Heterocycles Chem 6352

Total Page:16

File Type:pdf, Size:1020Kb

Heterocycles Chem 6352 Heterocycles Chem 6352 Heterocyclic Nomenclature (adapted from: bruckner.chem.uconn.edu/PDFfiles/hetshort.pdf and from Gilchrist, T. L. Heterocyclic Chemistry; Longman; London, 1992) The standard method for naming heterocyclic rings is the Hantzsch-Widman nomenclature system. A heterocycle is a ring containing at least one atom that is not carbon: “hetero” means “different.” Nitrogen, oxygen, and sulfur are the primary elements seen in common heterocycles. Heterocycles may be aromatic or not aromatic, but aromatic heterocycles are often called “heteroaryls.” Names in the Hantzsch-Widman system provide data relating to several categories. First, the identity of the heteroatom present in the ring is established by the use of different prefixes for each type. The three prefixes are oxa-, thia-, and aza- for oxygen, sulfur, and nitrogen, respectively. Second, numbers assigned to the atom denote heteroatom position. Third, the size of the ring and the degree of unsaturation is described by the suffix at the end. Table. Common Hantzsch-Widman suffixes. ring size unsaturated ring with unsaturated ring with N saturated ring with only saturated ring with N only O or S O or S 3 -irene -irine -irane -iridine 4 -ete -ete -etane -etidine 5 -ole -ole -olane -olidine 6 -ine -ine -inane (-ane) -inane (-ane) 7 -epine -epine -epane -epane 8 -ocine -ocine -ocane -ocane 9 -onine -onine -onane -onane 10 -ecine -ecine -ecane -ecane Examples of ring naming: H N Aziridine: This ring contains a nitrogen (prefix is aza-) and is a completely saturated three-membered ring (-iridine). Rings that contain a nitrogen require a designated suffix. When combining the prefixes and suffixes, two vowels can end up together. In this case that would be azairidine. When this happens, drop the vowel on the end of the first part. HN O 1,2-Oxazetidine: This ring contains nitrogen (aza-) and oxygen (oxa-) and is a fully saturated four-membered ring (-etidine). Atom prefixes have a strict order in which they are to be listed. For the three atoms we will see, the order is oxygen followed by sulfur followed by nitrogen. So, after dropping the appropriate vowels, we get oxazetidine. Note that if there are two atom prefixes, vowels will be dropped by the earlier prefix. The numbers are placed in order of the prefixes with priority of the numbers being the same as the order of the prefixes. Oxygen is in position 1, and nitrogen is in position 2. O N N 1,2,5-Oxadiazole: This ring has both nitrogen (aza-) and oxygen (oxa-). Unsaturated five-membered rings with nitrogen have the –ole suffix. The presence of two nitrogens requires a di- in front of aza-. Note that the ʻaʼ in oxa- is not dropped since there are not two vowels together. Oxygen is higher priority than nitrogen, so it is in position 1 by default. The two nitrogens are therefore at positions 2 and 5. O S 1,3-Oxathiolane: Prefixes of oxa- and thia- with a suffix of –olane initially gives oxathiolane. Oxygen takes priority in numbering to give 1,3-oxathiolane. Not all heterocyclic rings follow the Hantzsch-Widman rules listed above, typically because they have established common names. These trivial names typically show traces of the systematic nomenclature, but do not completely follow the rules. Heterocycles O H H H O S N N N O S HN HN NH N N oxirane/ thiirane aziridine azirine diaziridine diazirine oxetane thietane azetidine !-lactam epoxide H H H O O S S N N N N tetrahydrofuran furan thiolane thiophene pyrrolidine pyrrole 3-pyrroline 2-H-pyrrole THF (uncommon) O O O S N N N S H H benzofuran coumaran isobenzofuran benzothiophene dibenzothiophene indoline indole indolinine (uncommon) O O O O NH N N N N N H H H N H oxindole indoxyl isatin isoindole indolizine pyrrolizine carbazole O H H N N N N N O O S S O NH O NH O N O S N S HN NH HN N HN N HN HN N dioxolane dithiolane oxazolidine oxazolidinone oxazole isoxazole thiazole isothiazole imidazolidine 2-imidazoline imidazole pyrazolidine 2-pyrazoline pyrazole N O N N N N N N N O O O S N N N H H H benzodioxole benzoxazole indoxazine benzothiazole benzimidazole 1H-indazole purine N N S N N N O N HN N HN N N N N N N N N N N NH H N N 1,2,3-oxadiazole 1,3,4-thiadiazole 1,2,3-triazole 1,2,4-triazole tetrazole benzotriazole quinuclidine diazabicyclooctane diazabicycloundecane DABCO DBU H H O O O O N N N N N O N N Tetrahydropyran Dihydropyran 4H-pyran 2H-pyran piperidine pyridine picoline lutidine collidine pyridone acridine THP DHP O O N N N O O O O N N N O H H chromene coumarin isocoumarin xanthene tetrahydroquinoline quinoline isoquinoline quinolone 4H-quinolizine quinolizinium O S H O S N N N N N O O S S S S N N N N N N N N O N O S N S N N H H H 1,4-dioxane morpholine paraformaldehyde 1,4-dithiane 1,3-dithiane thiomorpholine trithiane piperazine pyrazine pyrimidine pyridazine 1,3,5-triazine tetrazine N N N N N N N N N N N N N N N N H 1,8-naphthyridine quinoxaline quinazoline cinnoline phthalazine !-carboline bipyridyl cyclazine julolidine O S H N N N N O S NH N N H H N N N N phenoxazine phenothiazine phenazine pteridine oxepine thiepin azepine benzodiazepine Examples of Biologically Relevant Heterocycles O NH O O O NH2 2 HN HN N HN NH N N NH2 N O N O N O N O N O H2N N NH2 N N H H H H niacin nicotine thymine uracil cytosine cyanuric acid melamine O O NH2 O H H H N N N N N HN N HN O N N N N H N N N O N O N 2 H H adenine guanine caffeine uric acid CO2H NH2 HO NH2 O NH2 N N N H H H tryptophan serotonin melatonin O Et N N 2 N N H H NH HN NH HN H H N N N H lysergic acid diethyl amide porphyrinogen porphyrin LSD .
Recommended publications
  • A Facile Approach to Prepare Multiple Heteroatom-Doped Carbon
    www.nature.com/scientificreports OPEN A Facile Approach to Prepare Multiple Heteroatom-Doped Carbon Materials from Imine- Received: 17 November 2017 Accepted: 19 February 2018 Linked Porous Organic Polymers Published: xx xx xxxx Juan Yang, Min Xu, Jingyu Wang , Shangbin Jin & Bien Tan In this paper, we proposed a new strategy to prepare multiple heteroatom doped (N, P-doped) porous carbon materials with high surface area of ~1,535 m2 g−1 simply by pyrolysis of imine-linked porous organic polymers (POPs) synthesized via Schif base condensation. The strategy is simple without any post-processing and various heteroatoms could be involved. Scanning electron microscopy, Raman spectra, Nitrogen gas adsorption-desorption, X-ray photoelectron spectroscopy have been used to characterize the morphology, the structure and the composition of the materials. The multiple heteroatom doped porous carbon materials also display high electrocatalytic performance as exampled by the application in oxygen reduction, which showed the catalyst favors 4-electron transfer during the process, along with superior stability and higher tolerance to methanol as compared to the Pt/C. These results indicate the present method is promising for the preparation of multi-heteroatom doped carbon materials in the application of electrocatalysis. Porous organic polymers (POPs) are a type of organic polymers with large surface area, tunable skeleton and high stability1,2. Tey have attracted extensive attentions for broad applications in the felds of gas storage and separations, catalysis and energy storage3–5. Tere are many methodologies reported for the preparation of porous polymers6–10. Among them, Schif base reaction is one of the most versatile ways due to the facile, one-pot, catalyst-free, quantitative synthesis11.
    [Show full text]
  • FIRE-SAFE POLYMERS and POLYMER COMPOSITES September 2004 6
    DOT/FAA/AR-04/11 Fire-Safe Polymers and Polymer Office of Aviation Research Washington, D.C. 20591 Composites September 2004 Final Report This document is available to the U.S. public through the National Technical Information Service (NTIS), Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports page: actlibrary.act.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AR-04/11 4. Title and Subtitle 5. Report Date FIRE-SAFE POLYMERS AND POLYMER COMPOSITES September 2004 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Huiqing Zhang 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Polymer Science and Engineering University of Massachusetts Amhurst, MA 01003 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered U.S. Department of Transportation Federal Aviation Administration Office of Aviation Research 14.
    [Show full text]
  • Article Download
    wjpls, 2018, Vol. 4, Issue 8, 153-159 Research Article ISSN 2454-2229 Sathyamurthy et al. World Journal of Pharmaceutical World Journal and Lifeof Pharmaceutical Sciences and Life Sciences WJPLS www.wjpls.org SJIF Impact Factor: 5.088 GCMS AND FTIR ANALYSIS ON THE METHANOLIC EXTRACT OF RED VITIS VINIFERA PULP 1Naresh S., 1Sunil K. S., 1Akki Suma, 1Ashika B. D., 1Chitrali Laha Roy, *2Dr. Balasubramanian Sathyamurthy 1Department of Biochemistry, Ramaiah College of Arts, Science and Commerce, Bangalore – 560054. *2Professor, Department of Biochemistry, Ramaiah College of Arts, Science and Commerce, Bangalore – 560054. *Corresponding Author: Dr. Balasubramanian Sathyamurthy Department of Biochemistry, Ramaiah College of Arts, Science and Commerce, Bangalore – 560054. Article Received on 12/06/2018 Article Revised on 02/07/2018 Article Accepted on 23/07/2018 ABSTRACT Red Vitis Vinifera pulp has major components such as Organic acids, Malate, Tartrate and Sugars and contains higher moisture content. Our work is designed to identify the possible phytochemicals compounds present in the methanolic extract of red grape pulp by using GCMS along with functional group analysis through FTIR. From the GCMS analysis of red Vitis Vinifera pulp nearly 61 compounds were identified. By FTIR analysis, strong absorption band was found at 3400 cm–1, which represents the amine groups and ketones at a frequency of –1 1066.02 cm gave maximum peaks. Hence, we can conclude that the red Vitis Vinifera pulp extract is rich in amines, ether and ester groups. KEYWORDS: GCMS, FTIR, spectral analysis, NIST. 1. INTRODUCTION biochemical and organic mixtures and it is also highly compatible.[4] Infrared spectroscopy is most powerful Red Grapes or Vitis vinifera is a Berry fruit and belongs technique for materials analysis and used in the to the group of versatile fruits which are used in a wide laboratories.
    [Show full text]
  • UV-Curable Coating Composition
    Europaisches Patentamt European Patent Office (fi) Publication number: 0 001 466 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION 2y Application number: 78200215.8 © int. ci.*: C 09 D 3/49, C 08 F 299/00, C 08 F 2/50 §) Date of filing: 28.09.78 © Priority: 11.10.77 NL 7711121 Applicant: Akzo N.V., Ijssellaan 82, NL-6800 LS Arnhem (NL) (7g) Inventor: Noomen, Arie, Schoonoord 22, NL-2215 Ed @ Date of publication of application: 18.04.79 Voorhout (NL) Bulletin 79/8 Inventor: Wolters, Egbert, Potgieterstraat 21, NL-1053 XP Amsterdam (NL) @ Representative: Sieders, Rene et ai, P.O.Box 314, @ Designated Contracting States: BE DE FR GB NL SE NL-6800 AH Arnhem (NL) @ U.V.-curable coating composition. The invention relates to a coating composition which is curable under the influence of ultraviolet light and which comprises a U.V.-curable binder, a photoinitiator and as accelerator a tetrahydro-1,3-oxazine compound and/or an oxazolidine compound. The U.V.-curable binder is pref- erably an adduct containing at least one isocyanate group of a) an acrylic or methacrylic hydroxy ester having 5 to 20 carbon atoms and b) a polyisocyanate having 4 to 40 carbon atoms and 2 to 4 isocyanate groups. The invention relates to a coating composition which can be cured under the influence of ultraviolet light ;and is based on a U.V.-curable binder, a photoinitiator and a nitrogen-containing accelerator. In known com- positions useismade generally of an aromatic carbonyl compound as photoinitiator, and of an alkanolamine as accelerator.
    [Show full text]
  • Phamarcological Effects Produced by the Modifications in Isoxazole Moeities
    Archana c. et al. / Asian Journal of Phytomedicine and Clinical Research. 4(1), 2016, 29 - 32. Review Article CODEN: AJPCFF ISSN: 2321 – 0915 Asian Journal of Phytomedicine and Clinical Research Journal home page: www.ajpcrjournal.com PHAMARCOLOGICAL EFFECTS PRODUCED BY THE MODIFICATIONS IN ISOXAZOLE MOEITIES C. Archana *1 , E. Akila 2, Priya john 3 1*Department of Pharmaceutical Chemistry, Prime College of Pharmacy, Palakkad, Kerala, India. 2Department of Pharmacognosy, Prime College of Pharmacy, Palakkad, Kerala, India. 3Department of Pharmacology, Prime College of Pharmacy, Palakkad, Kerala, India. ABSTRACT Isoxazole and its derivatives are an important class of heterocyclic compound displaying a broad spectrum of biological activities which have made them privileged structures. In the present work, attempts were made to identify leading isoxazole moieties as candidate drugs against many diseases. For example, isoxazole substituted 9-anilino acridine derivatives was found to have increased antioxidant activities. The molecular docking studies show a good correlation between their biological activities screened and auto dock binding free energy. These derivatives will encourage helping to design future anti cancer agents with higher therapeutic potential. Another example is isoxazole incorporated 2-quinolones to show increased antimicrobial and anti inflammatory activities. More importantly, various isoxazole derivatives greatly increase biological properties of the structure like anti-infective action, anticancer properties, anti-protozoal and mutagenic properties. A modification in their structures has offered a high degree of diversity that has proven useful for the development of new therapeutic agents having improved potency and lesser toxicity. In the present study of concise review, is provided on the activities of isoxazole and its derivatives which involve history, chemistry, different methods of synthesis of isoxazole with biological activities and docking studies.
    [Show full text]
  • Isoxazoles: Molecules with Potential Medicinal Properties
    IJPCBS 2013, 3(2), 294-304 Jayaroopa et al. ISSN: 2249-9504 INTERNATIONAL JOURNAL OF PHARMACEUTICAL, CHEMICAL AND BIOLOGICAL SCIENCES Available online at www.ijpcbs.com Research Article ISOXAZOLES: MOLECULES WITH POTENTIAL MEDICINAL PROPERTIES K. Ajay Kumar and P. Jayaroopa* Post Graduate Department of Chemistry, Yuvaraja’s College, University of Mysore, Mysore-570 005, India. ABSTRACT Isoxazole is a five membered heterocyclic compound having various pharmacological actions. The great interest associated with isoxazoles and their derivatives is based on their versatility as synthetic building blocks, their latent functionalities as enaminones, 1,3-dicarbonyl compounds, γ-amino alcohols, and β-hydroxy nitriles have been widely exploited for the synthesis of other heterocycles and complex molecules. This review paper comprises of up to date information on isoxazole analogs. More emphasis was given to critical discussion on the synthetic strategy of isoxazole derivative, their utility as building blocks in their transformation to more biologically potent molecules. Results of isoxazole derivatives and their substitutions effect on diverse biological activities also presented. Keywords: Isoxazoles, antioxidant, antimicrobial, analgesic, anti-platelet, anti-HIV. INTRODUCTION sulfisoxazole, oxacillin, cycloserine and acivicin Nitrogen containing heterocycles with an have been in commercial use for many years. oxygen atom are considered as an important Cycloserine is the best known antibiotic drug class of compounds in medicinal chemistry that possess antitubercular, antibacterial because of their diversified biological activities and in treatment of leprosy. Acivicin is applications. The exploitation of a simple an antitumour, antileishmania drug, while molecule with different functionalities for the isoxaflutole is used as herbicidal drug. synthesis of heterocycles is a worthwhile Isoxazoles have illustrious history; their contribution in the chemistry of heterocycles.
    [Show full text]
  • Electron Ionization
    Chapter 6 Chapter 6 Electron Ionization I. Introduction ......................................................................................................317 II. Ionization Process............................................................................................317 III. Strategy for Data Interpretation......................................................................321 1. Assumptions 2. The Ionization Process IV. Types of Fragmentation Pathways.................................................................328 1. Sigma-Bond Cleavage 2. Homolytic or Radical-Site-Driven Cleavage 3. Heterolytic or Charge-Site-Driven Cleavage 4. Rearrangements A. Hydrogen-Shift Rearrangements B. Hydride-Shift Rearrangements V. Representative Fragmentations (Spectra) of Classes of Compounds.......... 344 1. Hydrocarbons A. Saturated Hydrocarbons 1) Straight-Chain Hydrocarbons 2) Branched Hydrocarbons 3) Cyclic Hydrocarbons B. Unsaturated C. Aromatic 2. Alkyl Halides 3. Oxygen-Containing Compounds A. Aliphatic Alcohols B. Aliphatic Ethers C. Aromatic Alcohols D. Cyclic Ethers E. Ketones and Aldehydes F. Aliphatic Acids and Esters G. Aromatic Acids and Esters 4. Nitrogen-Containing Compounds A. Aliphatic Amines B. Aromatic Compounds Containing Atoms of Nitrogen C. Heterocyclic Nitrogen-Containing Compounds D. Nitro Compounds E. Concluding Remarks on the Mass Spectra of Nitrogen-Containing Compounds 5. Multiple Heteroatoms or Heteroatoms and a Double Bond 6. Trimethylsilyl Derivative 7. Determining the Location of Double Bonds VI. Library
    [Show full text]
  • 624 — 632 [1974] ; Received January 9, 1974)
    Some ab Initio Calculations on Indole, Isoindole, Benzofuran, and Isobenzofuran J. Koller and A. Ažman Chemical Institute “Boris Kidric” and Department of Chemistry, University of Ljubljana, P.O.B. 537, 61001 Ljubljana, Slovenia, Yugoslavia N. Trinajstić Institute “Rugjer Boskovic”, Zagreb, Croatia, Yugoslavia (Z. Naturforsch. 29 a. 624 — 632 [1974] ; received January 9, 1974) Ab initio calculations in the framework of the methodology of Pople et al. have been performed on indole, isoindole, benzofuran. and isobenzofuran. Several molecular properties (dipole moments, n. m. r. chemical shifts, stabilities, and reactivities) correlate well with calculated indices (charge densities, HOMO-LUMO separation). The calculations failed to give magnitudes of first ionization potentials, although the correct trends are reproduced, i. e. giving higher values to more stable iso­ mers. Some of the obtained results (charge densities, dipole moments) parallel CNDO/2 values. Introduction as positional isomers 4 because they formally differ Indole (1), benzofuran (3) and their isoconju­ only in the position of a heteroatom. Their atomic gated isomers: isoindole (2) and isobenzofuran (4) skeletal structures and a numbering of atoms are are interesting heteroaromatic molecules1-3 denoted given in Figure 1. 13 1 HtKr^nL J J L / t hü H 15 U (3) U) Fig. 1. Atomic skeletal structures and numbering of atoms for indole (1), isoindole (2), benzofuran (3), and isobenzofuran (4). Reprint requests to Prof. Dr. N. Trinajstic, Rudjer Boskovic Institute, P.O.B. 1016, 41001 Zagreb I Croatia, Yugoslavia. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung This work has been digitalized and published in 2013 by Verlag Zeitschrift in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der für Naturforschung in cooperation with the Max Planck Society for the Wissenschaften e.V.
    [Show full text]
  • An Organic Chemist's Guide to Electrospray Mass Spectrometric
    molecules Review An Organic Chemist’s Guide to Electrospray Mass Spectrometric Structure Elucidation Arnold Steckel 1 and Gitta Schlosser 2,* 1 Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary; [email protected] 2 Department of Analytical Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary * Correspondence: [email protected] Received: 16 January 2019; Accepted: 8 February 2019; Published: 10 February 2019 Abstract: Tandem mass spectrometry is an important tool for structure elucidation of natural and synthetic organic products. Fragmentation of odd electron ions (OE+) generated by electron ionization (EI) was extensively studied in the last few decades, however there are only a few systematic reviews available concerning the fragmentation of even-electron ions (EE+/EE−) produced by the currently most common ionization techniques, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). This review summarizes the most important features of tandem mass spectra generated by collision-induced dissociation fragmentation and presents didactic examples for the unexperienced users. Keywords: tandem mass spectrometry; MS/MS fragmentation; collision-induced dissociation; CID; ESI; structure elucidation 1. Introduction Electron ionization (EI), a hard ionization technique, is the method of choice for analyses of small (<1000 Da), nonpolar, volatile compounds. As its name implies, the technique involves ionization by electrons with ~70 eV energy. This energy is high enough to yield very reproducible mass spectra with a large number of fragments. However, these spectra frequently lack the radical type molecular ions (M+) due to the high internal energy transferred to the precursors [1].
    [Show full text]
  • Matrix Scientific PO BOX 25067 COLUMBIA, SC 29224-5067 Telephone: 803-788-9494 Fax: 803-788-9419 SAFETY DATA SHEET Transportation Emergency: 3E Co
    Matrix Scientific PO BOX 25067 COLUMBIA, SC 29224-5067 Telephone: 803-788-9494 Fax: 803-788-9419 SAFETY DATA SHEET Transportation Emergency: 3E Co. (5025) 800-451-8346 1. Product Identification Name Oxazolidine-2,5-dione Catalog Number 094908 CAS Registry Number [2185-00-4] Company Matrix Scientific Physical Address 131 Pontiac Business Center Drive Elgin, SC 29045 USA Telephone/Fax (803)788-9494/(803)788-9419 2. Hazard Identification Hazardous Ingredients Oxazolidine-2,5-dione GHS label elements, including precautionary statements Pictogram Signal word WARNING Hazard statement(s) H317 May cause an allergic skin reaction H319 Causes serious eye irritation Precautionary statement(s) P280 Wear protective gloves/protective clothing/eye protection/face protection. P305+351+338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do - continue rinsing. 3. Composition, Information or Ingredients Name Oxazolidine-2,5-dione 4. First Aid Measures Eye Contact: Check for and remove any contact lenses. Immediately flush 1 Last Updated 2/11/2017 eyes with clean, running water for at least 15 minutes while keeping eyes open. Cool water may be used. Seek medical attention. Skin Contact: After contact with skin, wash with generous quantities of running water. Gently and thoroughly wash affected area with running water and non- abrasive soap. Cool water may be used. Cover the affected area with emollient. Seek medical attention. Wash any contaminated clothing prior to reusing. Inhalation: Remove the victim from the source of exposure to fresh, uncontaminated air. If victim's breathing is difficult, administer oxygen. Seek medical attention.
    [Show full text]
  • Heterocyclic Chemistrychemistry
    HeterocyclicHeterocyclic ChemistryChemistry Professor J. Stephen Clark Room C4-04 Email: [email protected] 2011 –2012 1 http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html Recommended Reading • Heterocyclic Chemistry – J. A. Joule, K. Mills and G. F. Smith • Heterocyclic Chemistry (Oxford Primer Series) – T. Gilchrist • Aromatic Heterocyclic Chemistry – D. T. Davies 2 Course Summary Introduction • Definition of terms and classification of heterocycles • Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups Intermediates used for the construction of aromatic heterocycles • Synthesis of aromatic heterocycles • Carbon–heteroatom bond formation and choice of oxidation state • Examples of commonly used strategies for heterocycle synthesis Pyridines • General properties, electronic structure • Synthesis of pyridines • Electrophilic substitution of pyridines • Nucleophilic substitution of pyridines • Metallation of pyridines Pyridine derivatives • Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides Quinolines and isoquinolines • General properties and reactivity compared to pyridine • Electrophilic and nucleophilic substitution quinolines and isoquinolines 3 • General methods used for the synthesis of quinolines and isoquinolines Course Summary (cont) Five-membered aromatic heterocycles • General properties, structure and reactivity of pyrroles, furans and thiophenes • Methods and strategies for the synthesis of five-membered heteroaromatics
    [Show full text]
  • A New Class of Anticancer Agents
    Chem Biol Drug Des 2014; 83: 126–131 Research Letter Mefloquine–Oxazolidine Derivatives: A New Class of Anticancer Agents Felipe A. R. Rodrigues1, Igor da S. Bomfim1, applications in other fields, such as against Gram-positive Bruno C. Cavalcanti1, Claudia Pessoa1, Raoni and Gram-negative bacteria (1), in particular against Myco- S. B. Goncalves2, James L. Wardell2,3, Solange bacterium tuberculosis (2,3) and Mycobacterium avium M. S. V. Wardell4 and Marcus V. N. de Souza2,* complex (MAC) (4,5) and also against schistosomiasis (6), neurodegenerative, and (neuro-) inflammatory diseases (7). 1Laboratorio de Oncologia Experimental, Universidade A clear indication of the promise of this drug in fields other Federal do Ceara, Fortaleza, CE 3157, Brazil than malaria is the number of recent patent applications 2FioCruz-Fundacßao~ Oswaldo Cruz, Instituto de Tecnologia (5,7,8). More recently, much attention has been paid to the em Farmacos-Far-Manguinhos, Rua Sizenando Nabuco, potential perspectives of MQ as an anticancer agent. As 100, Manguinhos, 21041-250, Rio de Janeiro, RJ 35513, estimated by the National Institutes of Health (NIH), the over- Brazil all costs of cancer in 2007 were $226.8 billion.a Cancer is a 3Department of Chemistry, University of Aberdeen, Old leading cause of deaths worldwide and accounted for 7.6 Aberdeem, Aberdeem, AB 24 3UE, UK b 4CHEMSOL, 1 Harcourt Road, Aberdeen, AB15 5NY, UK million deaths (13% of all deaths) in 2008. Louie and *Corresponding author: Marcus V. N. de Souza, coworkers (9) found MQ to be the most potent anticancer marcos_souza@far.fiocruz.br drug when compared to chloroquine and the fluoroquino- lone drugs cipro and levofloxacin.
    [Show full text]