EN 224 Linear Elasticity

Total Page:16

File Type:pdf, Size:1020Kb

EN 224 Linear Elasticity EN 224 Linear Elasticity K.-S. Kim, Sem I, 2014 Robert Hooke first stated the law in 1660 as a Latin anagram "ceiiinosssttuu" (published 1676). He published the solution of his anagram in 1678 as: ut tensio, sic vis ("as the extension, so the force" or "the extension is proportional to the force"). Brief History of Experimental Linearized Elasticity The historical information presented here has been taken from The experimental foundations of solid mechanics by J.F. Bell in Handbuch der Physiks, Volume VIa/1. 1678 : Robert Hooke Discovers that force is a linear function of elongation based on experiments on long, thin wires and springs. His anagram for this law was "ceiiinosssttuu" (published 1676) which was deciphered as "Ut tensio sic vis" in his 1678 paper. 1720 : Jordan Ricatti Proposes that elastic properties of a body could be inferred from the frequency of vibration. The first experimental study of elastic E-moduli. 1729 : Pieter Van Musschenbroek Publishes the first book showing testing machines for tension, compression, and flexure. 1766 : Leonhard Euler Introduces the concept of "Young's modulus" eighty years before Thomas Young popularized Euler's concepts of the "height of the modulus" and the "weight of the modulus". 1780 : Charles Augustin Coulomb First to measure the shear modulus in the modern sense. 1787 : Ernst Chladni Calculates ratios of the velocity of sound in air to that in various solids. This work provided a major impetus for 19th century continuum mechanics. 1807 : Thomas Young Publishes his "Lectures on Natural Philosophy". This work led to the popularization of the "height of the modulus". The units were in feet. 1809 : Jean Baptiste Biot First direct measurement of the velocity of sound in a solid. 1813 : Alphonse Duleau First quasi-static experiments for small deformation linear elasticity (by design). This work provided experimental evidence for numerous theoretical developments in elasticity, including St Venant's principle and the theoretical work of Cauchy, Poisson and Navier. 1841 : Guillaume Wertheim Presents first definitive study of elastic properties of solids under various conditions to the French Academy. This study included results from Jean Victor Poncelet, Thomas Tregold, Antoin Masson, Felix Savart among others. Linear plots of stress versus strain begin to be widely used. 1848 : Guillaume Wertheim First experiments showing that the Poisson's ratio of a solid does not have the constant value of 0.25. 1859 : Gustav Robert Kirchhoff First measurement of Poisson's ratio independent of the elastic modulus and specimen diameter. 1869 : Marie Alfred Cornu First direct optical measurement of Poisson's ratio. 1882 : Woldemar Voigt Performs experiments to prove the isotropy or otherwise of solids. 1904 : Arnulph Malloc Devises a method to determine the quasi-static bulk modulus based on the theory of linear elasticity. 1908 : Eduard August Gruneisen The Poisson's ratio is first determined experimentally as ratio of lateral and longitudinal strains. Uses Malloc's method to determine the compressibility of solids. Brief Early History of Theoretical Linearized Elasticity 1687 : Isaac Newton Publishes "Principia" which provide the laws of motion : inertia, conservation of momentum, and balance of forces, though inertia and momentum remained undefined. 1684 : Gottfried Wilhelm Leibniz Finds the relation between bending moment and the moment of inertia of a linear elastic beam. 1691-1704 : James Bernoulli Derives the general equations of equilibrium using different methods : balance of forces, balance of moments, and the principle of virtual work. Finds that the stress (force/area) as a function of strain characterizes a material and thus proposes the first true stress-strain relation and a material property. 1713 : Antoine Parent Determines the position of the neutral fiber and postulates the existence of shear stresses. 1736 : Leonhard Euler Publishes "Mechanics" where he defines a mass-point and acceleration. Also introduces vectors. Most of the equations in mechanics in use today can be traced to the work of Euler. 1742 : John Bernoulli First to refer all positions to a single, rectangular Cartesian co-ordinate system. 1743 : Jean le Rond d'Alembert First to derive a partial differential equation as the statement of a law of motion. 1750-1758 : Leonhard Euler Formulates the principles of conservation of linear momentum and moment of momentum. Distinguishes mass from inertia. 1773 : Charles Augustin de Coulomb Proved that shear stresses exist in a bending beam. 1788 : Joseph Louis Lagrange Publishes "Mechanique Analitique" which contains much of the mechanics known until that time. 1821 : Claude-Louis Navier 1822 : Augustin Louis Cauchy Discovers the stress principle - relating the total forces and total moment to internal and external tractions. Cartesian co-ordinate system. This is basically the first description of the stress tensor. Cauchy also presented the equations of equilibrium and showed that the stress tensor is symmetric. 1833 : Siméon Denis Poisson Publishes statement and proof that a system of pairwise equilibriated and central forces exerts no torque. This is fundamental to the principle of conservation of moment of momentum. 1855 : Adhémar Jean Claude Barré de Saint-Venant 1918 : Emmy Noether (Symmetry of Physical Laws and Conservation Laws) 1951 : Eshelby (Configurational force field elasticity) Singular solutions (Green, BPN, Taylor, Westergaard, England, Mindlin, etc.) : Punch (Hertz, Snedon) : Nonlocal elasticity (Cosserat, Eringen) : Poro-elasticity (Biot) Homogenization (Hashin, Strikman, Willis) : Anisotropy (Stroh, Barnett, Dundurs, Ting) Texts/structures (Love, Timoshenko, Von Karman, Muskhelishivili, Sternberg, Gurtin) Computation (FEM, Boundary Element Methods) Inverse Method Elasticity (FPM) EN 224 Linear Elasticity Course Outline K.-S. Kim, Sem I, 2014 0. Introduction and Mathematical Preliminaries 1. Review of the Field Equations of Linear Elasticity 1.1 Kinematics of Deformable Solids 1.2 Kinetics of Deformable Solids 1.3 Constitutive Models and for Elastic Materials 1.4 Summary of Linearized Field Equations; Boundary and Initial Value Problems 2. Theorems of Linear Elasticity 2.1 Superposition 2.2 Existence and Uniqueness Theorems 2.3 Reciprocal Theorem 2.4 Energy and Work Theorems 2.4.1. Principle of Minimum Potential Energy 2.4.2. Principle of Minimum Complementary Energy 2.4.3. Principle of Virtual Work 2.5 Noether’s Theorems (Lie symmetry) 3. Basic One-Dimensional Problems* (Reading chapter) 3.1 Properties of Axi-symmetric Linear Elastic Fields 3.2 Saint Venant Solutions of Beam Deformations 4. 3D Static Boundary Value Problems 5.1 Papkovich Neuber Potentials 5.2 Singular Solutions for an Infinite Solid 5.3 Solutions for 3D dislocation loops in an infinite solid 5.4 The Boundary Element Method 5.5 Eigenstrains 5.6 Eshelby Inclusion Problems 5.7 Singular Solutions for the Half Space 5.8 Contact Problems 5a. 2D Static Boundary Value Problems 4a.1. Field Equations and Boundary Conditions 4a.2. Plane Strain and Plane Stress Approximations 4a.3. Stress Equations of Compatibility and Levi’s Theorem 4a.4 Solution of Plane Problems using Airy Stress Functions 5b. Complex Variable Methods for Plane Elastostatics 4b.1 Review of Complex Variables 4b.2 Complex Variable Representation of Plane Elastostatic Solutions 4b.3 Boundary Conditions on Complex Potentials 4b.4 Series Solutions for Complex Potentials 4b.5 Application of the Cauchy Integral Formula 4b.6 Conformal Mapping 6. Elasticity theory for anisotropic materials 6.1 General Principles: Constitutive law and field equations for anisotropic materials 6.2 Anti-plane shear solutions for anisotropic materials 6.3 The Stroh representation for general plane deformation of anisotropic materials 6.4 Solutions to selected boundary value problems for anisotropic materials 7. Inhomogeneity and Lie symmetry in linear elasticity 7.1. Noether’s theorem revisited 7.2. Eshelby’s inhomogeneity and configurational force fields 7.3. Lie symmetry and conservation integrals 8. Emergence of elasticity and homogenization 8.1. Kinematic & static homogenization and linearization 8.2. Mean field theory 8.3. Homogenization bound theorems 8.4. Scaling theory 9. Elasticity theory for inverse problems 9.1. Loss of reciprocity 9.2. Spectral auxiliary field decompositions 9.3. Field projection methods 10. Computational (multi-physical) linear elasticity 10.1. Variational approximations: Finite element methods (for inverse ptoblems) 10.2. Boundary element methods (for inverse problems) 10.3. Phase field method for multi-physics linear elesticity .
Recommended publications
  • Arxiv:1910.01953V1 [Cond-Mat.Soft] 4 Oct 2019 Tion of the Load
    Geometric charges and nonlinear elasticity of soft metamaterials Yohai Bar-Sinai,1 Gabriele Librandi,1 Katia Bertoldi,1 and Michael Moshe2, ∗ 1School of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138 2Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel 91904 Problems of flexible mechanical metamaterials, and highly deformable porous solids in general, are rich and complex due to nonlinear mechanics and nontrivial geometrical effects. While numeric approaches are successful, analytic tools and conceptual frameworks are largely lacking. Using an analogy with electrostatics, and building on recent developments in a nonlinear geometric formu- lation of elasticity, we develop a formalism that maps the elastic problem into that of nonlinear interaction of elastic charges. This approach offers an intuitive conceptual framework, qualitatively explaining the linear response, the onset of mechanical instability and aspects of the post-instability state. Apart from intuition, the formalism also quantitatively reproduces full numeric simulations of several prototypical structures. Possible applications of the tools developed in this work for the study of ordered and disordered porous mechanical metamaterials are discussed. I. INTRODUCTION tic metamaterials out of an underlying nonlinear theory of elasticity. The hallmark of condensed matter physics, as de- A theoretical analysis of the elastic problem requires scribed by P.W. Anderson in his paper \More is Dif- solving the nonlinear equations of elasticity while satis- ferent" [1], is the emergence of collective phenomena out fying the multiple free boundary conditions on the holes of well understood simple interactions between material edges - a seemingly hopeless task from an analytic per- elements. Within the ever increasing list of such systems, spective.
    [Show full text]
  • Modeling the Physics of RRAM Defects
    Modeling the physics of RRAM defects A model simulating RRAM defects on a macroscopic physical level T. Hol Modeling the physics of RRAM defects A model simulating RRAM defects on a macroscopic physical level by T. Hol to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Friday August 28, 2020 at 13:00. Student number: 4295528 Project duration: September 1, 2019 – August 28, 2020 Thesis committee: Prof. dr. ir. S. Hamdioui TU Delft, supervisor Dr. Ir. R. Ishihara TU Delft Dr. Ir. S. Vollebregt TU Delft Dr. Ir. M. Taouil TU Delft Ir. M. Fieback TU Delft, supervisor An electronic version of this thesis is available at https://repository.tudelft.nl/. Abstract Resistive RAM, or RRAM, is one of the emerging non-volatile memory (NVM) technologies, which could be used in the near future to fill the gap in the memory hierarchy between dynamic RAM (DRAM) and Flash, or even completely replace Flash. RRAM operates faster than Flash, but is still non-volatile, which enables it to be used in a dense 3D NVM array. It is also a suitable candidate for computation-in-memory, neuromorphic computing and reconfigurable computing. However, the show stopping problem of RRAM is that it suffers from unique defects, which is the reason why RRAM is still not widely commercially adopted. These defects differ from those that appear in CMOS technology, due to the arbitrary nature of the forming process. They can not be detected by conventional tests and cause defective devices to go unnoticed.
    [Show full text]
  • Kinematics, Kinetics, Dynamics, Inertia Kinematics Is a Branch of Classical
    Course: PGPathshala-Biophysics Paper 1:Foundations of Bio-Physics Module 22: Kinematics, kinetics, dynamics, inertia Kinematics is a branch of classical mechanics in physics in which one learns about the properties of motion such as position, velocity, acceleration, etc. of bodies or particles without considering the causes or the driving forces behindthem. Since in kinematics, we are interested in study of pure motion only, we generally ignore the dimensions, shapes or sizes of objects under study and hence treat them like point objects. On the other hand, kinetics deals with physics of the states of the system, causes of motion or the driving forces and reactions of the system. In a particular state, namely, the equilibrium state of the system under study, the systems can either be at rest or moving with a time-dependent velocity. The kinetics of the prior, i.e., of a system at rest is studied in statics. Similarly, the kinetics of the later, i.e., of a body moving with a velocity is called dynamics. Introduction Classical mechanics describes the area of physics most familiar to us that of the motion of macroscopic objects, from football to planets and car race to falling from space. NASCAR engineers are great fanatics of this branch of physics because they have to determine performance of cars before races. Geologists use kinematics, a subarea of classical mechanics, to study ‘tectonic-plate’ motion. Even medical researchers require this physics to map the blood flow through a patient when diagnosing partially closed artery. And so on. These are just a few of the examples which are more than enough to tell us about the importance of the science of motion.
    [Show full text]
  • On an Experimentum Crucis for Optics
    Research Report: On an Experimentum Crucis for Optics Ionel DINU, M.Sc. Teacher of Physics E-mail: [email protected] (Dated: November 17, 2010) Abstract Formulated almost 150 years ago, Thomas Young’s hypothesis that light might be a transverse wave has never been seriously questioned, much less subjected to experiment. In this article I report on an attempt to prove experimentally that Young’s hypothesis is untenable. Although it has certain limitations, the experiment seems to show that sound in air, a longitudinal wave, can be “polarized” by reflection just like light, and this can be used as evidence against Young’s hypothesis. Further refinements of the experimental setup may yield clearer results, making this report useful to those interested in the important issue of whether light is a transverse or a longitudinal wave. Introduction In the course of development of science, there has always been a close connection between sound and light [1]. Acoustics stimulated research and discovery in optics and vice-versa. Reflection and refraction being the first common points observed between the two, the analogy between optical and acoustical phenomena has been proven also in the case of interference, diffraction, Doppler effect, and even in their mode of production: sounds are produced by the vibration of macroscopic objects, while light is produced by vibrating molecules and atoms. The wave nature of sound implies that light is also a wave and, if matter must be present for sound to be propagated, then aether must exist in order to account for the propagation of light through spaces void of all the matter known to chemistry.
    [Show full text]
  • Crack Tip Elements and the J Integral
    EN234: Computational methods in Structural and Solid Mechanics Homework 3: Crack tip elements and the J-integral Due Wed Oct 7, 2015 School of Engineering Brown University The purpose of this homework is to help understand how to handle element interpolation functions and integration schemes in more detail, as well as to explore some applications of FEA to fracture mechanics. In this homework you will solve a simple linear elastic fracture mechanics problem. You might find it helpful to review some of the basic ideas and terminology associated with linear elastic fracture mechanics here (in particular, recall the definitions of stress intensity factor and the nature of crack-tip fields in elastic solids). Also check the relations between energy release rate and stress intensities, and the background on the J integral here. 1. One of the challenges in using finite elements to solve a problem with cracks is that the stress field at a crack tip is singular. Standard finite element interpolation functions are designed so that stresses remain finite a everywhere in the element. Various types of special b c ‘crack tip’ elements have been designed that 3L/4 incorporate the singularity. One way to produce a L/4 singularity (the method used in ABAQUS) is to mesh L the region just near the crack tip with 8 noded elements, with a special arrangement of nodal points: (i) Three of the nodes (nodes 1,4 and 8 in the figure) are connected together, and (ii) the mid-side nodes 2 and 7 are moved to the quarter-point location on the element side.
    [Show full text]
  • Linear Elasticity
    10 Linear elasticity When you bend a stick the reaction grows noticeably stronger the further you go — until it perhaps breaks with a snap. If you release the bending force before it breaks, the stick straightens out again and you can bend it again and again without it changing its reaction or its shape. That is elasticity. Robert Hooke (1635–1703). In elementary mechanics the elasticity of a spring is expressed by Hooke’s law English physicist. Worked on elasticity, built tele- which says that the force necessary to stretch or compress a spring is propor- scopes, and the discovered tional to how much it is stretched or compressed. In continuous elastic materials diffraction of light. The Hooke’s law implies that stress is proportional to strain. Some materials that we famous law which bears his name is from 1660. usually think of as highly elastic, for example rubber, do not obey Hooke’s law He stated already in 1678 except under very small deformation. When stresses grow large, most materials the inverse square law for gravity, over which he deform more than predicted by Hooke’s law. The proper treatment of non-linear got involved in a bitter elasticity goes far beyond the simple linear elasticity which we shall discuss in controversy with Newton. this book. The elastic properties of continuous materials are determined by the under- lying molecular structure, but the relation between material properties and the molecular structure and arrangement in solids is complicated, to say the least. Luckily, there are broad classes of materials that may be described by a few Thomas Young (1773–1829).
    [Show full text]
  • Linear Elastostatics
    6.161.8 LINEAR ELASTOSTATICS J.R.Barber Department of Mechanical Engineering, University of Michigan, USA Keywords Linear elasticity, Hooke’s law, stress functions, uniqueness, existence, variational methods, boundary- value problems, singularities, dislocations, asymptotic fields, anisotropic materials. Contents 1. Introduction 1.1. Notation for position, displacement and strain 1.2. Rigid-body displacement 1.3. Strain, rotation and dilatation 1.4. Compatibility of strain 2. Traction and stress 2.1. Equilibrium of stresses 3. Transformation of coordinates 4. Hooke’s law 4.1. Equilibrium equations in terms of displacements 5. Loading and boundary conditions 5.1. Saint-Venant’s principle 5.1.1. Weak boundary conditions 5.2. Body force 5.3. Thermal expansion, transformation strains and initial stress 6. Strain energy and variational methods 6.1. Potential energy of the external forces 6.2. Theorem of minimum total potential energy 6.2.1. Rayleigh-Ritz approximations and the finite element method 6.3. Castigliano’s second theorem 6.4. Betti’s reciprocal theorem 6.4.1. Applications of Betti’s theorem 6.5. Uniqueness and existence of solution 6.5.1. Singularities 7. Two-dimensional problems 7.1. Plane stress 7.2. Airy stress function 7.2.1. Airy function in polar coordinates 7.3. Complex variable formulation 7.3.1. Boundary tractions 7.3.2. Laurant series and conformal mapping 7.4. Antiplane problems 8. Solution of boundary-value problems 1 8.1. The corrective problem 8.2. The Saint-Venant problem 9. The prismatic bar under shear and torsion 9.1. Torsion 9.1.1. Multiply-connected bodies 9.2.
    [Show full text]
  • Hamilton Description of Plasmas and Other Models of Matter: Structure and Applications I
    Hamilton description of plasmas and other models of matter: structure and applications I P. J. Morrison Department of Physics and Institute for Fusion Studies The University of Texas at Austin [email protected] http://www.ph.utexas.edu/ morrison/ ∼ MSRI August 20, 2018 Survey Hamiltonian systems that describe matter: particles, fluids, plasmas, e.g., magnetofluids, kinetic theories, . Hamilton description of plasmas and other models of matter: structure and applications I P. J. Morrison Department of Physics and Institute for Fusion Studies The University of Texas at Austin [email protected] http://www.ph.utexas.edu/ morrison/ ∼ MSRI August 20, 2018 Survey Hamiltonian systems that describe matter: particles, fluids, plasmas, e.g., magnetofluids, kinetic theories, . \Hamiltonian systems .... are the basis of physics." M. Gutzwiller Coarse Outline William Rowan Hamilton (August 4, 1805 - September 2, 1865) I. Today: Finite-dimensional systems. Particles etc. ODEs II. Tomorrow: Infinite-dimensional systems. Hamiltonian field theories. PDEs Why Hamiltonian? Beauty, Teleology, . : Still a good reason! • 20th Century framework for physics: Fluids, Plasmas, etc. too. • Symmetries and Conservation Laws: energy-momentum . • Generality: do one problem do all. • ) Approximation: perturbation theory, averaging, . 1 function. • Stability: built-in principle, Lagrange-Dirichlet, δW ,.... • Beacon: -dim KAM theorem? Krein with Cont. Spec.? • 9 1 Numerical Methods: structure preserving algorithms: • symplectic, conservative, Poisson integrators,
    [Show full text]
  • 20. Rheology & Linear Elasticity
    20. Rheology & Linear Elasticity I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 20. Rheology & Linear Elasticity Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slide-lava 10/29/18 GG303 2 20. Rheology & Linear Elasticity Ductile (plastic) Behavior http://www.hilo.hawaii.edu/~csav/gallery/scientists/LavaHammerL.jpg http://hvo.wr.usgs.gov/kilauea/update/images.html 10/29/18 GG303 3 http://upload.wikimedia.org/wikipedia/commons/8/89/Ropy_pahoehoe.jpg 20. Rheology & Linear Elasticity Elastic Behavior https://thegeosphere.pbworks.com/w/page/24663884/Sumatra http://www.earth.ox.ac.uk/__Data/assets/image/0006/3021/seismic_hammer.jpg 10/29/18 GG303 4 20. Rheology & Linear Elasticity Brittle Behavior (fracture) 10/29/18 GG303 5 http://upload.wikimedia.org/wikipedia/commons/8/89/Ropy_pahoehoe.jpg 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior A Elasticity 1 Deformation is reversible when load is removed 2 Stress (σ) is related to strain (ε) 3 Deformation is not time dependent if load is constant 4 Examples: Seismic (acoustic) waves, http://www.fordogtrainers.com rubber ball 10/29/18 GG303 6 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior A Elasticity 1 Deformation is reversible when load is removed 2 Stress (σ) is related to strain (ε) 3 Deformation is not time dependent if load is constant 4 Examples: Seismic (acoustic) waves, rubber ball 10/29/18 GG303 7 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior B Viscosity 1 Deformation is irreversible when load is removed 2 Stress (σ) is related to strain rate (ε ! ) 3 Deformation is time dependent if load is constant 4 Examples: Lava flows, corn syrup http://wholefoodrecipes.net 10/29/18 GG303 8 20.
    [Show full text]
  • Model CIB-L Inertia Base Frame
    KINETICS® Inertia Base Frame Model CIB-L Description Application Model CIB-L inertia base frames, when filled with KINETICSTM CIB-L inertia base frames are specifically concrete, meet all specifications for inertia bases, designed and engineered to receive poured concrete, and when supported by proper KINETICSTM vibration for use in supporting mechanical equipment requiring isolators, provide the ultimate in equipment isolation, a reinforced concrete inertia base. support, anchorage, and vibration amplitude control. Inertia bases are used to support mechanical KINETICSTM CIB-L inertia base frames incorporate a equipment, reduce equipment vibration, provide for unique structural design which integrates perimeter attachment of vibration isolators, prevent differential channels, isolator support brackets, reinforcing rods, movement between driving and driven members, anchor bolts and concrete fill into a controlled load reduce rocking by lowering equipment center of transfer system, utilizing steel in tension and concrete gravity, reduce motion of equipment during start-up in compression, resulting in high strength and stiff- and shut-down, act to reduce reaction movement due ness with minimum steel frame weight. Completed to operating loads on equipment, and act as a noise inertia bases using model CIB-L frames are stronger barrier. and stiffer than standard inertia base frames using heavier steel members. Typical uses for KINETICSTM inertia base frames, with poured concrete and supported by KINETICSTM Standard CIB-L inertia base frames
    [Show full text]
  • KINETICS Tool of ANSA for Multi Body Dynamics
    physics on screen KINETICS tool of ANSA for Multi Body Dynamics Introduction During product manufacturing processes it is important for engineers to have an overview of their design prototypes’ motion behavior to understand how moving bodies interact with respect to each other. Addressing this, the KINETICS tool has been incorporated in ANSA as a Multi-Body Dynamics (MBD) solution. Through its use, engineers can perform motion analysis to study and analyze the dynamics of mechanical systems that change their response with respect to time. Through the KINETICS tool ANSA offers multiple capabilities that are accomplished by the functionality presented below. Model definition Multi-body models can be defined on any CAD data or on existing FE models. Users can either define their Multi-body models manually from scratch or choose to automatically convert an existing FE model setup (e.g. ABAQUS, LSDYNA) to a Multi- body model. Contact Modeling The accuracy and robustness of contact modeling are very important in MBD simulations. The implementation of algorithms based on the non-smooth dynamics theory of unilateral contacts allows users to study contact incidents providing accurate solutions that the ordinary regularized methodologies cannot offer. Furthermore, the selection between different friction types maximizes the realism in the model behavior. Image 1: A Seat-dummy FE model converted to a multibody model Image 2: A Bouncing of a piston inside a cylinder BETA CAE Systems International AG D4 Business Village Luzern, Platz 4 T +41 415453650 [email protected] CH-6039 Root D4, Switzerland F +41 415453651 www.beta-cae.com Configurator In many cases, engineers need to manipulate mechanisms under the influence of joints, forces and contacts and save them in different positions.
    [Show full text]
  • Design of a Meta-Material with Targeted Nonlinear Deformation Response Zachary Satterfield Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 12-2015 Design of a Meta-Material with Targeted Nonlinear Deformation Response Zachary Satterfield Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Mechanical Engineering Commons Recommended Citation Satterfield, Zachary, "Design of a Meta-Material with Targeted Nonlinear Deformation Response" (2015). All Theses. 2245. https://tigerprints.clemson.edu/all_theses/2245 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. DESIGN OF A META-MATERIAL WITH TARGETED NONLINEAR DEFORMATION RESPONSE A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Mechanical Engineering by Zachary Tyler Satterfield December 2015 Accepted by: Dr. Georges Fadel, Committee Chair Dr. Nicole Coutris, Committee Member Dr. Gang Li, Committee Member ABSTRACT The M1 Abrams tank contains track pads consist of a high density rubber. This rubber fails prematurely due to heat buildup caused by the hysteretic nature of elastomers. It is therefore desired to replace this elastomer by a meta-material that has equivalent nonlinear deformation characteristics without this primary failure mode. A meta-material is an artificial material in the form of a periodic structure that exhibits behavior that differs from its constitutive material. After a thorough literature review, topology optimization was found as the only method used to design meta-materials. Further investigation determined topology optimization as an infeasible method to design meta-materials with the targeted nonlinear deformation characteristics.
    [Show full text]