Networks Nov

Total Page:16

File Type:pdf, Size:1020Kb

Networks Nov Introduction to Computer Science CSCI 109 China – Tianhe-2 Andrew Goodney Fall 2019 Lecture 9: Networks Nov. 9th, 2019 Schedule 1 Computer Networks u Computer networks everywhere! v Headed towards IoT (*everything* electronic on a network) u How did we get here? 2 1960’s u 1960’s v ”Mainframe” computers = $$MM v Universities and Government facilities install at designated places (UIUC, UCSD, etc.) v Allow remote access to researchers across the country to better utilize v Mainframes – 100% busy 3 1960’s Remote Access u Dumb Terminals and analog modems Phone call 4 1960’s Problems u Any issues with this model? v Analog connections slow (300BPS) v Only so many phone lines v Long distance calls were expensive 5 Digital Circuits u Mid to late 1960’s digital circuits improve things u Also, computer-to-computer communication 64kbps digital circuit (smaller) mainframe (smaller) mainframe mainframe (smaller) mainframe 6 Late 1960’s u Terminals in office -> local main frame u Local mainframe -> digital circuit -> big main frame u Key observations: v Multiple users v Computer-to-computer 7 7 Late 1960’s u Still not ideal… u Connections are “circuit switched” (dedicated) between source and destination u What happens when no one is using the circuit? u Really only one dumb-terminal can use connection at a time u Do humans time share well? u Digital circuits still expensive u Also, computer-to-computer identified as key application 8 Design Goals u Need a way to: v Connect users at terminals to remote computers v Connect many users at the same time (fairly) v Allow computer-to-computer communications v Maximize the utilization of expensive digital links 9 Solution: the packet u What is a packet? u Chunks of user data u And VERY IMPORTANTLY u Meta-data (header) about where the packet is from, and where it needs to go 10 How do packets solve the problem? u Now we can build “packet-switched” networks = packet switch 64kbps digital circuit 11 Packet Switching u What do we have now? u Terminals connect to local computers u Data is broken up into packets sent to switch u Can go to other local computers u Or, switch can ”forward” packet to remote switch u Remote switch sends packet to big, expensive main frame u Main advantage: links are shared amongst all users, or computer-to-computer communication u Nothing is dedicated to one connection 12 Packet Switching Advantage u Sharing and utilization is main advantage of packet switching example: § 1 Mb/s link ….. N § each user: users • 100 kb/s when “active” 1 Mbps link • active 10% of time u circuit-switching: v 10 users u packet switching: v with 35 users, probability > 10 active at same time is less than .0004 v with 50 users, P = 0.01 13 A bit more history… u How did we make the jump to packet switching? u Idea came about late 1960’s u ARPA (Advanced Research Projects Agency) v US-DOD wanted packet switched computer-to-computer networks v Seen as crucial to Cold War effort u This is queueing theory, packet switching is a lot like lines at amusement park/grocery store 14 Len Kleinrock/UCLA u Len Kleinrock writes PhD thesis on queuing theory/packet switching v All theoretical, didn’t exist yet u ARAP contacts and says “Hey you seem like just the right guy, here’s a ton of money, invent the ARPANet…” u Gets faculty position at UCLA (~1963), embarks on project u With BBN, builds Interface Message Processor (IMP) (packet switch) u 50 years ago (Oct. 29th), sends first message from UCLA to Stanford 15 Interface Message Processor Internet Museum: https://la.curbed.com/2011/10/31/10429196/internet-invented-ucla-first-message-museum Recreated lab as it was 50 years ago. You can go visit: 3420 Boelter Hall 16 Network Terminology u Everything on the network is either: v Host u sends or receives data v Packet switch u receives packets on interfaces and forwards to other switches or hosts v Communication link u Physical connection between two devices that carries data u Store and forward v Packet switches “store and forward” u Receive a packet u Store it (store) u Figure out where to send it (forward) 17 Modern Networks u How do we build modern networks? mobile network u The Internet is a network of networks! global ISP u Internet edge: home network v Access networks connects hosts to the regional ISP network v Access networks connect to networks in the core u Internet Core: v Networks of networks (ISPs) connecting together institutional network 18 More Terminology u Access networks are Local Area Networks (LANs) v Host (desktops, laptops, servers) v Switches v Routers u Routers are special packet switches that bridge (connect) multiple LANs, or from LAN to WAN u WAN = Wide Area Network v Connects from LAN to network core 19 More Terminology u Network Core v LANs and WAN connections from access networks to ISPs v And between ISPs 20 How do we build modern networks u First look at access networks v How do we connect hosts (pc, laptop, server, phones) to the network 21 Ethernet LANs u In 2018 (almost?) all LANs are built with Ethernet technologies u Homes, businesses, university campus u Built with v twisted pair (“Ethernet cable”) v Wifi v Optical fiber v Power lines u Wide range of speeds v 10M, 100M, 1G, 10G, 40G, 100G 22 Home Network wireless devices to/from headend or central office Cable, DSL modem, or fiber wireless access router, firewall, NAT point (100->1000 Mbps) wired Ethernet (100 Mbps or 1G) 23 Institutional Network institutional link to ISP (Internet) institutional router Ethernet institutional mail, switch web servers u typically used in companies, universities, etc v 10 Mbps, 100Mbps, 1Gbps, 10Gbps, 40G, 100G transmission rates v today, end systems typically connect into Ethernet switch 24 Wireless Network u Wireless access to phones, etc u Provided by cellular operators u 2G (dead?), 3G, 4G, now 5G u Speeds vary v 100’s kilobits/s (2G) v 5G 300Mbps+ to Internet 25 WAN Links u How to connect access networks to the core? 26 DSL central office telephone network DSL splitter modem DSLAM ISP voice, data transmitted at different frequencies over DSL access dedicated line to central office multiplexer u Digital Subscriber Line (DSL) v Uses existing phone lines v 10 - 100Mbps v Homes and small businesses 27 Cable Modem cable headend … cable splitter cable modem modem CMTS termination system data, TV transmitted at different frequencies over shared cable ISP distribution network v HFC: hybrid fiber coax § asymmetric: up to 1Gbps downstream transmission rate, <20 Mbps upstream transmission rate v network of cable, fiber attaches homes to ISP router § homes share access network to cable headend § unlike DSL, which has dedicated access to central office v Homes and small business 28 Fiber Optical WAN Links u Institutional networks, ISP to ISP u Laser light on optical fiber u Speeds 100M to 100G u Some homes! v ATT Fiber, Google Home, other lucky people! 29 Physical Links u Communication links can be made up of different physical media, with different properties 30 Twisted Pair u Twisted Pair: two copper wires twisted around each other u Examples: old phone lines, CAT5(6,7) Ethernet cables u Bandwidth: 100M to 2.5G per pair u Usually multiple pairs per cable 31 Coaxial cable u Coaxial cable: center conductor surrounded by insulation then tubular shield u Carries radio frequency signals u “CableTV” (cable modem) wires in your house, DS3 other similar telco services u 100M to 10G per cable 32 Fiber Optic Cable u Extremely thin glass cables called strands u Laser light used to transmit data u Can carry multiple wavelengths at once (i.e. multiple ”colors”) u Essentially unlimited bandwidth per strand u Typically 1G to 100G per wavelength u 96 wavelengths per strand u Short distance: Ethernet on campus u Long distance, undersea u Propagates at 60% speed of light 33 Wireless u Also known as radio waves u Connects through free space (no wires) u Wi-fi, cellular, satellite, specialized microwave services u Bandwidth depends on frequency, channel width, modulation, etc. (kilobits to gigabits) v 900MHz, 2.4GHz, 5GHz, 60GHz u Propagation affected by walls, buildings, trees, ground, water, other transmission sources u Some free-space laser links exist, not very common 34 Internet structure u Keep saying “network of networks” u What do we mean? u Basic goal of Internet “end to end” communication v Any host can talk to any host u End systems connect to Internet via access ISPs (Internet Service Providers) v Residential, business and university ISPs u Access ISPs in turn must be interconnected. v So that any two hosts can send packets to each other u Resulting network of networks is very complex v Evolution was driven by economics and national policies u Let’s take a stepwise approach to describe current Internet structure 35 Internet Structure u To enable end-to-end communication, all access nets (millions) must interconnect… how? access access … net net … access net access access net net access access net net … … access access net net access net access net access net access … … net access access net access net net 36 Internet Structure u Naïve solution: direct connect every ISP together! access access … net net … access net access access net net … … access access net net connecting each access ISP … … … … to each other directly doesn’t access access net scale: O(N2) connections. net access net access net access net … access … … net access access net access net net 37 Internet Structure u Solution: One global ISP connects access nets hierarchically u Not possible, never happened… access access … net net … access
Recommended publications
  • Cable Modem/Router with Wireless-N
    DOCSIS 3.0 Model 5352 Cable Modem/Router with Wireless-N The Zoom 5352 Cable Modem/Router with Wireless-N supports cable modem speeds up to 343 Mbps. With its high speed and IPv4 and IPv6 networking support, this is a product designed and built for use today and for years to come. The embedded router with Wireless-N support continues the high-performance with 300 Mbps 2 X 2 MIMO for the range, wireless speeds and networking support needed for multimedia, Internet video and high-performance networking in a home or office. DOCSIS 3.0 cable performance allows bonding of up to eight channels on downloads and four channels on uploads when used with the latest cable systems. DOCSIS 2.0 and 1.1 support provides compatibility with older cable systems. Cable modem performance has been tested and approved by CableLabs, the industry's non-profit test and certification authority. Additonal testing and approvals have been obtained from Cox, Comcast, Time Warner Cable and other leading cable service providers. Features of the Model 5352 include: n DOCSIS 3.0 performance with CableLabs certification n Up to 8 Downstream channels and 4 Upstream channels, for speeds as high as 343 Mbps on downloads and 123 Mbps on uploads with full band capture front end n Provides shared high-speed Internet over cable to: - WiFi compatible wireless 802.11n, g, and b devices - Devices with an Ethernet port, including computers and game stations n Easy setup and management with Universal Plug and Play (UPnP), WPS wireless security setup, and browser-based management n
    [Show full text]
  • Guidelines on Mobile Device Forensics
    NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Sam Brothers Wayne Jansen http://dx.doi.org/10.6028/NIST.SP.800-101r1 NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Software and Systems Division Information Technology Laboratory Sam Brothers U.S. Customs and Border Protection Department of Homeland Security Springfield, VA Wayne Jansen Booz-Allen-Hamilton McLean, VA http://dx.doi.org/10.6028/NIST.SP. 800-101r1 May 2014 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director Authority This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Management Act of 2002 (FISMA), 44 U.S.C. § 3541 et seq., Public Law (P.L.) 107-347. NIST is responsible for developing information security standards and guidelines, including minimum requirements for Federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate Federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A- 130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A- 130, Appendix III, Security of Federal Automated Information Resources. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on Federal agencies by the Secretary of Commerce under statutory authority.
    [Show full text]
  • Research on the System Structure of IPV9 Based on TCP/IP/M
    International Journal of Advanced Network, Monitoring and Controls Volume 04, No.03, 2019 Research on the System Structure of IPV9 Based on TCP/IP/M Wang Jianguo Xie Jianping 1. State and Provincial Joint Engineering Lab. of 1. Chinese Decimal Network Working Group Advanced Network, Monitoring and Control Shanghai, China 2. Xi'an, China Shanghai Decimal System Network Information 2. School of Computer Science and Engineering Technology Ltd. Xi'an Technological University e-mail: [email protected] Xi'an, China e-mail: [email protected] Wang Zhongsheng Zhong Wei 1. School of Computer Science and Engineering 1. Chinese Decimal Network Working Group Xi'an Technological University Shanghai, China Xi'an, China 2. Shanghai Decimal System Network Information 2. State and Provincial Joint Engineering Lab. of Technology Ltd. Advanced Network, Monitoring and Control e-mail: [email protected] Xi'an, China e-mail: [email protected] Abstract—Network system structure is the basis of network theory, which requires the establishment of a link before data communication. The design of network model can change the transmission and the withdrawal of the link after the network structure from the root, solve the deficiency of the transmission is completed. It solves the problem of original network system, and meet the new demand of the high-quality real-time media communication caused by the future network. TCP/IP as the core network technology is integration of three networks (communication network, successful, it has shortcomings but is a reasonable existence, broadcasting network and Internet) from the underlying will continue to play a role. Considering the compatibility with structure of the network, realizes the long-distance and the original network, the new network model needs to be large-traffic data transmission of the future network, and lays compatible with the existing TCP/IP four-layer model, at the a solid foundation for the digital currency and virtual same time; it can provide a better technical system to currency of the Internet.
    [Show full text]
  • Cable Versus Dsl
    53-10-60 DATA COMMUNICATIONS MANAGEMENT CABLE VERSUS DSL John R. Vacca INSIDE DSL; Cable Modems; ADSL; CDSL; G.Lite; HDSL; IDSL; RADSL; SDSL; VDSL; POTS; DSL and Cable Modem Rollouts; High-Speed Data Entry; Buying DSL Service; Installing DSL; Security Problems, Residential Users, Telecommuters, DSL System Components; DSL Network; DSL Hubs INTRODUCTION Internet access via cable modem has become available in many residen- tial areas over the past few years. Cable has the capacity to transmit data at speeds as fast as Digital Subscriber Line (DSL) when configured prop- erly and under optimal conditions. Due to the fact that cable lines are not available in the vast majority of commercial districts, cable does not com- pete with DSL in the enterprise market at all, in most cases. Cable was designed for residential use, and in some cases may be a cost-effective solution for residential high-bandwidth Internet access. Therefore, the challenge of cable versus DSL is primarily in the residential and telecom- muter markets. With that in mind, and before continuing with the theme of this article (cable vs. DSL), one can take a look at the technology issues first, and then some basic terminology. TECHNOLOGY ISSUES What is DSL? How does it work? What are the types of DSL? These are some of the questions this article will surely answer; as well as some of the pros and cons of the use of cable modems versus DSL. PAYOFF IDEA The article discusses the current state of cable DSL: What Is It? modem access versus DSL. It also examines how In essence, by using the existing tele- prevalent cable modem and DSL services are in major U.S.
    [Show full text]
  • F. Circuit Switching
    CSE 3461: Introduction to Computer Networking and Internet Technologies Circuit Switching Presentation F Study: 10.1, 10.2, 8 .1, 8.2 (without SONET/SDH), 8.4 10-02-2012 A Closer Look At Network Structure: • network edge: applications and hosts • network core: —routers —network of networks • access networks, physical media: communication links d. xuan 2 1 The Network Core • mesh of interconnected routers • the fundamental question: how is data transferred through net? —circuit switching: dedicated circuit per call: telephone net —packet-switching: data sent thru net in discrete “chunks” d. xuan 3 Network Layer Functions • transport packet from sending to receiving hosts application transport • network layer protocols in network data link network physical every host, router network data link network data link physical data link three important functions: physical physical network data link • path determination: route physical network data link taken by packets from source physical to dest. Routing algorithms network network data link • switching: move packets from data link physical physical router’s input to appropriate network data link application router output physical transport network data link • call setup: some network physical architectures require router call setup along path before data flows d. xuan 4 2 Network Core: Circuit Switching End-end resources reserved for “call” • link bandwidth, switch capacity • dedicated resources: no sharing • circuit-like (guaranteed) performance • call setup required d. xuan 5 Circuit Switching • Dedicated communication path between two stations • Three phases — Establish (set up connection) — Data Transfer — Disconnect • Must have switching capacity and channel capacity to establish connection • Must have intelligence to work out routing • Inefficient — Channel capacity dedicated for duration of connection — If no data, capacity wasted • Set up (connection) takes time • Once connected, transfer is transparent • Developed for voice traffic (phone) g.
    [Show full text]
  • Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems
    Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems Paul Sabatino, [email protected] This paper details the impact of new advances in residential broadband networking, including ADSL, HDSL, VDSL, RADSL, cable modems. History as well as future trends of these technologies are also addressed. OtherReports on Recent Advances in Networking Back to Raj Jain's Home Page Table of Contents ● 1. Introduction ● 2. DSL Technologies ❍ 2.1 ADSL ■ 2.1.1 Competing Standards ■ 2.1.2 Trends ❍ 2.2 HDSL ❍ 2.3 SDSL ❍ 2.4 VDSL ❍ 2.5 RADSL ❍ 2.6 DSL Comparison Chart ● 3. Cable Modems ❍ 3.1 IEEE 802.14 ❍ 3.2 Model of Operation ● 4. Future Trends ❍ 4.1 Current Trials ● 5. Summary ● 6. Glossary ● 7. References http://www.cis.ohio-state.edu/~jain/cis788-97/rbb/index.htm (1 of 14) [2/7/2000 10:59:54 AM] Digital Subscriber Lines and Cable Modems 1. Introduction The widespread use of the Internet and especially the World Wide Web have opened up a need for high bandwidth network services that can be brought directly to subscriber's homes. These services would provide the needed bandwidth to surf the web at lightning fast speeds and allow new technologies such as video conferencing and video on demand. Currently, Digital Subscriber Line (DSL) and Cable modem technologies look to be the most cost effective and practical methods of delivering broadband network services to the masses. <-- Back to Table of Contents 2. DSL Technologies Digital Subscriber Line A Digital Subscriber Line makes use of the current copper infrastructure to supply broadband services.
    [Show full text]
  • How Cable Modems Work by Curt Franklin for Millions of People, Television Brings News, Entertainment and Educational Programs Into Their Homes
    How Cable Modems Work by Curt Franklin For millions of people, television brings news, entertainment and educational programs into their homes. Many people get their TV signal from cable television (CATV) because cable TV provides a clearer picture and more channels. See How Cable TV Works for details. Many people who have cable TV can now get a high-speed connection to the Internet from their cable provider. Cable modems compete with technologies like asymmetrical digital subscriber lines (ADSL). If you have ever wondered what the differences between DSL and cable modems are, or if you have ever wondered how a computer network can share a cable with dozens of television channels, then read on. In this article, we'll look at how a cable modem works and see how 100 cable television channels and any Web site out there can flow over a single coaxial cable into your home. Photo courtesy Motorola, Inc. Motorola SB5100E SURFboard Extra Space Cable Modem You might think that a television channel would take up quite a bit of electrical "space," or bandwidth, on a cable. In reality, each television signal is given a 6-megahertz (MHz, millions of cycles per second) channel on the cable. The coaxial cable used to carry cable television can carry hundreds of megahertz of signals -- all the channels you could want to watch and more. (For more information, see How Television Works.) In a cable TV system, signals from the various channels are each given a 6-MHz slice of the cable's available bandwidth and then sent down the cable to your house.
    [Show full text]
  • User Manual MG7315
    User Manual 8x4 Cable Modem plus N450 Wireless Router MG7315 NOTICE This document contains proprietary information protected by copyright, and this Manual and all the accompanying hardware, software, and documentation are copyrighted. No part of this document may be photocopied or reproduced by mechanical, electronic, or other means in any form. The manufacturer does not warrant that the hardware will work properly in all environments and applications, and makes no warranty or representation, either expressed or implied, with respect to the quality, performance, merchantability, or fitness for a particular purpose of the software or documentation. The manufacturer reserves the right to make changes to the hardware, software, and documentation without obligation to notify any person or organization of the revision or change. All brand and product names are the trademarks of their respective owners. © Copyright 2016 MTRLC LLC All rights reserved. SAFETY This equipment is designed with the utmost care for the safety of those who install and use it. However, special attention must be paid to the dangers of electric shock and static electricity when working with electrical equipment. All guidelines of this and of the computer manufacture must therefore be allowed at all times to ensure the safe use of the equipment. CAUTION: • Do not put the cable modem/router in water. • Do not use the cable modem/router outdoors. • Keep the cable modem/router in an environment that is between 0°C and 40°C (between 32°F and 104°F). • Do not place any object on top of the cable modem/router since this may cause overheating.
    [Show full text]
  • Circuit-Switching
    Welcome to CSC358! Introduction to Computer Networks Amir H. Chinaei, Winter 2016 Today Course Outline . What this course is about Logistics . Course organization, information sheet . Assignments, grading scheme, etc. Introduction to . Principles of computer networks Introduction 1-2 What is this course about? Theory vs practice . CSC358 : Theory . CSC309 and CSC458 : Practice Need to have solid math background . in particular, probability theory Overview . principles of computer networks, layered architecture . connectionless and connection-oriented transports . reliable data transfer, congestion control . routing algorithms, multi-access protocols, . delay models, addressing, and some special topics Introduction 1-3 Overview: internet protocol stack application: supporting network applications . FTP, SMTP, HTTP application transport: process-process data transfer transport . TCP, UDP network network: routing of datagrams from source to destination link . IP, routing protocols link: data transfer between physical neighboring network elements . Ethernet, 802.111 (WiFi), PPP physical: bits “on the wire” Introduction 1-4 Logistics (1/3) Prerequisite knowledge . Probability theory is a must . Mathematical modeling . Data structures & algorithms Course components . Lectures: concepts . Tutorials: problem solving . Assignments: mastering your knowledge . Readings: preparing you for above . Optional assignments: things in practice, bonus Introduction 1-5 Logistics (2/3) Text book . Computer Networking A Top-Down Approach Featuring the Internet 5th Edition, J. F. Kurose and K. W. Ross Lecture slides . Many slides are (adapted) from the above source . © All material copyright . All rights reserved for the authors Introduction 1-6 Logistics (3/3) For important information on . Lecture and tutorial time/location . Contact information of course staff (instructor and TAs) . Office hour and location . Assignments specification and solution .
    [Show full text]
  • From Packet Switching to the Cloud
    Professor Nigel Linge FROM PACKET SWITCHING TO THE CLOUD Telecommunication engineers have always drawn a picture of a cloud to represent a network. Today, however, the cloud has taken on a new meaning, where IT becomes a utility, accessed and used in exactly the same on-demand way as we connect to the National Grid for electricity. Yet, only 50 years ago, this vision of universal access to an all- encompassing and powerful network would have been seen as nothing more than fanciful science fiction. he first electronic, digital, network - a figure that represented a concept of packet switching in which stored-program computer 230% increase on the previous year. data is assembled into a short se- was built in 1948 and This clear and growing demand for quence of data bits (a packet) which heralded the dawning of data services resulted in the GPO com- includes an address to tell the network a new age. missioning in July 1970 an experi- where the data is to be sent, error de- T mental, manual call-set-up, data net- tection to allow the receiver to confirm DATA COMMUNICATIONS 1 work that used modems operating at that the contents of the packet are cor- These early computers were large, 48,000bit/s (48kbit/s). rect and a source address to facilitate cumbersome and expensive machines However, computer communica- a reply. and inevitably a need arose for a com- tions is different to voice communi- Since each packet is self-contained, munication system that would allow cations not only in its form but also any number of them can be transmit- shared remote access to them.
    [Show full text]
  • High-Speed Internet Access
    Consumer Guide Getting Broadband What is broadband? Broadband or high-speed Internet access allows users to access the Internet and Internet-related services at significantly higher speeds than those available through "dial-up" services. Broadband speeds vary significantly depending on the technology and level of service ordered. Broadband services for residential consumers typically provide faster downstream speeds (from the Internet to your computer) than upstream speeds (from your computer to the Internet). How does it work? Broadband allows users to access information via the Internet using one of several high-speed transmission technologies. Transmission is digital, meaning that text, images, and sound are all transmitted as "bits" of data. The transmission technologies that make broadband possible move these bits much more quickly than traditional telephone or wireless connections, including traditional dial-up Internet access connections. What are its advantages? • Broadband is an important tool for expanding educational and economic opportunities for consumers in remote locations. • Broadband allows you to take advantage of services not available or not convenient to use with a dial-up Internet connection, such as Voice over Internet Protocol (VoIP), an alternative to traditional voice telephone service. • Broadband makes "telemedicine" possible: patients in rural areas can confer online with medical specialists in more urban areas and share information and test results very quickly. • Broadband helps you efficiently access and use many reference and cultural resources via the Internet. • You also need broadband to best take advantage of many distance learning opportunities, like online college or university courses, and continuing or senior education programs. • Broadband allows you to shop online more quickly and efficiently.
    [Show full text]
  • DOCSIS 3.1 Cable Modem with 2.5 Gbps LAN Port Model MB8611
    DOCSIS 3.1 cable modem with 2.5 Gbps LAN port Model MB8611 Quick Start Guide Packaged with your MB8611 modem Power Adapter Coax Wrench Ethernet Cable Velcro® Cable Organizer Para una Guía de Inicio Rápido en español, por favor vaya a www.motorolanetwork.com/MB8611ir 2 Let’s get started 1 Call your cable service provider to order cable Internet service if you don’t already have it. Mention that your MB8611 supports DOCSIS 3.1, the fastest cable modem service standard. Your MB8611 also supports all speeds of any DOCSIS 3.0 services. Or, if you already have cable service, you should have your account number handy in case you need it during the activation process. You can generally find the account number on the landing page when you log in to your cable service provider account. You can also find it on a recent cable bill. 2 Now connect your MB8611 as shown on the next panel. Connecting to a coax cable See the connection photo on the next panel. Connect your MB8611 to a “live” coax cable. Sometimes a cable will already be available. Sometimes there’s a coax wall jack available, and you connect to the jack with a coax cable. Your MB8611 can also share a coax cable attached to a TV by using a coax splitter. Please note that a badly chosen splitter may reduce a cable modem's speed or prevent connection to the network. If you need to use a splitter, use a two-way splitter whose top frequency is 1,000 MHz or higher.
    [Show full text]