Chapter 2 Astronomical Data

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2 Astronomical Data WHO RUNS THE WORLD: DATA CHAPTER 2 ASTRONOMICAL DATA Hulusi GÜLSEÇEN*, Hasan H. ESENOĞLU** *Asos. Prof., İstanbul University, Science Faculty, Astronomy and Spaces Sciences Department, İstanbul, Turkey E-mail: [email protected] **Asos. Prof., İstanbul University, Science Faculty, Astronomy and Space Sciences Department, İstanbul, Turkey E-mail: [email protected] DOI: 10.26650/B/ET06.2020.011.02 Abstract Space telescopes have increased the quality of data collection for today’s astronomy. In parallel to this, obtaining high quality data with high technology and good resolution focal plane detectors in accordance with the developments in material science in the ground-based observations has been achieved. With the new generation of ground based and space observations, global campaigns also brought continuity in data acquisition and increased performance. Finally, the fact that theoretical outputs can be made to allow in today’s technology, for example, the detection of gravitational waves in the universe and these add new ones to the existing data. In addition, there has been a significant increase in data archiving, reduction and processing together with the number and variety of data collection tools. Astronomers have been able to overcome the facilitation in these processes in their own way: manpower waste has been reduced with autonomous telescopes, the data has been transformed into informatics (astroinformatics) with pipelines, the workload has been reduced to large masses by establishing a virtual observatory, and finally smart applications have been opened with the provided big data and new open areas have been reached with a future such as data mining. In this way, there has been progress in solving many astronomical events in the universe. This chapter is orginized in two subsections. In first, we are discussing how to solve problems in astronomy by using big data. In the second, we mention about big data sources in astronomy. The importance of data in astronomy, sources of data, big data in regards to the discovery of universe and analyzing data are the topics discussed in these subsections. Keywords: Astroinformatics, Astrostatistic, Astronomy, Big data, Machine learning, Processing, Reduction 14 ASTRONOMICAL DATA 1. Introduction Astronomy is the study of physics, chemistry, and evolution of celestial objects and phenomena that originate outside the Earth’s atmosphere, including supernova explosions, gamma ray bursts, and cosmic microwave background radiation (Zhang and Zhao, 2015). Since astronomy is a science that studies celestial bodies, the objects in space can only be investigated by examining the light coming or reflected from them. Thus, the only source astronomers have is light. There are many difficulties when investigating a celestial body. The Earth, the Sun and the Solar system are constantly in motion. Also, more distant celestial bodies such as stars and galaxies are constantly in motion. For this reason, the location of a celestial body at the time of observation, the position of the earth and the time of observation are very important. Studies with celestial bodies must be reduced to a heliocentric coordinate system. Observation time (which is one of the main parameters of astronomical data sets) should also be reduced to HJD (Heliocentric Julian Day). The time and the coordinates of both the celestial body and the detector (telescope, satellite, CCD, etc.) are indispensable parameters of a data set regardless of the wavelength in which the field of astronomy is studied. We can roughly divide astronomy into three areas of study. These are astrometric, photometric and spectroscopic studies. Roughly, we can classify the celestial objects to be observed as the sun, the objects of solar system, stars, Milky Way, galaxies, and galaxy groups. These celestial bodies are observed with different devices at different wavelengths of the electromagnetic spectrum. The classes of astronomy in terms of wavelength can be made as follows: gamma-rays astronomy, x-rays astronomy, ultraviolet astronomy, optical astronomy, infrared astronomy and radio astronomy. Astrophysics is the branch of astronomy that studies the physics of the universe, in particular, the nature of celestial objects rather than their positions or motions in space. Astrophysics typically uses many disciplines from physics, including mechanics, electromagnetism, statical mechanics, thermodynamics, quantum mechanics, relativity, nuclear, particle physics, and atomotic and molecular physics to solve astronomical issues (Zhang and Zhao, 2015). The occurrence times and life span of the events taking place in space also vary greatly. For example, gamma-ray bursts last for a few seconds while solar eruptions and binary star Hulusi GÜLSEÇEN, Hasan H. ESENOĞLU 15 eclipses last for a few minutes and several hours to years, respectively. The lives of stars last from ten million years to several billion years. Gamma-ray bursts (GRBs) in Astronomy are flashes of gamma-rays associated with extremely energetic explosions that have been observed in distant galaxies. They are the brightest electromagnetic events known to occur in the universe after the big bang. Bursts can last from milliseconds to several minutes. The initial burst is usually followed by a longer-lived afterglow emitted at longer wavelengths (x-ray, ultraviolet, optical, infrared, microwave and radio). Targets of Opportunity (ToO) are astronomical objects undergoing unexpected/unpredictable transient phenomena and proposed for observation. The observations are normally urgent because of the transient nature of the event and may require even an immediate intervention at the telescope. ToO include objects that can be identified before the onset of such phenomena (e.g. dwarf novae, x-ray binaries) as well as objects which cannot be identified in advance (e.g. novae, supernovae, gamma-ray bursts). Modules have been developed for fast telescopes that respond to GRB alerts robotically in collaboration with the coordination of data networks. An example of deployed T60 at the TUBITAK National Observatory (Antalya, Turkey) was carried out by embedded software of the robotic telescope (Dindar et al., 2015). The telescope responds to GRB triggers transmitted from the Goddard Space Flight Center alert system thanks to this autonomy. It uses the Gamma-Ray Explosion Coordinates Network - GCN (formerly known as the BATSE Coordinates Distribution Network, BACODINE) while doing this. There are also some pipelines designed for Gaia alerts (http://gsaweb.ast.cam.ac.uk/alerts/alertsindex) similar to GRB alerts. One of these is “AlertPipe” which is responsible for real-time detection and classification of anomalies and transient astrophysical phenomena. The pipeline works within the Gaia data processing stream. Recent advances in satellite and CCD technology have allowed for a more detailed examination. Dark energy, dark matter and exoplanet research have been accelerated thanks to these developments in technology. Advances in computer technology, the enormous expansion of new storage capacities, the diversity and organization of astronomical data have led to the addition of two new fields of study to astronomy. In particular, data mining, machine learning and artificial intelligence applications have started to be used in astronomy studies. Finding solutions to the problems in astronomy with big data and subjects of big data in astronomy are discussed under the relevant subheadings below. 16 ASTRONOMICAL DATA 2. Solving Problems in Astronomy with Big Data Statistics plays an essential role in data-rich astronomy. Scientific insights cannot be extracted from massive datasets without statistical analysis. The statistical challenges are not simple; image analysis, time series analysis, nonlinear regression, survival analysis, and multivariate classification are all critically important (Feigelson and Babu, 2012). Data in a method called DFS (Distributed File System) is placed wherever there is a free computer on Earth. For example, a part of the picture you upload to Facebook can be held on a computer in China and the other part can be held on a computer in Canada. Hadoop combines these two pieces of information in milliseconds when you click to view. Astronomy was developed in two main areas namely “Astrostatistics” and “Astroinformatics”. Astrostatistics can be summarized as the application of the science of statistics to the sciences of astronomy and astrophysics. Astroinformatics can be defined as computer programs and analysis methods developed to process big data from telescopes. For example, CALTECH’s space telescope GALEX (The Galaxy Evolution Explorer) 30 TB, Australia’s SkyMapper (Southern Sky Survey) 500 Terabyte, and NASA JPL’s Hawaii telescope PanSTARRS 40 PB is generating data while the data produced by Palomar Observatory is 3 TB. The amount of data generated reaches almost zettabytes when we combine all the telescopes in the world. The International Virtual Observatory Association (http://www.ivoa.net) established for this purpose is designed to combine information from telescopes all around the world with Hadoop to establish an environment accessible to every astronomer. A virtual observatory has been set up and all data from telescopes so far has been shared, and when astronomers want to analyze a region, they can access information from telescopes on a single screen and make virtual observations. In short, the virtual observatory makes it easier for scientists to make science.
Recommended publications
  • The Search for Transiting Extrasolar Planets in the Open Cluster M52
    THE SEARCH FOR TRANSITING EXTRASOLAR PLANETS IN THE OPEN CLUSTER M52 A Thesis Presented to the Faculty of San Diego State University In Partial Fulfillment of the Requirements for the Degree Master of Sciences in Astronomy by Tiffany M. Borders Summer 2008 SAN DIEGO STATE UNIVERSITY The Undersigned Faculty Committee Approves the Thesis of Tiffany M. Borders: The Search for Transiting Extrasolar Planets in the Open Cluster M52 Eric L. Sandquist, Chair Department of Astronomy William Welsh Department of Astronomy Calvin Johnson Department of Physics Approval Date iii Copyright 2008 by Tiffany M. Borders iv DEDICATION To all who seek new worlds. v Success is to be measured not so much by the position that one has reached in life as by the obstacles which he has overcome. –Booker T. Washington All the world’s a stage, And all the men and women merely players. They have their exits and their entrances; And one man in his time plays many parts... –William Shakespeare, “As You Like It”, Act 2 Scene 7 vi ABSTRACT OF THE THESIS The Search for Transiting Extrasolar Planets in the Open Cluster M52 by Tiffany M. Borders Master of Sciences in Astronomy San Diego State University, 2008 In this survey we attempt to discover short-period Jupiter-size planets in the young open cluster M52. Ten nights of R-band photometry were used to search for planetary transits. We obtained light curves of 4,128 stars and inspected them for variability. No planetary transits were apparent; however, some interesting variable stars were discovered. In total, 22 variable stars were discovered of which, 19 were not previously known as variable.
    [Show full text]
  • SATELLITE COMMUNICATION UNIT I OVERVIEW of SATELLITE SYSTEMS, ORBITS and LAUNCHING METHODS Introduction
    www.jntuhweb.com JNTUH WEB SATELLITE COMMUNICATION UNIT I OVERVIEW OF SATELLITE SYSTEMS, ORBITS AND LAUNCHING METHODS Introduction – Frequency allocations for satellite services – Intelsat – U.S domsats – Polar orbiting satellites – Problems – Kepler’s first law – Kepler’s second law – Kepler’s third law – Definitions of terms for earth – Orbiting satellites – Orbital elements – Apogee and perigee heights – Orbital perturbations – Effects of a non-spherical earth – Atmospheric drag – Inclined orbits – Calendars – Universal time – Julian dates – Sidereal time – The orbital plane – The geocentric – Equatorial coordinate system – Earth station referred to the IJK frame – The topcentric – Horizon co-ordinate system – The subsatellite point – Predicting satellite position. PART A 1. What is Satellite? Mention the types. An artificial body that is projected from earth to orbit either earth (or) another body of solar systems. Types: Information satellites and Communication Satellites 2. State Kepler’s first law. It states that the path followed by the satellite around the primary will be an ellipse. An ellipse has two focal points F1 and F2. The center of mass of the two body system, termed the barycenter is always centered on one of the foci. e = [square root of ( a2– b2) ] / a 3. State Kepler’s second law. It states that for equal time intervals, the satellite will sweep out equal areas in its orbital Skyupsmediaplane, focused at the barycenter. 4. State Kepler’s third law. It states that the square of the periodic time of orbit is perpendicular to the cube of the mean distance between the two bodies. JNTUH WEB www.jntuhweb.com JNTUH WEB a3= 3 / n2 Where, n = Mean motion of the satellite in rad/sec.
    [Show full text]
  • Download This Issue (Pdf)
    Volume 46 Number 2 JAAVSO 2018 The Journal of the American Association of Variable Star Observers Unmanned Aerial Systems for Variable Star Astronomical Observations The NASA Altair UAV in flight. Also in this issue... • A Study of Pulsation and Fadings in some R CrB Stars • Photometry and Light Curve Modeling of HO Psc and V535 Peg • Singular Spectrum Analysis: S Per and RZ Cas • New Observations, Period and Classification of V552 Cas • Photometry of Fifteen New Variable Sources Discovered by IMSNG Complete table of contents inside... The American Association of Variable Star Observers 49 Bay State Road, Cambridge, MA 02138, USA The Journal of the American Association of Variable Star Observers Editor John R. Percy Laszlo L. Kiss Ulisse Munari Dunlap Institute of Astronomy Konkoly Observatory INAF/Astronomical Observatory and Astrophysics Budapest, Hungary of Padua and University of Toronto Asiago, Italy Toronto, Ontario, Canada Katrien Kolenberg Universities of Antwerp Karen Pollard Associate Editor and of Leuven, Belgium Director, Mt. John Observatory Elizabeth O. Waagen and Harvard-Smithsonian Center University of Canterbury for Astrophysics Christchurch, New Zealand Production Editor Cambridge, Massachusetts Michael Saladyga Nikolaus Vogt Kristine Larsen Universidad de Valparaiso Department of Geological Sciences, Valparaiso, Chile Editorial Board Central Connecticut State Geoffrey C. Clayton University, Louisiana State University New Britain, Connecticut Baton Rouge, Louisiana Vanessa McBride Kosmas Gazeas IAU Office of Astronomy for University of Athens Development; South African Athens, Greece Astronomical Observatory; and University of Cape Town, South Africa The Council of the American Association of Variable Star Observers 2017–2018 Director Stella Kafka President Kristine Larsen Past President Jennifer L.
    [Show full text]
  • Astrophysical Applications of Gravitational Microlensing in the Milky
    ASTROPHYSICAL APPLICATIONS OF GRAVITATIONAL MICROLENSING IN THE MILKY WAY Przemysław Mróz Ph.D. thesis written under the supervision of prof. dr hab. Andrzej Udalski Warsaw University Observatory Warsaw, April 2019 Acknowledgements First and foremost, I would like to thank my supervisor, Prof. Andrzej Udalski, for the encouragement and advice he has provided throughout my time as his student. I have been extraordinarily lucky to have the supervisor who gave me immeasurable amount of his time, as a researcher and a mentor. This dissertation would not be possible without the sheer amount of work from all members of the OGLE team and their time spent at Cerro Las Campanas. In particular, I would like to thank Prof. Michał Szymanski,´ Prof. Igor Soszynski,´ Łukasz Wyrzykowski, Paweł Pietrukowicz, Szymon Kozłowski, Radek Poleski, and Jan Skowron, who have helped me since my very first steps at the Warsaw University Observatory. I thank all my collegues from the Warsaw Observatory for many helpful discussions and support. I am also grateful to Andrew Gould, Takahiro Sumi, and Yossi Shvartzvald, who shared the photometric data that are a part of this thesis. I thank Calen Henderson and all Pasadena-based microlensers for their hospitality during my stay at Caltech. I also thank my family for their support in my effort to pursue my chosen field of astronomy. I acknowledge financial support from the Polish Ministry of Science and Higher Education (“Diamond Grant” number DI2013/014743), the Foundation for Polish Science (Program START), and the National Science Center, Poland (grant ETIUDA 2018/28/T/ST9/00096). I also received support from the European Research Council grant No.
    [Show full text]
  • Julian Day from Wikipedia, the Free Encyclopedia "Julian Date" Redirects Here
    Julian day From Wikipedia, the free encyclopedia "Julian date" redirects here. For dates in the Julian calendar, see Julian calendar. For day of year, see Ordinal date. For the comic book character Julian Gregory Day, see Calendar Man. Not to be confused with Julian year (astronomy). Julian day is the continuous count of days since the beginning of the Julian Period used primarily by astronomers. The Julian Day Number (JDN) is the integer assigned to a whole solar day in the Julian day count starting from noon Greenwich Mean Time, with Julian day number 0 assigned to the day starting at noon on January 1, 4713 BC, proleptic Julian calendar (November 24, 4714 BC, in the proleptic Gregorian calendar),[1] a date at which three multi-year cycles started and which preceded any historical dates.[2] For example, the Julian day number for the day starting at 12:00 UT on January 1, 2000, was 2,451,545.[3] The Julian date (JD) of any instant is the Julian day number for the preceding noon in Greenwich Mean Time plus the fraction of the day since that instant. Julian dates are expressed as a Julian day number with a decimal fraction added.[4] For example, the Julian Date for 00:30:00.0 UT January 1, 2013, is 2,456,293.520833.[5] The Julian Period is a chronological interval of 7980 years beginning 4713 BC. It has been used by historians since its introduction in 1583 to convert between different calendars. 2015 is year 6728 of the current Julian Period.
    [Show full text]
  • Pulsations in the Giraffe
    PULSATIONS IN THE GIRAFFE Studies on RR Lyrae star : AH Cam or How can we study a RR Lyrae star's variability ? Le Luec Antoine, Buchet Samuel and Gautreau Dylan 2011-2013 Abstract Our project is a study on RR Lyrae stars. We decided to study this type of star because they are close to our planet since they are in our galaxy. On top of that they have short pulsation periods. Therefore, we can study a complete pulsation period in a single night. Jean-François Le Borgne, an astrophysicist of the astrophysics laboratory in Toulouse (IRAP), helped us in the progression of our project. He urged us to study AH Cam, a star which he is studying himself, so we studied the star with him and took part in the scientic research auround it. Our work is based on the ways we can study an RR Lyrae star and phenomenans linked to it. We have done several observations by night, then we processed our data to study its variability. Thanks We would like to thank Mr. Le Borgne for his help during the whole project. Jean François Le Borgne : Astrophysicist Works in the observatory of Toulouse (IRAP) Website : http://www.ast.obs-mip.fr/rubrique53.html Moreover, we would like to thank all the physics teachers from the school who attended our oral presentation and read our report. We also would like to thank Mrs. Tinelli and Xoe Lichu who helped us to translate our report. Finally, we would like to thank Mr.Rives and Mr.Guibert who helped us to achieve this project.
    [Show full text]
  • Gaia: Astrometric Survey of the Galaxy
    Çağrılı Bildiriler / Invited Papers Galaktik Astronomi Çalıştayı Bildiriler Kitabı Galactic Astronomy Workshop Proceedings Book DOI: 10.26650/PB/PS01.2021.001.002 Gaia: Astrometric Survey of the Galaxy Gerry GILMORE1 1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, United Kingdom ORCID: G.G. 0000-0003-4632-0213 ABSTRACT Gaia provides 5-D phase space measurements, 3 spatial coordinates and two space motions in the plane of the sky, for a representative sample of the Milky Way’s stellar populations (over 2 billion stars, being ~1% of the stars over 50% of the radius). Full 6-D phase space data is delivered from line-of-sight (radial) velocities for the 300 million brightest stars. These data make substantial contributions to astrophysics and fundamental physics on scales from the Solar System to cosmology. 1. Introduction The ESA Gaia astrometric space mission is revolutionising astrophysics. Originally proposed in the early 1990’s to build on the proof of concept for absolute space astrometry demonstrated by the ESA HIPPARCOS mission, Gaia is currently operating superbly. The first two data releases have provided support for over 1000 research articles already, even though only a small subset of some types of the data being obtained have yet been calibrated, reduced and released. A convenient overview of the whole Gaia mission and its capabilities is available in Gilmore (2018a), while very substantially more detailed descriptions are available in the many Gaia Data Release papers, and on the ESA Gaia website. Gaia has in essence three scientific instruments, all based on a very large high-quality imaging billion-pixel camera.
    [Show full text]
  • Full Orbital Solution for the Binary System in the Northern Galactic Disc Microlensing Event Gaia16aye
    This is a repository copy of Full orbital solution for the binary system in the northern Galactic disc microlensing event Gaia16aye. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/162837/ Version: Accepted Version Article: Wyrzykowski, Ł, Mróz, P, Rybicki, KA et al. (182 more authors) (2020) Full orbital solution for the binary system in the northern Galactic disc microlensing event Gaia16aye. Astronomy & Astrophysics, 633 (January 2020). A98. ISSN 0004-6361 https://doi.org/10.1051/0004-6361/201935097 © 2019 ESO. Reproduced in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Astronomy & Astrophysics manuscript no. pap16aye c ESO 2019 October 30, 2019 Full orbital solution for the binary system in the northern Galactic disc microlensing event Gaia16aye⋆ Łukasz Wyrzykowski1,⋆⋆, P. Mróz1, K. A. Rybicki1, M. Gromadzki1, Z. Kołaczkowski45, 79,⋆⋆⋆, M. Zielinski´ 1, P. Zielinski´ 1, N.
    [Show full text]
  • Pi of the Sky” Detector
    University of Warsaw Faculty of Physics Modelling of the “Pi of the Sky” detector Lech Wiktor Piotrowski PhD thesis written under supervision of prof. dr hab. Aleksander Filip Żarnecki arXiv:1111.0004v1 [astro-ph.IM] 31 Oct 2011 Warsaw, 2011 Abstract The ultimate goal of the “Pi of the Sky” apparatus is observation of optical flashes of astronomical origin and other light sources variable on short timescales, down to tens of seconds. We search mainly for optical emission of Gamma Ray Bursts, but also for variable stars, novae, blazars, etc. This task requires an accurate measurement of the source’s brightness (and it’s variability), which is difficult as “Pi of the Sky” single camera has a large field of view of about 20◦ × 20◦. This causes a significant deformation of a point spread function (PSF), reducing quality of brightness and position measurement with standard photometric and astrometric algorithms. Improvement requires a careful study and modelling of PSF, which is the main topic of the presented thesis. A dedicated laboratory setup has been created for obtaining isolated, high quality profiles, which in turn were used as the input for mathematical models. Two different models are shown: diffractive, simulating light propagation through lenses and effective, modelling the PSF shape in the image plane. The effective model, based on PSF parametrization with selected Zernike polynomials describes the data well and was used in photometry and astrometry analysis of the frames from the “Pi of the Sky” prototype working in Chile. No improvement compared to standard algorithms was observed in brightness measurements, however more than factor of 2 improvement in astrometry accuracy was reached for bright stars.
    [Show full text]
  • UBV PHOTOMETRY of DQ CEPHEI ROBERT LEROY JENKS May, 1966
    UBV PHOTOMETRY OF DQ CEPHEI By ROBERT LEROY JENKS Bachelor of Arts University of Omaha Omaha, Nebraska 1959 Master of Science Oklahoma State University Stillwater, Oklahoma 1963 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHil,OSOPHY May, 1966 ,. OKLAHOM~ STATE UNIVERSITY UBRARY NOV 9 1966 · '-'·:·.•.. ~ ..... UBV PHOTOMETRY OF .00 CEPHEI Thesis Approved: Theeis Adviser ~!~£~:( :..,.) ..,;.LUU9. -~ re; O· ii ACKNOWLEDGMENTS ~ would like to thank Dr. Leon W. Schroeder, my adviser, who sugge_sted this topic for my thesis, provided me generously with his time and advice, and went to the effort of obtaining the observations upon which this paper is based. I am also in debt to Dr. A. M. Heiser, of the Dyer Observatory, who suggested this star as an object of study, provided time at the observatory, supervised the observations, and provided advice about the reduction. Dr. W. s. Fitch generously provided me with the results of his observations which were of great aid during the study. Also, I am greatly appreciative to the National Aeronautics and Space Administration which provided a Traineeship that substantially reduced the amount of time required to complete this study. Financial support for obtaining the observations was supplied by the Research Foundation of Oklahoma State University. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION. 1 II. REDUCTION OF PHOTOELECTRIC DATA • e • • • • 4 Atmospheric Extinction ••• 4 Magnitude and Color Transformations. 9 The U, B, V Photometric System ••• 10 Heliocentric Julian Day Correction. 11 III. DETAILED COMPUrATION OF THE REDUCTION • • 15 · Preliminary Investigation.
    [Show full text]
  • Ephemerides of Variable Stars by David H
    Ephemerides of Variable Stars by David H. Bradstreet Ph.D. (Eastern University) An ephemeris is a listing of the times when a characteristic of a changing object will take place, i.e., when will it be in a certain position, when will it have a certain brightness, when will an eclipse take place, etc. Ephemeral means always changing or not lasting for very long time. The ephemeris of a variable star is an equation that tells us when it will be at a certain brightness, usually deepest eclipse for an eclipsing binary. If the star is well behaved, the star’s ephemeris will be a rather straightforward equation. Let us assume that the star is well behaved. We will now define some terms which we’ll need for the ephemeris. Period P = the time to make one complete orbit, usually expressed in days Dates are usually expressed in Julian Day numbers to avoid the usual confusion with leap years and calendar changes. The Julian Day number system was invented in 1583 by Joseph Justus Scaliger, born August 5, 1540 in Agen, France, died January 21, 1609 in Leiden, Holland. The Julian Day numbering system began on January 1, 4713 BC and starts at noon in Greenwich so that observers at night will not have the day number change on them while they are observing. The conversion between regular date and JD can be done from tables in the Astronomical Almanac or from mathematical algorithms on a computer (see Meeus’ book Astronomical Algorithms). Epochal time of minimum light JD0 = time of minimum light in the light curve, usually the deepest eclipse (primary eclipse), as opposed to the other less deep eclipse (secondary eclipse).
    [Show full text]
  • Stars, Galaxies, and Beyond, 2012
    Stars, Galaxies, and Beyond Summary of notes and materials related to University of Washington astronomy courses: ASTR 322 The Contents of Our Galaxy (Winter 2012, Professor Paula Szkody=PXS) & ASTR 323 Extragalactic Astronomy And Cosmology (Spring 2012, Professor Željko Ivezić=ZXI). Summary by Michael C. McGoodwin=MCM. Content last updated 6/29/2012 Rotated image of the Whirlpool Galaxy M51 (NGC 5194)1 from Hubble Space Telescope HST, with Companion Galaxy NGC 5195 (upper left), located in constellation Canes Venatici, January 2005. Galaxy is at 9.6 Megaparsec (Mpc)= 31.3x106 ly, width 9.6 arcmin, area ~27 square kiloparsecs (kpc2) 1 NGC = New General Catalog, http://en.wikipedia.org/wiki/New_General_Catalogue 2 http://hubblesite.org/newscenter/archive/releases/2005/12/image/a/ Page 1 of 249 Astrophysics_ASTR322_323_MCM_2012.docx 29 Jun 2012 Table of Contents Introduction ..................................................................................................................................................................... 3 Useful Symbols, Abbreviations and Web Links .................................................................................................................. 4 Basic Physical Quantities for the Sun and the Earth ........................................................................................................ 6 Basic Astronomical Terms, Concepts, and Tools (Chapter 1) ............................................................................................. 9 Distance Measures ......................................................................................................................................................
    [Show full text]