Astrophysical Applications of Gravitational Microlensing in the Milky

Total Page:16

File Type:pdf, Size:1020Kb

Astrophysical Applications of Gravitational Microlensing in the Milky ASTROPHYSICAL APPLICATIONS OF GRAVITATIONAL MICROLENSING IN THE MILKY WAY Przemysław Mróz Ph.D. thesis written under the supervision of prof. dr hab. Andrzej Udalski Warsaw University Observatory Warsaw, April 2019 Acknowledgements First and foremost, I would like to thank my supervisor, Prof. Andrzej Udalski, for the encouragement and advice he has provided throughout my time as his student. I have been extraordinarily lucky to have the supervisor who gave me immeasurable amount of his time, as a researcher and a mentor. This dissertation would not be possible without the sheer amount of work from all members of the OGLE team and their time spent at Cerro Las Campanas. In particular, I would like to thank Prof. Michał Szymanski,´ Prof. Igor Soszynski,´ Łukasz Wyrzykowski, Paweł Pietrukowicz, Szymon Kozłowski, Radek Poleski, and Jan Skowron, who have helped me since my very first steps at the Warsaw University Observatory. I thank all my collegues from the Warsaw Observatory for many helpful discussions and support. I am also grateful to Andrew Gould, Takahiro Sumi, and Yossi Shvartzvald, who shared the photometric data that are a part of this thesis. I thank Calen Henderson and all Pasadena-based microlensers for their hospitality during my stay at Caltech. I also thank my family for their support in my effort to pursue my chosen field of astronomy. I acknowledge financial support from the Polish Ministry of Science and Higher Education (“Diamond Grant” number DI2013/014743), the Foundation for Polish Science (Program START), and the National Science Center, Poland (grant ETIUDA 2018/28/T/ST9/00096). I also received support from the European Research Council grant No. 246678 and the National Science Center, Poland, grant MAESTRO 2014/14/A/ST9/00121 that were awarded to Prof. Andrzej Udalski. iii Abstract The first part of my thesis focuses on searching for and constraining the frequency of rogue planets in the Milky Way. The existence of free-floating planets, which are not gravitationally tethered to any star, is predicted by current planet formation theories. Although rogue planets emit little or no light, they can be detected during gravitational microlensing events. I led the analysis of a large sample of microlensing events that were detected by the OGLE survey during the years 2010-2015. My statistical analysis showed that Jupiter-mass free-floating planets are much less common than previously thought (less than 0.25 objects per star). For the first time, I was able to study the population of the shortest microlensing events and I have found a few events that were likely caused by free-floating (or wide-orbit) Earth- and super-Earth-mass objects, as predicted by planet-formation theories. Recognizing the potential importance for planet formation and evolution of such a huge population of ejected (or very distant) low-mass planets, I developed a new technique to characterize them. My subsequent studies, in collaboration with other microlensing surveys (KMTNet, MOA, Wise), led to the first measurements of the angular Einstein radius of free-floating planet candidates. These measurements enabled me to constrain masses of free-floating planet candidates as they remove a degeneracy between the mass and velocity of the lens. In the second part of my thesis, I used microlensing events detected by OGLE to study the structure of the Milky Way. I created the largest and the most accurate microlensing optical depth and event rate maps of the Galactic bulge. These maps will have numerous applications: constraints on Galaxy models, constraints on the dark matter content in the Milky Way center, measurement of the initial mass function in the Galactic bulge, or planning the future space-based microlensing experiments. v Streszczenie Współczesne teorie opisuj ˛ace powstawanie pozasłonecznych układów planetarnych przewiduj ˛a istnienie planet swobodnych, wyrzuconych z macierzystych układów i niezwi ˛azanych grawitacyjnie z zadn˙ ˛agwiazd ˛a.Poniewaz˙ te obiekty nie emituj ˛apraktycznie swiatła,´ jedyn ˛ametod ˛apozwalaj ˛ac˛ana ich detekcj˛ejest mikrosoczewkowanie grawitacyjne. W pierwszej cz˛esci´ rozprawy doktorskiej przedstawiłem wyniki moich badan´ dotycz ˛acych poszukiwania i mierzenia cz˛estosci´ wyst˛epowania planet swobodnych w Drodze Mlecznej na podstawie analizy zjawisk mikrosoczewkowania zaobserwowanych przez przegl ˛adnieba OGLE w latach 2010–2015. Moja analiza pokazała, ze˙ planety swobodne o masach Jowisza s ˛aznacznie rzadsze niz˙ wczesniej´ szacowano (na kazd˙ ˛agwiazd˛ew Galaktyce przypada co najwyzej˙ 0,25 masywnych planet swobodnych). Dzi˛ekidanym fotometrycznym zebranym przez przegl ˛adOGLE mogłem równiez˙ zbadac´ zjawiska o najkrótszych skalach czasowych. Udało mi si˛e wykryc´ kilka zjawisk wywołanych prawdopodobnie przez planety swobodne (lub znajduj ˛acesi˛ena szerokich orbitach) o masach Ziemi, zgodnie z przewidywaniami teorii formowania si˛eplanet. W celu lepszego zbadania populacji tych małomasywnych obiektów, zaproponowałem now ˛a metod˛e poszukiwania bardzo krótkich zjawisk mikrosoczewkowania. Dzi˛eki współpracy z innymi przegl ˛adami(KMTNet, MOA, Wise) odkryłem trzy zjawiska wywołane prawdopodobnie przez planety swobodne i po raz pierwszy zmierzyłem ich rozmiar k ˛atowy pierscienia´ Einsteina. Te pomiary daj ˛alepsze ograniczenia na masy soczewkuj ˛acych obiektów, poniewaz˙ umozliwiaj˙ ˛aoszacowanie ich pr˛edkosci.´ W drugiej cz˛esci´ rozprawy wykorzystałem zjawiska mikrosoczewkowania zaobserwowane przez OGLE do badania struktury Drogi Mlecznej. Przygotowałem najwi˛eksze i najdokładniejsze mapy gł˛ebokosci´ optycznej i cz˛estosci´ zjawisk mikrosoczewkowania w kierunku centrum Galaktyki. Te mapy znajd ˛aliczne zastosowania: ograniczenia na modele Drogi Mlecznej, ograniczenia na zawartosci´ ciemnej materii, pomiary funkcji mas gwiazd w Drodze Mlecznej, czy planowanie przyszłych satelitarnych przegl ˛adówmikrosoczewkowych. vii Supporting publications Much of the work in this thesis has been previously presented in following papers: 1. Mróz, P., Udalski, A., Skowron, J., et al. 2017. No large population of free-floating or wide-orbit Jupiter-mass planets, Nature 548, 183. 2. Mróz, P., Ryu, Y.-H., Skowron, J., et al. 2018. A Neptune-mass free-floating planet candidate discovered by microlensing surveys, AJ 155, 121. 3. Mróz, P., Udalski, A., Bennett, D. P., et al. 2019. Two new free-floating or wide-orbit planets from microlensing, A&A 622, 201. Paper 1 contains the work detailed in Chapter 3 of this thesis. Chapter 4 presents the work published in papers 2 and 3. The publication based on findings reported in Chapter 5 is under preparation. The vast majority of the work presented in this thesis was performed by the author, except where explicitly mentioned in the text. In addition, I was the lead author of the following papers on gravitational microlensing that are not a part of this thesis: 1. Mróz, P., Han, C., Udalski, A., et al. 2017. OGLE-2016-BLG-0596Lb: A high-mass planet from a high-magnification pure-survey microlensing event, AJ 153, 143. 2. Mróz, P., Udalski, A., Bond, I. A. et al. 2017. OGLE-2013-BLG-0132Lb and OGLE-2013- BLG-1721Lb: Two Saturn-mass planets discovered around M-dwarfs, AJ 154, 205. 3. Mróz, P. & Poleski, R. 2018. New self-lensing models of the Small Magellanic Cloud: Can gravitational microlensing detect extragalactic exoplanets?, AJ 155, 154. 4. Wyrzykowski, Ł., Mróz, P., Rybicki, K. A., et al. 2019. Full orbital solution of the binary system in the Northern Galactic disk microlensing event Gaia16aye, A&A, submitted (arXiv:1901.07281). ix Contents Acknowledgements ......................................... iii Abstract ................................................ v Streszczenie .............................................. vii Supporting publications ....................................... ix 1. Introduction ........................................... 1 1.1. Gravitational microlensing . 1 1.2. Lens equation . 4 1.3. Point-source points-lens microlensing . 6 1.4. Microlensing in the extended-source point-lens regime . 8 1.5. Microlens parallax . 9 1.6. Binary lens microlensing . 12 1.7. Planetary microlensing . 16 1.8. Microlensing optical depth and event rate . 21 1.9. Astrometric microlensing . 22 2. Optical Gravitational Lensing Experiment (OGLE) survey . 25 3. Measuring the frequency of free-floating planets in the Milky Way . 31 3.1. Motivation . 31 3.2. Data . 33 3.3. Selection of events . 34 3.4. Detection efficiency . 46 3.5. Parameter recovery . 49 3.6. Modeling event timescale distribution . 49 3.7. Mass function . 54 3.8. Results and conclusions . 57 xi 4. Measuring the angular Einstein radii of free-floating planet candidates . 61 4.1. Motivation . 61 4.2. Search for ultra-short timescale events . 62 4.3. Data . 66 4.4. Modeling . 69 4.5. Properties of source stars . 72 4.6. Proper motion of source stars . 75 4.7. Limits on stellar companions . 78 4.8. Discussion and conclusions . 82 4.8.1. OGLE-2016-BLG-1540 . 82 4.8.2. OGLE-2012-BLG-1323 and OGLE-2017-BLG-0560 . 84 5. Microlensing optical depth and event rate from OGLE-IV . 87 5.1. Motivation . 87 5.2. Data . 91 5.3. Selection of events . 92 5.4. Star counts . 98 5.5. Distribution of the blending parameter . 104 5.6. Catalog-level simulations . 107 5.7. Image-level simulations . 109 5.8. Results and conclusions . 111 5.8.1. Timescale distribution . 111 5.8.2. Microlensing optical depth and event rate . 116 5.8.3. Microlensing events in the direction of the Sagittarius Dwarf Spheroidal Galaxy 127 Summary ...............................................129
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Symbols and Astrological Terms in Ancient Arabic Inscriptions
    SCIENTIFIC CULTURE, Vol. 5, No. 2, (2019), pp. 21-30 Open Access. Online & Print www.sci-cult.com DOI: SYMBOLS AND ASTROLOGICAL TERMS IN ANCIENT ARABIC INSCRIPTIONS Mohammed H. Talafha1* and Ziad A. Talafha2 1Dept. of Astronomy, Eötvös Loránd University, 1117 Budapest, XI. Pázmány Péter sétány 1/A 2Dept. of History, AL al-BAYT University, 25113 Mafraq, Jordan Received: 03/11/2018 Accepted: 11/02/2019 *Corresponding author: Mohammed H. Talafha ([email protected]) ABSTRACT In the past, the Arabs in Al-hara Zone used many stars to deduce the seasons of the year and also to deduce the roads, at that time this was the most convienent way to figure their ways and to know the time of the year they have to travel or to planet, The most important used stars at that time were the Pleiades, Canopus, Arcturus and other stars. This study shows the inscriptions found in Al-hara Zone in many field trips in the year 2018 which were written on smooth black rocks and how these inscriptions related to the stars and to the seasons – at that time - of the year. KEYWORDS: Arabic, Stars, Inscriptions, Al-hara Zone, Rock art from southern Syria and north-east of Jor- dan in Badia al-Sham, The Pleiades, Arabian Tribes, Canopus, Seasons, Pre-Islamic era. Copyright: © 2019. This is an open-access article distributed under the terms of the Creative Commons Attribution License. (https://creativecommons.org/licenses/by/4.0/). 22 M.H. TALAFHA & Z.A. TALAFHA 1. INTRODUCTION the re-consideration and prospective of Qatar cultur- al heritage tourism map, among other studies.
    [Show full text]
  • Astrophysics in 2006 3
    ASTROPHYSICS IN 2006 Virginia Trimble1, Markus J. Aschwanden2, and Carl J. Hansen3 1 Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, Las Cumbres Observatory, Santa Barbara, CA: ([email protected]) 2 Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Organization ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304: ([email protected]) 3 JILA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder CO 80309: ([email protected]) Received ... : accepted ... Abstract. The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords: cosmology: general, galaxies: general, ISM: general, stars: general, Sun: gen- eral, planets and satellites: general, astrobiology CONTENTS 1. Introduction 6 1.1 Up 6 1.2 Down 9 1.3 Around 10 2. Solar Physics 12 2.1 The solar interior 12 2.1.1 From neutrinos to neutralinos 12 2.1.2 Global helioseismology 12 2.1.3 Local helioseismology 12 2.1.4 Tachocline structure 13 arXiv:0705.1730v1 [astro-ph] 11 May 2007 2.1.5 Dynamo models 14 2.2 Photosphere 15 2.2.1 Solar radius and rotation 15 2.2.2 Distribution of magnetic fields 15 2.2.3 Magnetic flux emergence rate 15 2.2.4 Photospheric motion of magnetic fields 16 2.2.5 Faculae production 16 2.2.6 The photospheric boundary of magnetic fields 17 2.2.7 Flare prediction from photospheric fields 17 c 2008 Springer Science + Business Media.
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • MATTERS of GRAVITY, a Newsletter for the Gravity Community, Number 4
    MATTERS OF GRAVITY Number 4 Fall 1994 Table of Contents Editorial ................................................... ................... 2 Correspondents ................................................... ............ 2 Gravity news: Report on the APS Topical Group in Gravitation, Beverly Berger ............. 3 Research briefs: Gravitational Microlensing and the Search for Dark Matter: A Personal View, Bohdan Paczynski .......................................... 5 Laboratory Gravity: The G Mystery and Intrinsic Spin Experiments, Riley Newman ............................... 11 LIGO Project update, Stan Whitcomb ....................................... 15 Conference Reports: PASCOS ’94, Peter Saulson .................................................. 16 The Vienna meeting, P. Aichelburg, R. Beig .................................. 19 The Pitt Binary Black Hole Grand Challenge Meeting, Jeff Winicour ......... 20 International Symposium on Experimental Gravitation, Nathiagali, Pakistan, Munawar Karim ....................................... 22 arXiv:gr-qc/9409004v1 2 Sep 1994 10th Pacific Coast Gravity Meeting , Jim Isenberg ........................... 23 Editor: Jorge Pullin Center for Gravitational Physics and Geometry The Pennsylvania State University University Park, PA 16802-6300 Fax: (814)863-9608 Phone (814)863-9597 Internet: [email protected] 1 Editorial The newsletter strides on. I had to perform some pushing around and arm-twisting to get articles for this number. I wish to remind everyone that suggestions and ideas for contributions are especially welcome. The newsletter is growing rather weak on the theoretical side. Keep those suggestions coming! I put together this newsletter mostly on a palmtop computer while travelling, with some contributions arriving the very day of publication (on which, to complicate matters, I was giving a talk at a conference, my email reader crashed and our network went down). One of the contributions is a bit longer than the usual format. Again it is my fault for failing to warn the author in due time.
    [Show full text]
  • Two Microlensing Planets Through the Planetary-Caustic Channel
    The Astronomical Journal, 161:293 (12pp), 2021 June https://doi.org/10.3847/1538-3881/abf8bd © 2021. The American Astronomical Society. All rights reserved. OGLE-2018-BLG-0567Lb and OGLE-2018-BLG-0962Lb: Two Microlensing Planets through the Planetary-caustic Channel Youn Kil Jung1,2,15 , Cheongho Han3,15 , Andrzej Udalski4,16 , Andrew Gould1,5,6,15, Jennifer C. Yee7,15 and Michael D. Albrow8 , Sun-Ju Chung1,2 , Kyu-Ha Hwang1 , Yoon-Hyun Ryu1 , In-Gu Shin1 , Yossi Shvartzvald9 , Wei Zhu10 , Weicheng Zang11 , Sang-Mok Cha1,12, Dong-Jin Kim1, Hyoun-Woo Kim1 , Seung-Lee Kim1,2 , Chung-Uk Lee1,2 , Dong-Joo Lee1, Yongseok Lee1,12, Byeong-Gon Park1,2 , Richard W. Pogge5 (The KMTNet Collaboration), and Przemek Mróz4,13 , Michał K. Szymański4 , Jan Skowron4 , Radek Poleski4,5, Igor Soszyński4 , Paweł Pietrukowicz4 , Szymon Kozłowski4 , Krzystof Ulaczyk14 , Krzysztof A. Rybicki4, Patryk Iwanek4 , and Marcin Wrona4 (The OGLE Collaboration) 1 Korea Astronomy and Space Science Institute, Daejon 34055, Republic of Korea 2 University of Science and Technology, Korea, 217 Gajeong-ro Yuseong-gu, Daejeon 34113, Korea 3 Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea 4 Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland 5 Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210, USA 6 Max-Planck-Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany 7 Center for Astrophysics|Harvard & Smithsonian, 60 Garden St., Cambridge, MA 02138, USA 8 University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch 8020, New Zealand 9 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel 10 Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St.
    [Show full text]
  • The Star Clusters Young & Old Newsletter
    SCYON The Star Clusters Young & Old Newsletter edited by Holger Baumgardt, Ernst Paunzen and Pavel Kroupa SCYON can be found at URL: http://astro.u-strasbg.fr/scyon SCYON Issue No. 34 16 July 2007 EDITORIAL Here is the 34th issue of the SCYON newsletter. The current issue contains 35 abstracts from refereed journals, and an announcement for the MODEST-8 meeting in Bonn in December. The next issue will be sent out in September. We wish everybody a productive summer... Thank you to all those who sent in their contributions. Holger Baumgardt, Ernst Paunzen and Pavel Kroupa ................................................... ................................................. CONTENTS Editorial .......................................... ...............................................1 SCYON policy ........................................ ...........................................2 Mirror sites ........................................ ..............................................2 Abstract from/submitted to REFEREED JOURNALS ........... ................................3 1. Star Forming Regions ............................... ........................................3 2. Galactic Open Clusters............................. .........................................6 3. Galactic Globular Clusters ......................... ........................................16 4. Galactic Center Clusters ........................... ........................................23 5. Extragalactic Clusters............................ ..........................................24
    [Show full text]
  • Spitzer Microlensing Parallax Reveals Two Isolated Stars in the Galactic Bulge
    DRAFT VERSION APRIL 26, 2019 Typeset using LATEX twocolumn style in AASTeX62 Spitzer Microlensing parallax reveals two isolated stars in the Galactic bulge WEICHENG ZANG,1 YOSSI SHVARTZVALD,2 TIANSHU WANG,1 ANDRZEJ UDALSKI,3 CHUNG-UK LEE,4, 5 TAKAHIRO SUMI,6 JESPER SKOTTFELT,7 SHUN-SHENG LI,8, 9 SHUDE MAO,1, 8 AND WEI ZHU10 — JENNIFER C. YEE,11 SEBASTIANO CALCHI NOVATI,2 CHARLES A. BEICHMAN,2 GEOFFERY BRYDEN,12 SEAN CAREY,2 B. SCOTT GAUDI,13 AND CALEN B. HENDERSON2 (THE Spitzer TEAM) PRZEMEK MROZ´ ,3 JAN SKOWRON,3 RADOSLAW POLESKI,3, 13 MICHAŁ K. SZYMANSKI´ ,3 IGOR SOSZYNSKI´ ,3 PAWEŁ PIETRUKOWICZ,3 SZYMON KOZŁOWSKI,3 KRZYSZTOF ULACZYK,14 KRZYSZTOF A. RYBICKI,3 AND PATRYK IWANEK3 (THE OGLE COLLABORATION) ETIENNE BACHELET,15 GRANT CHRISTIE,16 JONATHAN GREEN,17 STEVE HENNERLEY,17 DAN MAOZ,18 TIM NATUSCH,16, 19 RICHARD W. POGGE,13, 20 RACHEL A. STREET,15 AND YIANNIS TSAPRAS21 (THE LCO AND µFUN FOLLOW-UP TEAMS) MICHAEL D. ALBROW,22 SUN-JU CHUNG,4, 23 ANDREW GOULD,4, 13, 24 CHEONGHO HAN,25 KYU-HA HWANG,4 YOUN KIL JUNG,26, 4 YOON-HYUN RYU,4 IN-GU SHIN,4 SANG-MOK CHA,4, 27 DONG-JIN KIM,4 HYOUN-WOO KIM,4 SEUNG-LEE KIM,4, 23 DONG-JOO LEE,4 YONGSEOK LEE,4, 27 BYEONG-GON PARK,4, 23 AND RICHARD W. POGGE13 (THE KMTNET COLLABORATION) IAN A. BOND,28 FUMIO ABE,29 RICHARD BARRY,30 DAVID P. BENNETT,30, 31 APARNA BHATTACHARYA,30, 31 MARTIN DONACHIE,32 AKIHIKO FUKUI,33 YUKI HIRAO,6 YOSHITAKA ITOW,29 IONA KONDO,6 NAOKI KOSHIMOTO,34, 35 MAN CHEUNG ALEX LI,32 YUTAKA MATSUBARA,29 YASUSHI MURAKI,29 SHOTA MIYAZAKI,6 MASAYUKI NAGAKANE,6 CLEMENT´ RANC,30 NICHOLAS J.
    [Show full text]
  • Gaia: Astrometric Survey of the Galaxy
    Çağrılı Bildiriler / Invited Papers Galaktik Astronomi Çalıştayı Bildiriler Kitabı Galactic Astronomy Workshop Proceedings Book DOI: 10.26650/PB/PS01.2021.001.002 Gaia: Astrometric Survey of the Galaxy Gerry GILMORE1 1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, United Kingdom ORCID: G.G. 0000-0003-4632-0213 ABSTRACT Gaia provides 5-D phase space measurements, 3 spatial coordinates and two space motions in the plane of the sky, for a representative sample of the Milky Way’s stellar populations (over 2 billion stars, being ~1% of the stars over 50% of the radius). Full 6-D phase space data is delivered from line-of-sight (radial) velocities for the 300 million brightest stars. These data make substantial contributions to astrophysics and fundamental physics on scales from the Solar System to cosmology. 1. Introduction The ESA Gaia astrometric space mission is revolutionising astrophysics. Originally proposed in the early 1990’s to build on the proof of concept for absolute space astrometry demonstrated by the ESA HIPPARCOS mission, Gaia is currently operating superbly. The first two data releases have provided support for over 1000 research articles already, even though only a small subset of some types of the data being obtained have yet been calibrated, reduced and released. A convenient overview of the whole Gaia mission and its capabilities is available in Gilmore (2018a), while very substantially more detailed descriptions are available in the many Gaia Data Release papers, and on the ESA Gaia website. Gaia has in essence three scientific instruments, all based on a very large high-quality imaging billion-pixel camera.
    [Show full text]
  • Full Orbital Solution for the Binary System in the Northern Galactic Disc Microlensing Event Gaia16aye
    This is a repository copy of Full orbital solution for the binary system in the northern Galactic disc microlensing event Gaia16aye. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/162837/ Version: Accepted Version Article: Wyrzykowski, Ł, Mróz, P, Rybicki, KA et al. (182 more authors) (2020) Full orbital solution for the binary system in the northern Galactic disc microlensing event Gaia16aye. Astronomy & Astrophysics, 633 (January 2020). A98. ISSN 0004-6361 https://doi.org/10.1051/0004-6361/201935097 © 2019 ESO. Reproduced in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Astronomy & Astrophysics manuscript no. pap16aye c ESO 2019 October 30, 2019 Full orbital solution for the binary system in the northern Galactic disc microlensing event Gaia16aye⋆ Łukasz Wyrzykowski1,⋆⋆, P. Mróz1, K. A. Rybicki1, M. Gromadzki1, Z. Kołaczkowski45, 79,⋆⋆⋆, M. Zielinski´ 1, P. Zielinski´ 1, N.
    [Show full text]
  • Transiting Planets Orbiting Source Stars in Microlensing Events
    ACTA ASTRONOMICA Vol. 64 (2014) pp. 65–75 Transiting Planets Orbiting Source Stars in Microlensing Events K. Rybicki1 and Ł. Wyrzykowski1,2 1 Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland e-mail: (krybicki,lw)@astrouw.edu.pl 2 Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA Cambridge, UK Received December 20, 2013 ABSTRACT The phenomenon of microlensing has successfully been used to detect extrasolar planets. By observing characteristic, rare deviations in the gravitational microlensing light curve one can discover that a lens is a star–planet system. In this paper we consider an opposite case where the lens is a single star and the source has a transiting planetary companion. We have studied the light curve of a source star with transiting companion magnified during microlensing event. Our model shows that in dense stellar fields, in which blending is significant, the light drop generated by transits is greater near the maximum of microlensing, which makes it easier to detect. We derive the probability for the detection of a planetary transit in a microlensed source to be of 2 × 10−6 for an individual microlensing event. Key words: planetary systems – Gravitational lensing: micro 1. Introduction The search for extrasolar planets is a very dynamically developing branch of modern astrophysics. After the discovery of the first planet (Wolszczan and Frail 1992), and the detection of the first planet orbiting a solar-type, main sequence star (Mayor and Queloz 1995) several planet detecting methods have been devel- oped. There are two natural phenomena, which can be used for planetary detec- arXiv:1404.3430v1 [astro-ph.EP] 13 Apr 2014 tion, namely gravitational microlensing and transits.
    [Show full text]