TOOLS AND RESOURCES Phenotype inference in an Escherichia coli strain panel Marco Galardini1, Alexandra Koumoutsi2, Lucia Herrera-Dominguez2, Juan Antonio Cordero Varela1, Anja Telzerow2, Omar Wagih1, Morgane Wartel2, Olivier Clermont3,4, Erick Denamur3,4,5, Athanasios Typas2*, Pedro Beltrao1* 1European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Hinxton, United Kingdom; 2Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; 3INSERM, IAME, UMR1137, Paris, France; 4Universite´ Paris Diderot, Paris, France; 5APHP, Hoˆpitaux Universitaires Paris Nord Val-de-Seine, Paris, France Abstract Understanding how genetic variation contributes to phenotypic differences is a fundamental question in biology. Combining high-throughput gene function assays with mechanistic models of the impact of genetic variants is a promising alternative to genome-wide association studies. Here we have assembled a large panel of 696 Escherichia coli strains, which we have genotyped and measured their phenotypic profile across 214 growth conditions. We integrated variant effect predictors to derive gene-level probabilities of loss of function for every gene across all strains. Finally, we combined these probabilities with information on conditional gene essentiality in the reference K-12 strain to compute the growth defects of each strain. Not only could we reliably predict these defects in up to 38% of tested conditions, but we could also directly identify the causal variants that were validated through complementation assays. Our work demonstrates the power of forward predictive models and the possibility of precision genetic interventions. DOI: https://doi.org/10.7554/eLife.31035.001 *For correspondence:
[email protected] (AT);
[email protected] (PB) Introduction Competing interests: The Understanding the genetic and molecular basis of phenotypic differences among individuals is a authors declare that no long-standing problem in biology.