Math 342 Class Wiki Fall 2006 2 Authors

Total Page:16

File Type:pdf, Size:1020Kb

Math 342 Class Wiki Fall 2006 2 Authors Math 342 Class Wiki Fall 2006 2 Authors This document was produced collaboratively by: • Keegan Asper • Justin Barcroft • Shawn Bashline • Paul Bernhardt • Kayla Blyman • Amanda Bonanni • Carolyn Bosserman • Jason Brubaker • Jenna Cramer • Daniel Edwards • Kristen Erbelding • Nathaniel Fickett • Rachel French • Brett Hunter • Kevin LaFlamme • Rebeca Maynard • Katherine Patton • Chandler Sheaffer • Kay See Tan • Brittany Williams 3 4 Introduction This is a hard-copy version of a collaborative document produced during the Fall semester 2006 by students in my combinatorics course. The original hypertext version is currently being served at: http://pc-cstaecker-2.messiah.edu/~cstaecker/classwiki Since the original document was produced collaboratively by the students with minimal contributions by the professor, some errors may exist in the text. This hard-copy was translated into LATEX markup language by a computer program, which may have introduced a few further cosmetic errors. Thanks to all the students for their hard work and a great semester. Dr. P. Christopher Staecker Messiah College, 2006 5 6 Contents Arrangements with repetition 11 Arrangements with restricted positions 12 Base case 14 Big O notation 14 Binary search tree 14 Binomial theorem 15 Bipartite graph 17 Circle-chord technique 17 Cliques 18 Color critical 32 Combinatorics 33 Comparing binary search trees 33 Complement 40 Complete graph 41 Computing coefficients 42 Computing coefficients/Examples 44 Coq 45 Counting with Venn diagrams 46 Dijkstra 49 7 8 Directed graph 49 Distributions 50 Enumeration 52 Euler 55 Euler’s Formula for Spheres, Toruses and Other Complex Solids 56 Euler cycle 62 Exponential generating function 64 Fibonacci Sequence and Pascal’s Triangle Relationship 66 Fibonacci sequence 67 Forest 68 Four color theorem 69 Four color theorem/Example 2: Chromatic Number of Graph 71 Gamma function 72 Generating function 79 Graph coloring 84 Graph theory 85 Hamilton 87 Hamilton circuit 88 Heawood Conjecture 90 Inhomogeneous recurrence relation 100 Integer partitions 101 Isomorphic algorithms 102 Isomorphism 107 Kuratowski 111 Linear recurrence relation 113 9 Minimal Recursion Circuits 116 Minimal cost 122 More Coloring Fun 124 Multigraph 124 Network 125 Network Flow 130 Pascal’s Tetrahedron 137 Path 144 Permutations and combinations 146 Permutations and combinations/“SYSTEMS” example 149 Planarity 150 Planarity algorithm 151 Ramanujan 156 Recursion 157 Rook Polynomials 160 Solving recurrence relations with generating functions 161 Spanning tree 164 Sperner’s lemma 166 Spherical and Toroidal Graphs 172 Stirling’s Formula 178 Subdivision 181 The Birthday Paradox 181 The Inclusion/Exclusion Principle 183 Towers of Hanoi 185 Traveling salesman problem 186 10 Tree 188 Using combinations in statistics 192 Varadarajan example 193 Vertex 194 Where chess meets mathematics 195 11 Arrangements with repetition Counting Arrangements A common enumeration problem one may have to solve deals with how many arrangements can be made from a collection of repeated objects of different types. Our theorem states, if we have n objects with r1 of type 1, r2 of type 2, ..., rm of type m, where r1 + r2 + ... + rm = n, then the number of arrangements that can be made is: n n − r1 n − r1 − r2 n − r1 − r2 − ... − rm−1 P (n; r1, r2, ..., rm) = ∗ ∗ ∗...∗ r1 r2 r3 rm An example of when this theorem would be useful is when counting the number of rearrangements in our previous example, SYSTEMS. Although our theorem might be slightly more tedious, we will reach the same answer. Let us think of rearranging the word systems as counting the arrangements with 3 of letter S, 1 of letter Y , 1 of letter T , 1 of letter E, and 1 of letter M. Therefore, our problem would look like: 7 4 3 2 1 P (7; 3, 1, 1, 1, 1) = ∗ ∗ ∗ ∗ = 840 3 1 1 1 1 As you can see, we have arrived at the same conclusion and answer as we did in the “SYSTEMS” example. However, this method proves more useful for problems which contain more than one quantity of various types. For another example, also see the Varadarajan example. See also: Distributions An Arrangements with Repition Example: Burgers How many ways are there to choose 10 burgers of 4 different types? • You can start off by thinking of it as choosing a certain number of each type, such as 4 of the first type, 3 of the second, 1 of the third, and 2 of the fourth, with the total adding up to 10. • Then, in order to display this, you can write it as xxxx|xxx|x|xx where the x’s are the burgers and the pipes (|’s) separate the types. • Now you can treat this problem like an arrangement, and the new question is how many arrangements can we make with the x’s and pipes? There are 10 characters, 10 x’s and 3 pipes. 12 • Now we can represent this problem with P (13; 10, 3). This example shows us a new theorem: • The number of ways to choose r things of ntypes is: C(r + n − 1, r) r is the number of x’s n − 1 is the number of pipes (|) For the example above: r = 10 burgers; n = 4 types. So the theorem results in: C(r + n − 1, r) = C(10 + 4 − 1, 10) = C(13, 10), which yields the same answer as P (13; 10, 3). Arrangements with restricted positions Board where ’bad’ positions are shaded If you one is counting arrangements with too many restrictions, it may be nec- essary to use a grid diagram in which ’bad’ positions are shaded. In this way, one can count the number of ways to arrange mutually non-capturing rooks within the grid. This might be used to solve problems such as: How many arrangements can be made with the letters a b c d e with: a not in position 1 or 2 b not in position 1 d not in position 3 or 4 e not in position 3, 4, or 5 Let U = all possible arrangements of the 5 letters 13 A1 = all arrangements with a ’bad’ letter in position 1 A2 = all arrangements with a ’bad’ letter in position 2 ...  Ai = all arrangements with a ’bad’ letter in position i So, we want N(A¯1...A¯5) We know from The Inclusion/Exclusion Principle that we should find N(U) − S1 + S2 − S3 + S4 − S5 S1, the sum of the first-fold arrangements in this case signifies all the arrange- ments ’bad’ in 1 position. Similarly, Sk will be all arrangements bad in k positions or the number of ways to pick k bad spots on the board (with no 2 in the same row or column). Given some board, the number of placements of k mutually non-capturing rooks th is as the function rB(B), or the k rook number of B. Example 1 Find all rk’s for B1 : r0(B1) = 1 There is always one way to place 0 things r1(B1) = 4 This is the number of spots on the board r2(B1) = 3 This can be counted r3(B1) = 0 There is no way to place 3 rooks in B1 without them attacking eachother all other, higher rk are zero. Rook Polynomials The rook polynomial r(x, B) of a board, B is the Generating function for rk. 2 i r(x, B) = r0(B) + r1(B)x + r2(B)x + ... + ri(B)x 2 So, from the previous example, r(x, B1) = 1 + 4x + 3x . 14 Example 2 Find all rk’s for B2 r0(B2) = 1 r1(B2) = 20 r2(B2) = 10 ∗ 9 r3(B2) = 0 All the others higher than r3(B2) will all be zero. Base case A base case is the simplest case of a recurrence relation that can be solved without further recursion. For example, r(1) = 1 is a properly-stated base case. A recurrence relation can have more than one base case if the recurrence relies upon more than one previous term. Big O notation Big O notation is a term used in both mathematics and computer science. In computer science it categorizes the complexity of an algorithm. It is often seen as an indicator of the efficiency of an algorithm, as it can roughly predict the time required to complete n iterations or recursions of an algorithm. For example, a given algorithm loops through n rows and adds each one to a sum. The Big O notation for this algorithm would be notated O(n). We would say that the algorithm has “order of n” complexity. Common “Orders” • O(log n) (logarithmic) • O(n) (linear) • O(n2) (quadratic) • O(cn) (exponential) • O(n!) (factorial) 15 Binary search tree A binary search tree is a 2-ary tree the nodes of which have the following prop- erties: 1. The node has a value. 2. The sub-tree with the node’s left child as its root contains nodes with values less than the node. 3. The sub-tree with the node’s right child as its root contains nodes with values greater than the node. Binomial theorem n Pn n k n n n 2 The Binomial Theorem states: (1+x) = k=0 k x = 0 + 1 x+ 2 x + n n ... + n x (This is also known as Observation 0) From the Binomial Theorem, we can also find an exponential generating func- tion: (1 + x)n is also an exponential function for P (n, r) • ∞ X n (1 + x)n = xr r r=0 • ∞ X n! = xr (n − r)!r! r=0 • ∞ X n! xr = (n − r)! r! r=0 • ∞ X xr = P (n, r) r! r=0 proof: First we will look at a specific case, when n = 3 16 (a+x)3 = (a+x)(a+x)(a+x) = (a+x)(aa+xa+ax+xx) = aaa+aax+axa+axx+xaa+xax+xxa+xxx This is all words of length 3 on x and a.
Recommended publications
  • On J-Colorability of Certain Derived Graph Classes
    On J-Colorability of Certain Derived Graph Classes Federico Fornasiero Department of mathemathic Universidade Federal de Pernambuco Recife, Pernambuco, Brasil [email protected] Sudev Naduvath Centre for Studies in Discrete Mathematics Vidya Academy of Science & Technology Thrissur, Kerala, India. [email protected] Abstract A vertex v of a given graph G is said to be in a rainbow neighbourhood of G, with respect to a proper coloring C of G, if the closed neighbourhood N[v] of the vertex v consists of at least one vertex from every colour class of G with respect to C. A maximal proper colouring of a graph G is a J-colouring of G if and only if every vertex of G belongs to a rainbow neighbourhood of G. In this paper, we study certain parameters related to J-colouring of certain Mycielski type graphs. Key Words: Mycielski graphs, graph coloring, rainbow neighbourhoods, J-coloring arXiv:1708.09798v2 [math.GM] 4 Sep 2017 of graphs. Mathematics Subject Classification 2010: 05C15, 05C38, 05C75. 1 Introduction For general notations and concepts in graphs and digraphs we refer to [1, 3, 13]. For further definitions in the theory of graph colouring, see [2, 4]. Unless specified otherwise, all graphs mentioned in this paper are simple, connected and undirected graphs. 1 2 On J-colorability of certain derived graph classes 1.1 Mycielskian of Graphs Let G be a triangle-free graph with the vertex set V (G) = fv1; : : : ; vng. The Myciel- ski graph or the Mycielskian of a graph G, denoted by µ(G), is the graph with ver- tex set V (µ(G)) = fv1; v2; : : : ; vn; u1; u2; : : : ; un; wg such that vivj 2 E(µ(G)) () vivj 2 E(G), viuj 2 E(µ(G)) () vivj 2 E(G) and uiw 2 E(µ(G)) for all i = 1; : : : ; n.
    [Show full text]
  • Some Conjectures in Chromatic Topological Graph Theory Joan P
    Some Conjectures in Chromatic Topological Graph Theory Joan P. Hutchinson Macalester College, emerita Thanks to Stan Wagon for the colorful graphics. Ñ 1 2 3 4 5 6 7 ALMOST FOUR-COLORING ON SURFACES: ALMOST FOUR-COLORING ON SURFACES: #1. M.O. Albertson’s favorite CONJECTURE (1980): All vertices of a triangulation of the torus can be 4-col- ored except for at most three vertices. Motivation: Every graph on the torus can be 7-colored, and every 7-chromatic toroidal graph contains K7, a trian- gulation of the torus. Every 6-chromatic toroidal graph contains one of four graphs. [Thomassen 1994] The list for 5-chromatic toroidal graphs is infinite... An affirmative answer to this conjecture implies the Four Color Theorem. In Jensen & Toft, Graph Coloring Problems, Albertson’s Four-Color Problem. CONJECTURE: For every surface S, there is an integer f HSL such that all but f HSL vertices of a graph embed- dable on S can be 4-colored. TWO & THREE-COLORING ON SURFACES #2. The “easiest” coloring result states that every plane graph can be two-colored provided every face is bounded by an even number of edges. What is true on surfaces? Locally bipartite (aka evenly embedded) graphs are those embedded on a surface with all faces bounded by an even number of edges. There is a Heawood/Ringel type theorem for locally bipar- tite graphs on surfaces. The more “modern” question asks about locally planar, locally bipartite graphs on surfaces: The more “modern” question asks about locally planar, locally bipartite graphs on surfaces: Locally planar (Albertson & Stromquist 1980) means that all noncontractible cycles are long, as long as needed for the conjecture/question/theorem at hand.
    [Show full text]
  • Eindhoven University of Technology BACHELOR the Chinese Postman Problem in Undirected and Directed Graphs Verberk, Lucy P.A
    Eindhoven University of Technology BACHELOR The Chinese postman problem in undirected and directed graphs Verberk, Lucy P.A. Award date: 2019 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Eindhoven University of Technology Applied Mathematics Combinitorial Optimization The Chinese Postman Problem in undirected and directed graphs Bachelor Final project Author: Supervisor: Lucy Verberk Dr. Judith Keijsper July 11, 2019 Abstract In this report the Chinese Postman Problem (CPP) for undirected, directed and mixed graphs will be considered. Solution methods for the undirected and directed CPP will be discussed. For the mixed CPP, some suggestions for further research are mentioned. An application of routing gritters and snow-shovel trucks in the city of Eindhoven in the Netherlands will be con- sidered.
    [Show full text]
  • Empire Maps on Surfaces Arxiv:1106.4235V1 [Math.GT]
    University of Durham Final year project Empire Maps on Surfaces An exploration into colouring empire maps on the sphere and higher genus surfaces Author: Supervisor: Caspar de Haes Dr Vitaliy Kurlin D C 0 7 8 0 E 6 9 5 10 0 0 4 11 B 1' 3' F 3 5' 12 12' 0 7' 0 2 10' 2 A 13 9' A 1 1 8' 11' 0 0 0' 11 6' 4 4' 2' F 12 3 B 0 0 9 6 5 10 C E 0 7 8 0 arXiv:1106.4235v1 [math.GT] 21 Jun 2011 D April 28, 2011 Abstract This report is an introduction to mathematical map colouring and the problems posed by Heawood in his paper of 1890. There will be a brief discussion of the Map Colour Theorem; then we will move towards investigating empire maps in the plane and the recent contri- butions by Wessel. Finally we will conclude with a discussion of all known results for empire maps on higher genus surfaces and prove Heawoods Empire Conjecture in a previously unknown case. Contents 1 Introduction 3 1.1 Overview of the Problem . 3 1.2 History of the Problem . 3 1.3 Chapter Plan . 5 2 Graphs 6 2.1 Terminology and Notation . 6 2.2 Complete Graphs . 8 3 Surfaces 9 3.1 Surfaces and Embeddings . 9 3.2 Euler Characteristic . 10 3.3 Orientability . 11 3.4 Classification of surfaces . 11 4 Map Colouring 14 4.1 Maps and Colouring . 14 4.2 Dual Graphs . 15 4.3 Colouring Graphs .
    [Show full text]
  • ~Umbers the BOO K O F Umbers
    TH E BOOK OF ~umbers THE BOO K o F umbers John H. Conway • Richard K. Guy c COPERNICUS AN IMPRINT OF SPRINGER-VERLAG © 1996 Springer-Verlag New York, Inc. Softcover reprint of the hardcover 1st edition 1996 All rights reserved. No part of this publication may be reproduced, stored in a re­ trieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Published in the United States by Copernicus, an imprint of Springer-Verlag New York, Inc. Copernicus Springer-Verlag New York, Inc. 175 Fifth Avenue New York, NY lOOlO Library of Congress Cataloging in Publication Data Conway, John Horton. The book of numbers / John Horton Conway, Richard K. Guy. p. cm. Includes bibliographical references and index. ISBN-13: 978-1-4612-8488-8 e-ISBN-13: 978-1-4612-4072-3 DOl: 10.l007/978-1-4612-4072-3 1. Number theory-Popular works. I. Guy, Richard K. II. Title. QA241.C6897 1995 512'.7-dc20 95-32588 Manufactured in the United States of America. Printed on acid-free paper. 9 8 765 4 Preface he Book ofNumbers seems an obvious choice for our title, since T its undoubted success can be followed by Deuteronomy,Joshua, and so on; indeed the only risk is that there may be a demand for the earlier books in the series. More seriously, our aim is to bring to the inquisitive reader without particular mathematical background an ex­ planation of the multitudinous ways in which the word "number" is used.
    [Show full text]
  • On Topological Relaxations of Chromatic Conjectures
    European Journal of Combinatorics 31 (2010) 2110–2119 Contents lists available at ScienceDirect European Journal of Combinatorics journal homepage: www.elsevier.com/locate/ejc On topological relaxations of chromatic conjectures Gábor Simonyi a, Ambrus Zsbán b a Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Hungary b Department of Computer Science and Information Theory, Budapest University of Technology and Economics, Hungary article info a b s t r a c t Article history: There are several famous unsolved conjectures about the chromatic Received 24 February 2010 number that were relaxed and already proven to hold for the Accepted 17 May 2010 fractional chromatic number. We discuss similar relaxations for the Available online 16 July 2010 topological lower bound(s) of the chromatic number. In particular, we prove that such a relaxed version is true for the Behzad–Vizing conjecture and also discuss the conjectures of Hedetniemi and of Hadwiger from this point of view. For the latter, a similar statement was already proven in Simonyi and Tardos (2006) [41], our main concern here is that the so-called odd Hadwiger conjecture looks much more difficult in this respect. We prove that the statement of the odd Hadwiger conjecture holds for large enough Kneser graphs and Schrijver graphs of any fixed chromatic number. ' 2010 Elsevier Ltd. All rights reserved. 1. Introduction There are several hard conjectures about the chromatic number that are still open, while their fractional relaxation is solved, i.e., a similar, but weaker statement is proven for the fractional chromatic number in place of the chromatic number.
    [Show full text]
  • The Nonorientable Genus of Complete Tripartite Graphs
    The nonorientable genus of complete tripartite graphs M. N. Ellingham∗ Department of Mathematics, 1326 Stevenson Center Vanderbilt University, Nashville, TN 37240, U. S. A. [email protected] Chris Stephensy Department of Mathematics, 1326 Stevenson Center Vanderbilt University, Nashville, TN 37240, U. S. A. [email protected] Xiaoya Zhaz Department of Mathematical Sciences Middle Tennessee State University, Murfreesboro, TN 37132, U.S.A. [email protected] October 6, 2003 Abstract In 1976, Stahl and White conjectured that the nonorientable genus of Kl;m;n, where l m (l 2)(m+n 2) ≥ ≥ n, is − − . The authors recently showed that the graphs K3;3;3 , K4;4;1, and K4;4;3 2 ¡ are counterexamples to this conjecture. Here we prove that apart from these three exceptions, the conjecture is true. In the course of the paper we introduce a construction called a transition graph, which is closely related to voltage graphs. 1 Introduction In this paper surfaces are compact 2-manifolds without boundary. The orientable surface of genus h, denoted S , is the sphere with h handles added, where h 0. The nonorientable surface of genus h ≥ k, denoted N , is the sphere with k crosscaps added, where k 1. A graph is said to be embeddable k ≥ on a surface if it can be drawn on that surface in such a way that no two edges cross. Such a drawing ∗Supported by NSF Grants DMS-0070613 and DMS-0215442 ySupported by NSF Grant DMS-0070613 and Vanderbilt University's College of Arts and Sciences Summer Re- search Award zSupported by NSF Grant DMS-0070430 1 is referred to as an embedding.
    [Show full text]
  • Contemporary Mathematics 352
    CONTEMPORARY MATHEMATICS 352 Graph Colorings Marek Kubale Editor http://dx.doi.org/10.1090/conm/352 Graph Colorings CoNTEMPORARY MATHEMATICS 352 Graph Colorings Marek Kubale Editor American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeTurck, managing editor Andreas Blass Andy R. Magid Michael Vogeli us This work was originally published in Polish by Wydawnictwa Naukowo-Techniczne under the title "Optymalizacja dyskretna. Modele i metody kolorowania graf6w", © 2002 Wydawnictwa N aukowo-Techniczne. The present translation was created under license for the American Mathematical Society and is published by permission. 2000 Mathematics Subject Classification. Primary 05Cl5. Library of Congress Cataloging-in-Publication Data Optymalizacja dyskretna. English. Graph colorings/ Marek Kubale, editor. p. em.- (Contemporary mathematics, ISSN 0271-4132; 352) Includes bibliographical references and index. ISBN 0-8218-3458-4 (acid-free paper) 1. Graph coloring. I. Kubale, Marek, 1946- II. Title. Ill. Contemporary mathematics (American Mathematical Society); v. 352. QA166 .247.06813 2004 5111.5-dc22 2004046151 Copying and reprinting. Material in this book may be reproduced by any means for edu- cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg- ment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Math- ematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permissien@ams.
    [Show full text]
  • Biplanar Graphs: a Survey
    ComputersMath.Applic.Vol. 34, No. 11,pp. 1-8, 1997 Pergamon Copyright(FJ1997ElsevierScienceLtd @ Printedin GreatBritain.All rightsreserved 0898-1221/97$17.00+ 0.00 PII: S0898-1221(97)00214-9 Biplanar Graphs: A Survey L. W, BEINEKE Departmentof MathematicalSciences IndianaUniversity-PurdueUniversity Fort Wayne, IN 46805,U.S.A. Abstract—A graphis calledbiplanarif it is the unionof two planargraphs. In this survey, we presenta varietyof reeultson biplanargraphs,somespecialfamiliesof suchgraphs,and some generalizations. Keywords-planar graphs,Biplanargraphs,Thickness,Doublylineargraphs,Visibilitygraphs. 1. BACKGROUND In 1986, as part of the commemorationof the 250thanniversaryof graph theory and the cele- bration of the 65thbirthday of FrankHarary,we gave a surveyof graph thicknessand related concepts [1]. The presentpaper is the resultof an invitationto up-datethat work. The thrust of this paper will be ratherdifferenthowever,focusingon “biplanar”graphs,those that are the union of just two planargraphs. In fact, the thicknessof a graphhas its originsin this question: which complete graphscan be expressedas the unionof two planargraphs? We begin with a few historical comments. In the early 1960’s, Selfridgeobserved that no graphwith elevenverticescan havea planarcomplement.This is easilyseen,sincethe complete graph Kll has fifty-fiveedges, but Euler’s polyhedronformulaimpliesthat a planar graph of order 11 can have no more than twenty-sevenedges. Consequently,KU cannot be the union of two planar graphs. On the other hand, as Figure 1 shows, there are planargraphs of order 8 whose complementsare also planar. (In fact, the examplein Figure 1 is self-complementary.) For graphs of order 9, the questionturned out to be quite difficultto answer. In the event, the answerwas shownto be negative,by Battle, Harary,and Kodama [2]and independentlyby Tutte [3].
    [Show full text]
  • Half Companion Sequences of Special Dio 3-Tuples Involving Centered Square Numbers
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-3, September 2019 Half Companion Sequences of Special Dio 3-Tuples Involving Centered Square Numbers C.Saranya , G.Janaki Abstract: In this paper, we construct a sequence of Special Dio IV. METHOD OF ANALYSIS: 3-tuples for centered square numbers involving half companion Case 1: sequences under 3 cases with the properties D(-2), D(-11) & Forming sequence of Special dio 3-tuples for centered D(-26). square numbers of consecutive ranks n and n 1 2 2 Keywords : Diophantine Triples, special dio-tuples,Centered Let a1 CSn n (n 1) & square Number, Integer Sequences. 2 2 a2 CSn1 (n 1) n be Centered Square numbers of rank n and n 1 I. INTRODUCTION respectively such that a1a2 a1 a2 2 is a perfect In Number theory, a Diophantine equation is a polynomial square say 2 . equation, usually in two or more unknowns, with the end goal that solitary the integer solutions are looked for or Let p3 be any non-zero whole number such that contemplated [1-4]. The word Diophantine alludes to the 2 a a a a 2 (1) Greek mathematician of the third century, Diophantus of 1 3 1 3 1 Alexandria, who made an investigation of such conditions and 2 a2a3 a2 a3 2 1 (2) was one of the primary mathematician to bring symbolism Assume x a y an x a y , into variable based mathematics. 1 1 1 1 1 1 2 1 2 2 Various mathematicians considered the problem of the it becomes x a 1a 1y 3 (3) occurrence of Dio triples and quadruples with the property 1 1 2 1 2 D(n) for any integer n and besides for any linear polynomial in Therefore, 1 4n 2n 3 n[5-7].
    [Show full text]
  • Notations Used 1
    NOTATIONS USED 1 NOTATIONS ⎡ (n −1)(m − 2)⎤ Tm,n = n 1+ - Gonal number of rank n with sides m . ⎣⎢ 2 ⎦⎥ n(n +1) T = - Triangular number of rank n . n 2 1 Pen = (3n2 − n) - Pentagonal number of rank n . n 2 2 Hexn = 2n − n - Hexagonal number of rank n . 1 Hep = (5n2 − 3n) - Heptagonal number of rank n . n 2 2 Octn = 3n − 2n - Octagonal number of rank n . 1 Nan = (7n2 − 5n) - Nanogonal number of rank n . n 2 2 Decn = 4n − 3n - Decagonal number of rank n . 1 HD = (9n 2 − 7n) - Hendecagonal number of rank n . n 2 1 2 DDn = (10n − 8n) - Dodecagonal number of rank n . 2 1 TD = (11n2 − 9n) - Tridecagonal number of rank n . n 2 1 TED = (12n 2 −10n) - Tetra decagonal number of rank n . n 2 1 PD = (13n2 −11n) - Pentadecagonal number of rank n . n 2 1 HXD = (14n2 −12n) - Hexadecagonal number of rank n . n 2 1 HPD = (15n2 −13n) - Heptadecagonal number of rank n . n 2 NOTATIONS USED 2 1 OD = (16n 2 −14n) - Octadecagonal number of rank n . n 2 1 ND = (17n 2 −15n) - Nonadecagonal number of rank n . n 2 1 IC = (18n 2 −16n) - Icosagonal number of rank n . n 2 1 ICH = (19n2 −17n) - Icosihenagonal number of rank n . n 2 1 ID = (20n 2 −18n) - Icosidigonal number of rank n . n 2 1 IT = (21n2 −19n) - Icositriogonal number of rank n . n 2 1 ICT = (22n2 − 20n) - Icositetragonal number of rank n . n 2 1 IP = (23n 2 − 21n) - Icosipentagonal number of rank n .
    [Show full text]
  • Coloring Discrete Manifolds
    COLORING DISCRETE MANIFOLDS OLIVER KNILL Abstract. Discrete d-manifolds are classes of finite simple graphs which can triangulate classical manifolds but which are defined entirely within graph theory. We show that the chromatic number X(G) of a discrete d-manifold G satisfies d + 1 ≤ X(G) ≤ 2(d + 1). From the general identity X(A + B) = X(A) + X(B) for the join A+B of two finite simple graphs, it follows that there are (2k)-spheres with chromatic number X = 3k+1 and (2k − 1)-spheres with chromatic number X = 3k. Examples of 2-manifolds with X(G) = 5 have been known since the pioneering work of Fisk. Current data support the that an upper bound X(G) ≤ d3(d+1)=2e could hold for all d-manifolds G, generalizing a conjecture of Albertson-Stromquist [1], stating X(G) ≤ 5 for all 2-manifolds. For a d-manifold, Fisk has introduced the (d − 2)-variety O(G). This graph O(G) has maximal simplices of dimension (d − 2) and correspond to complete complete subgraphs Kd−1 of G for which the dual circle has odd cardinality. In general, O(G) is a union of (d − 2)-manifolds. We note that if O(S(x)) is either empty or a (d − 3)-sphere for all x then O(G) is a (d − 2)-manifold or empty. The knot O(G) is already interesting for 3-manifolds G because Fisk has demonstrated that every possible knot can appear as O(G) for some 3-manifold. For 4-manifolds G especially, the Fisk variety O(G) is a 2-manifold in G as long as all O(S(x)) are either empty or a knot in every unit 3-sphere S(x).
    [Show full text]