebraic perspective. Teachers can use part two in this series as a more independent environment for students focusing on providing feedback rather than instruction. A set of Power Point slides is provided that can be used to enhance the visual aspect of this lesson, the ability to visualise solutions can give problems more meaning. “Cubes and Squares” is part three of this three-part series. This section is designed as an assessment tool, marks have been allocated to each question. The questions are more reflective of the types of questions that students might experience in the short answer section of an examination where calculators may be used to derive answers or to simply verify by-hand solutions. A set of Power Point slides is provided that can be used to introduce students to this task. Introduction The purpose of this activity is to use exploration and observation to establish a rule for the sum of the first n tetrahedral numbers then use proof by mathematical induction to show that the rule is true for all whole numbers. What are the Tetrahedral numbers? The prefix ‘tetra’ refers to the quantity four, so it is not surprising that a tetrahedron consists of four faces, each face is a triangle.
    [Show full text]
  • Tetrahedral Numbers
    Tetrahedral Numbers Student Worksheet TI-30XPlus Activity Student 50 min 7 8 9 10 11 12 MathPrint™ Finding Patterns What are the Tetrahedral numbers? The prefix ‘tetra’ refers to the quantity four, so it is not surprising that a tetrahedron consists of four faces, each face is a triangle. This triangular formation can sometimes be found in stacks of objects. The series of diagrams below shows the progression from one layer to the next for a stack of spheres. Row Number 1 2 3 4 5 Items Added Complete Stack Question: 1. Create a table of values for the row number and the corresponding quantity of items in a complete stack. Question: 2. Create a table of values for the row number and the corresponding quantity of items that are added to the stack. Question: 3. The calculator screen shown here illustrates how to determine the fifth tetrahedral number. The same command could be used to determine any of the tetrahedral numbers. Explain how this command is working. Question: 4. Verify that the calculation shown opposite is the same as the one generated in Question 3. Question: 5. Enter the numbers 1, 2 … 10 in List 1 on the calculator. Enter the first 10 tetrahedral numbers in List 2. Once the values have been entered try the following: a) Quadratic regression using List 1 and List 2. Check the validity of the result via substitution. b) Cubic regression using List 1 and List 2. Check the validity of the result via substitution. Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes Author: P.
    [Show full text]
  • ~Umbers the BOO K O F Umbers
    TH E BOOK OF ~umbers THE BOO K o F umbers John H. Conway • Richard K. Guy c COPERNICUS AN IMPRINT OF SPRINGER-VERLAG © 1996 Springer-Verlag New York, Inc. Softcover reprint of the hardcover 1st edition 1996 All rights reserved. No part of this publication may be reproduced, stored in a re­ trieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Published in the United States by Copernicus, an imprint of Springer-Verlag New York, Inc. Copernicus Springer-Verlag New York, Inc. 175 Fifth Avenue New York, NY lOOlO Library of Congress Cataloging in Publication Data Conway, John Horton. The book of numbers / John Horton Conway, Richard K. Guy. p. cm. Includes bibliographical references and index. ISBN-13: 978-1-4612-8488-8 e-ISBN-13: 978-1-4612-4072-3 DOl: 10.l007/978-1-4612-4072-3 1. Number theory-Popular works. I. Guy, Richard K. II. Title. QA241.C6897 1995 512'.7-dc20 95-32588 Manufactured in the United States of America. Printed on acid-free paper. 9 8 765 4 Preface he Book ofNumbers seems an obvious choice for our title, since T its undoubted success can be followed by Deuteronomy,Joshua, and so on; indeed the only risk is that there may be a demand for the earlier books in the series. More seriously, our aim is to bring to the inquisitive reader without particular mathematical background an ex­ planation of the multitudinous ways in which the word "number" is used.
    [Show full text]
  • The Frobenius Number for Sequences of Binomial Coefficients
    The Frobenius number for sequences of binomial coefficients Aureliano M. Robles-Perez´ Universidad de Granada A talk based on a joint work with Jose´ Carlos Rosales (J. Number Theory 186 (2018) 473–492.) INdAM meeting: International meeting on numerical semigroups - Cortona 2018 3-7th September 2018 A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 1 / 29 Frobenius coin problem I Given relatively prime positive integers a1;:::;an, n ≥ 2, find a formula to compute the largest integer that is not representable as a non-negative integer linear combination of a1;:::;an. I F(a1;:::;an) (the Frobenius number of the set fa1;:::;ang) denotes the solution of the previous problem. I F(a1;a2) = a1a2 − a1 − a2: I Frobenius problem is open for n ≥ 3. ∗ Curtis: it is impossible to find a polynomial formula that computes the Frobenius number if n = 3. ∗ Ram´ırez Alfons´ın: the problem is NP-hard for n variables. A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 2 / 29 Particular cases I Arithmetic and almost arithmetic sequences (A. Brauer; M. Lewin; J. B. Roberts; E. S. Selmer), I Fibonacci sequences (J. M. Mar´ın, J. L. Ram´ırez Alfons´ın and M. P. Revuelta), I geometric sequences (D. C. Ong and V. Ponomarenko), I Mersenne, repunit, and Thabit sequences (J. C. Rosales, M. B. Branco, D. Torrao),˜ I squares and cubes sequences (M. Lepilov, J. O’Rourke and I. Swanson; A. Moscariello), I ... A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 3 / 29 Particular cases: motivations (i) I Brauer: n − 2 F(n;n + 1;:::;n + k − 1) = + 1 n − 1: k − 1 I Baker (conjecture): If Tn is the nth triangular (or triangle) number, then 8 3 2 > 6n +18n +12n−8 if n is even; <> 8 F(Tn;Tn+1;Tn+2) = :> 6n3+12n2−6n−20 8 if n is odd.
    [Show full text]
  • Pascal's Triangle
    PASCAL’S TRIANGLE Todd Cochrane 1 / 29 Robert’s Dream In his dream, Robert and the Number Devil build a giant pyramid of blocks. Being two-dimensional they agree to call it a triangle of blocks. Then they start marking the blocks with a felt pen, labeling the top block 1, the next two 1,1, and then each block thereafter the sum of the two values above it. Thus, the third row is 1,2,1, the fourth 1,3,3,1 and so on. 2 / 29 Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 ; 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 Rule: Each term in Pascal’s triangle is the sum of the two terms above it. Pascal’s triangle is named after Blaise Pascal, who put together many of its properties in 1653. 3 / 29 Triangle Numbers. Diagonal 3: 1; 3; 6; 10; 15; 21;::: Diagonal 4: 1; 4; 10; 20; 35; 56;::: Tetrahedral Numbers. Diagonal’s of Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 ; 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 Diagonals: Note, the Southwesterly and Southeasterly diagonals are the same. Diagonal 1: 1; 1; 1; 1;::: (yawn) Diagonal 2: 1; 2; 3; 4; 5; : : : ::: Natural Numbers .
    [Show full text]
  • The Personality of the Integers from One to One Gross
    ETY CI O O F S The Dozenal Society of America E 0 1 A L X 2 M A 9 3 E The Personality of the Integers N R E 8 4 I Z 7 5 C from One to One Gross A O 6 D Jay Schiffman S Introduction n his fascinating paperback entitled The Lore of integer that lends a special personality to them es- I Large Numbers,1 author Philip J. Davis devotes a pecially when one resorts to duodecimals. Finally, detailed chapter to The Personality of Numbers and my goal is to furnish number theoretic characteris- provides a list entitled Who’s Who Among The Inte- tics related to each of the integers that are perhaps gers from One to One Hundred in the decimal base. omitted from the average list. Our initial task is to The purpose of my paper is to expand his list to the present the reader with a dictionary which is termed first gross and present additional characteristics of A Glossary of Symbols and Terms. These symbols these integers. It is indeed the uniqueness of each and terms will be illustrated in this section. A Glossary of Symbols and Terms 1. n! The factorial of the positive integer n. We de- 6. Ln The nth Lucas Number. n is a Lucas Number fined n!, known as n factorial, recursively as if n satisfied the Lucas Sequence defined recur- follows: 0! = 1 and (n + 1)! = (n + 1)(n!). sively as follows: L1 = 1, L2 = 3, and Ln = Hence 1! = (0 + 1)(0!) = (1)(1) = 1 and Ln−2 + Ln−1 for n ≥ 3.
    [Show full text]
  • Math Ontological Basis of Quas
    Math Ontological Basis of Quasi Fine-Tuning in Ghc Cosmologies Mark Thomas To cite this version: Mark Thomas. Math Ontological Basis of Quasi Fine-Tuning in Ghc Cosmologies. 2015. hal- 01232022v5 HAL Id: hal-01232022 https://hal.archives-ouvertes.fr/hal-01232022v5 Preprint submitted on 23 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Math Ontological Basis of Quasi Fine-Tuning in Ghc Cosmologies 1 M. A. Thomas The subject of fine tuning in physics is a long contentious issue especially now as it has hitched a ride on the Multiverse bandwagon. The maths of quadratic forms are predominately featured and relate the physics parameters G h c, which in turn are weighted during the Planck Era(s) determined by relative Planck time clocking. This simplifies the search to these three values as being the important apparent fine-tuned parameters (quasi fine tuning) for determining the gravitational build structures restricted to SM-4D type Universes. Two gravitational coupling constants (dimensionless) are prescribed within the Ghc complex. Both describe the relative rigidity of gravitational physics in the low energy build of our Universe (General Relativity toward endpoint neutron star, black hole formation).
    [Show full text]
  • Half Companion Sequences of Special Dio 3-Tuples Involving Centered Square Numbers
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-3, September 2019 Half Companion Sequences of Special Dio 3-Tuples Involving Centered Square Numbers C.Saranya , G.Janaki Abstract: In this paper, we construct a sequence of Special Dio IV. METHOD OF ANALYSIS: 3-tuples for centered square numbers involving half companion Case 1: sequences under 3 cases with the properties D(-2), D(-11) & Forming sequence of Special dio 3-tuples for centered D(-26). square numbers of consecutive ranks n and n 1 2 2 Keywords : Diophantine Triples, special dio-tuples,Centered Let a1 CSn n (n 1) & square Number, Integer Sequences. 2 2 a2 CSn1 (n 1) n be Centered Square numbers of rank n and n 1 I. INTRODUCTION respectively such that a1a2 a1 a2 2 is a perfect In Number theory, a Diophantine equation is a polynomial square say 2 . equation, usually in two or more unknowns, with the end goal that solitary the integer solutions are looked for or Let p3 be any non-zero whole number such that contemplated [1-4]. The word Diophantine alludes to the 2 a a a a 2 (1) Greek mathematician of the third century, Diophantus of 1 3 1 3 1 Alexandria, who made an investigation of such conditions and 2 a2a3 a2 a3 2 1 (2) was one of the primary mathematician to bring symbolism Assume x a y an x a y , into variable based mathematics. 1 1 1 1 1 1 2 1 2 2 Various mathematicians considered the problem of the it becomes x a 1a 1y 3 (3) occurrence of Dio triples and quadruples with the property 1 1 2 1 2 D(n) for any integer n and besides for any linear polynomial in Therefore, 1 4n 2n 3 n[5-7].
    [Show full text]
  • Painting a Pyramid.Pdf
    Delving deeper christopher M. Kribs-Zaleta Painting the Pyramid ne hallmark of a mathematician is the can measure or count about a cube: numbers of ver- instinct to extend and generalize. This article tices, edges, and faces, surface area, and volume. In Otakes a common high school problem relating particular, the unit cubes at the vertices of the large algebra, geometry, and patterns and extends it. The cube are those that have paint on 3 faces (for n > 1). extension seems simple enough at first glance but The remaining unit cubes along the edges of the large proves to have a number of interesting complications. cube are those that have paint on 2 faces, and the cor- Painting the Cube (NCTM 1989; Reys 1988) is a responding formula 12(n – 2) that emerges from the popular and mathematically rich problem used in mid- data is formed by measuring the length of one edge, dle and high school mathematics courses (as well as discounting the two corner cubes, and then multiply- some courses for preservice teachers). In that problem, ing by the number of edges. The remaining unit a large cube is assembled from small unit cubes, and cubes on the faces of the large cube are those with the exposed faces of the large cube are then painted one painted face, and they are counted by measuring (see fig. 1). The problem asks how many of the unit the area of a face, discounting the edges and corners, cubes will have paint on 0, 1, 2, . faces, as a func- and multiplying by the number of faces.
    [Show full text]
  • Notations Used 1
    NOTATIONS USED 1 NOTATIONS ⎡ (n −1)(m − 2)⎤ Tm,n = n 1+ - Gonal number of rank n with sides m . ⎣⎢ 2 ⎦⎥ n(n +1) T = - Triangular number of rank n . n 2 1 Pen = (3n2 − n) - Pentagonal number of rank n . n 2 2 Hexn = 2n − n - Hexagonal number of rank n . 1 Hep = (5n2 − 3n) - Heptagonal number of rank n . n 2 2 Octn = 3n − 2n - Octagonal number of rank n . 1 Nan = (7n2 − 5n) - Nanogonal number of rank n . n 2 2 Decn = 4n − 3n - Decagonal number of rank n . 1 HD = (9n 2 − 7n) - Hendecagonal number of rank n . n 2 1 2 DDn = (10n − 8n) - Dodecagonal number of rank n . 2 1 TD = (11n2 − 9n) - Tridecagonal number of rank n . n 2 1 TED = (12n 2 −10n) - Tetra decagonal number of rank n . n 2 1 PD = (13n2 −11n) - Pentadecagonal number of rank n . n 2 1 HXD = (14n2 −12n) - Hexadecagonal number of rank n . n 2 1 HPD = (15n2 −13n) - Heptadecagonal number of rank n . n 2 NOTATIONS USED 2 1 OD = (16n 2 −14n) - Octadecagonal number of rank n . n 2 1 ND = (17n 2 −15n) - Nonadecagonal number of rank n . n 2 1 IC = (18n 2 −16n) - Icosagonal number of rank n . n 2 1 ICH = (19n2 −17n) - Icosihenagonal number of rank n . n 2 1 ID = (20n 2 −18n) - Icosidigonal number of rank n . n 2 1 IT = (21n2 −19n) - Icositriogonal number of rank n . n 2 1 ICT = (22n2 − 20n) - Icositetragonal number of rank n . n 2 1 IP = (23n 2 − 21n) - Icosipentagonal number of rank n .
    [Show full text]
  • Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CSUSB ScholarWorks California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 6-2019 Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle Lacey Taylor James California State University - San Bernardino, [email protected] Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Algebra Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation James, Lacey Taylor, "Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle" (2019). Electronic Theses, Projects, and Dissertations. 835. https://scholarworks.lib.csusb.edu/etd/835 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Lacey Taylor James June 2019 Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle A Thesis Presented to the Faculty of California State University, San Bernardino by Lacey Taylor James June 2019 Approved by: Joseph Chavez, Committee Chair Charles Stanton, Committee Member Rolland Trapp, Committee Member Shawnee McMurran, Chair, Department of Mathematics Corey Dunn, Graduate Coordinator iii Abstract This paper will discuss the analogues between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle by utilizing mathematical proving techniques like partial sums, com- mittees, telescoping, mathematical induction and applying George P´olya's perspective.
    [Show full text]
  • On the Integer Solutions of the Pell Equation
    International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org || Volume 2 || Issue 12 || December 2013 || PP.01-03 On the integer solutions of the Pell equation M.A.Gopalan1,V.Sangeetha2, Manju Somanath3 1Professor,Dept.of Mathematics,Srimathi Indira Gandhi College,Trichy-620002,India. 2Asst.Professor,Dept.of Mathematics,National College,Trichy-620001,India. 3Asst.Professor,Dept.of Mathematics,National College,Trichy-620001,India. ABSTRACT: The binary quadratic diophantine equation represented by is considered. A method for obtaining infinitely many non-zero distinct integer solutions of the Pell equation considered above is illustrated. A few interesting relations among the solutions and special figurate numbers are presented.Recurrence relations on the solutions are given. KEYWORDS - Pell equation, binary quadratic diophantine equation, integer solutions. I. INTRODUCTION It is well known that the Pell equation (D > 0 and square free) has always positive integer solutions.When , the Pell equation may not have any positive integer solutions.For example, the equations and have no integer solutions. When k is a positive integer and , positive integer solutions of the equations and have been investigated by Jones in [1].In [2-11], some specific Pell equation and their integer solutions are considered.In [12], the integer solutions of the Pell equation has been considered. In [13], the Pell equation is analysed for the integer solutions. This communication concerns with the Pell equation and infinitely many positive integer solutions are obtained.A few interesting relations among the solutions and special figurate numbers are presented.Recurrence relations on the solutions are given.
    [Show full text]