Direct Imaging Discovery of a Low-Mass Exoplanet Between Three Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CENTAURI II Benutzerhandbuch
CENTAURI II Benutzerhandbuch SW-Version ab 3.1.0.73 MAYAH, CENTAURI, FLASHCAST sind eingetragene Warenzeichen. Alle anderen verwendeten Warenzeichen werden hiermit anerkannt. CENTAURI II Benutzerhandbuch ab SW 3.1.0.73 Bestell-Nr. CIIUM001 Stand 11/2005 (c) Copyright by MAYAH Communications GmbH Die Vervielfältigung des vorliegenden Handbuches, sowie der darin besprochenen Dokumentationen aus dem Internet, auch nur auszugsweise, ist nur mit ausdrücklicher schriftlicher Genehmigung der MAYAH Communications GmbH erlaubt. 1 Einführung ........................................................................................................... 1 1.1 Vorwort......................................................................................................... 1 1.2 Einbau / Installation ...................................................................................... 2 1.3 Lieferumfang ................................................................................................ 2 1.4 Umgebungs- / Betriebsbedingung................................................................ 2 1.5 Anschlüsse................................................................................................... 3 2 Verbindungsaufbau ............................................................................................. 4 2.1 ISDN Verbindungen mit dem Centauri II ...................................................... 4 2.1.1 FlashCast Technologie und Audiocodec Kategorien............................. 4 2.1.2 Wie bekomme ich eine synchronisierte Verbindung -
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided. -
The Search for Another Earth – Part II
GENERAL ARTICLE The Search for Another Earth – Part II Sujan Sengupta In the first part, we discussed the various methods for the detection of planets outside the solar system known as the exoplanets. In this part, we will describe various kinds of exoplanets. The habitable planets discovered so far and the present status of our search for a habitable planet similar to the Earth will also be discussed. Sujan Sengupta is an 1. Introduction astrophysicist at Indian Institute of Astrophysics, Bengaluru. He works on the The first confirmed exoplanet around a solar type of star, 51 Pe- detection, characterisation 1 gasi b was discovered in 1995 using the radial velocity method. and habitability of extra-solar Subsequently, a large number of exoplanets were discovered by planets and extra-solar this method, and a few were discovered using transit and gravi- moons. tational lensing methods. Ground-based telescopes were used for these discoveries and the search region was confined to about 300 light-years from the Earth. On December 27, 2006, the European Space Agency launched 1The movement of the star a space telescope called CoRoT (Convection, Rotation and plan- towards the observer due to etary Transits) and on March 6, 2009, NASA launched another the gravitational effect of the space telescope called Kepler2 to hunt for exoplanets. Conse- planet. See Sujan Sengupta, The Search for Another Earth, quently, the search extended to about 3000 light-years. Both Resonance, Vol.21, No.7, these telescopes used the transit method in order to detect exo- pp.641–652, 2016. planets. Although Kepler’s field of view was only 105 square de- grees along the Cygnus arm of the Milky Way Galaxy, it detected a whooping 2326 exoplanets out of a total 3493 discovered till 2Kepler Telescope has a pri- date. -
Stability of Planets in Binary Star Systems
StabilityStability ofof PlanetsPlanets inin BinaryBinary StarStar SystemsSystems Ákos Bazsó in collaboration with: E. Pilat-Lohinger, D. Bancelin, B. Funk ADG Group Outline Exoplanets in multiple star systems Secular perturbation theory Application: tight binary systems Summary + Outlook About NFN sub-project SP8 “Binary Star Systems and Habitability” Stand-alone project “Exoplanets: Architecture, Evolution and Habitability” Basic dynamical types S-type motion (“satellite”) around one star P-type motion (“planetary”) around both stars Image: R. Schwarz Exoplanets in multiple star systems Observations: (Schwarz 2014, Binary Catalogue) ● 55 binary star systems with 81 planets ● 43 S-type + 12 P-type systems ● 10 multiple star systems with 10 planets Example: γ Cep (Hatzes et al. 2003) ● RV measurements since 1981 ● Indication for a “planet” (Campbell et al. 1988) ● Binary period ~57 yrs, planet period ~2.5 yrs Multiplicity of stars ~45% of solar like stars (F6 – K3) with d < 25 pc in multiple star systems (Raghavan et al. 2010) Known exoplanet host stars: single double triple+ source 77% 20% 3% Raghavan et al. (2006) 83% 15% 2% Mugrauer & Neuhäuser (2009) 88% 10% 2% Roell et al. (2012) Exoplanet catalogues The Extrasolar Planets Encyclopaedia http://exoplanet.eu Exoplanet Orbit Database http://exoplanets.org Open Exoplanet Catalogue http://www.openexoplanetcatalogue.com The Planetary Habitability Laboratory http://phl.upr.edu/home NASA Exoplanet Archive http://exoplanetarchive.ipac.caltech.edu Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Habitable Zone Gallery http://www.hzgallery.org Binary Catalogue Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Dynamical stability Stability limit for S-type planets Rabl & Dvorak (1988), Holman & Wiegert (1999), Pilat-Lohinger & Dvorak (2002) Parameters (a , e , μ) bin bin Outer limit at roughly max. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Can There Be Additional Rocky Planets in the Habitable Zone of Tight Binary
Mon. Not. R. Astron. Soc. 000, 1–10 () Printed 24 September 2018 (MN LATEX style file v2.2) Can there be additional rocky planets in the Habitable Zone of tight binary stars with a known gas giant? B. Funk1⋆, E. Pilat-Lohinger1 and S. Eggl2 1Institute for Astronomy, University of Vienna, Vienna, Austria 2IMCCE, Observatoire de Paris, Paris, France ABSTRACT Locating planets in Habitable Zones (HZs) around other stars is a growing field in contem- porary astronomy. Since a large percentage of all G-M stars in the solar neighborhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional hab- itable terrestrial planets. Those systems are Gliese 86, γ Cephei, HD 41004 and HD 196885. In the case of γ Cephei, our results suggest that only the M dwarf companion could host ad- ditional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885A. HD 196885 B can be considered a slightly more promising tar- get in the search forEarth-twins.Gliese 86 A turned out to be a very good candidate, assuming that the system’s history has not been excessively violent. For HD 41004 we have identified admissible stable orbits for habitable planets, but those strongly depend on the parameters of the system. -
Résumés / Abstract
RENCONTRE ANNUELLE DU CRAQ 2016 Auberge Estrimont, Orford, 19{21 avril 2016 Organisateurs / Organizers Lorne Nelson (Bishop's University) et Martin Aub´e(C´egepde Sherbrooke) R´esum´es/ Abstract LISTE DES PARTICIPANTS / ATTENDEES LIST Nom Institution Contribution (Invit´ee/Orale/Affiche) Lo¨ıcAlbert Universit´ede Montr´eal Orale Genevi`eve Arboit Universit´ede Montr´eal - Etienne Artigau Universit´ede Montr´eal Orale Martin Aub´e C´egepde Sherbrooke - Roxane Barnab´e Universit´ede Montr´eal Orale Fr´ederiqueBaron Universit´ede Montr´eal Orale Patrice Beaudoin Universit´ede Montr´eal Orale Pierre Bergeron Universit´ede Montr´eal Orale F´elixBlais Universit´eLaval - Julie Bolduc-Duval A la d´ecouverte de l'Univers Orale Anne Boucher Universit´ede Montr´eal Orale Etienne Bourbeau Universit´eMcGill Orale Daniel Capellupo Universit´eMcGill - Christian Carles Universit´eLaval Orale Pierre Chastenay UQAM Orale Wen-Jian Chung Bishop's University - Benoit C^ot´e University of Victoria - Simon Coud´e Universit´ede Montr´eal Orale Andrew Cumming Universit´eMcGill - Antoine Darveau-Bernier Universit´ede Montr´eal Orale Matt Dobbs Universit´eMcGill - Ren´eDoyon Universit´ede Montr´eal - Mike Duchesne Universit´eLaval Orale Patrick Dufour Universit´ede Montr´eal - Michael Eby Bishop's University - Mariam El-Amine Bishop's University - Gilles Fontaine Universit´ede Montr´eal - Jo¨elGaudreault C´egepde Sherbrooke - Marie-Lou Gendron-Marsolais Universit´ede Montr´eal Orale Cynthia Genest-Beaulieu Universit´ede Montr´eal - 1 Fran¸coisHardy Universit´ede -
Abstracts Connecting to the Boston University Network
20th Cambridge Workshop: Cool Stars, Stellar Systems, and the Sun July 29 - Aug 3, 2018 Boston / Cambridge, USA Abstracts Connecting to the Boston University Network 1. Select network ”BU Guest (unencrypted)” 2. Once connected, open a web browser and try to navigate to a website. You should be redirected to https://safeconnect.bu.edu:9443 for registration. If the page does not automatically redirect, go to bu.edu to be brought to the login page. 3. Enter the login information: Guest Username: CoolStars20 Password: CoolStars20 Click to accept the conditions then log in. ii Foreword Our story starts on January 31, 1980 when a small group of about 50 astronomers came to- gether, organized by Andrea Dupree, to discuss the results from the new high-energy satel- lites IUE and Einstein. Called “Cool Stars, Stellar Systems, and the Sun,” the meeting empha- sized the solar stellar connection and focused discussion on “several topics … in which the similarity is manifest: the structures of chromospheres and coronae, stellar activity, and the phenomena of mass loss,” according to the preface of the resulting, “Special Report of the Smithsonian Astrophysical Observatory.” We could easily have chosen the same topics for this meeting. Over the summer of 1980, the group met again in Bonas, France and then back in Cambridge in 1981. Nearly 40 years on, I am comfortable saying these workshops have evolved to be the premier conference series for cool star research. Cool Stars has been held largely biennially, alternating between North America and Europe. Over that time, the field of stellar astro- physics has been upended several times, first by results from Hubble, then ROSAT, then Keck and other large aperture ground-based adaptive optics telescopes. -
Spectral and Atmospheric Characterization of 51 Eridani B Using VLT/SPHERE?,?? M
A&A 603, A57 (2017) Astronomy DOI: 10.1051/0004-6361/201629767 & c ESO 2017 Astrophysics Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE?,?? M. Samland1; 2, P. Mollière1; 2, M. Bonnefoy3, A.-L. Maire1, F. Cantalloube1; 3; 4, A. C. Cheetham5, D. Mesa6, R. Gratton6, B. A. Biller7; 1, Z. Wahhaj8, J. Bouwman1, W. Brandner1, D. Melnick9, J. Carson9; 1, M. Janson10; 1, T. Henning1, D. Homeier11, C. Mordasini12, M. Langlois13; 14, S. P. Quanz15, R. van Boekel1, A. Zurlo16; 17; 14, J. E. Schlieder18; 1, H. Avenhaus16; 17; 15, J.-L. Beuzit3, A. Boccaletti19, M. Bonavita7; 6, G. Chauvin3, R. Claudi6, M. Cudel3, S. Desidera6, M. Feldt1, T. Fusco4, R. Galicher19, T. G. Kopytova1; 2; 20; 21, A.-M. Lagrange3, H. Le Coroller14, P. Martinez22, O. Moeller-Nilsson1, D. Mouillet3, L. M. Mugnier4, C. Perrot19, A. Sevin19, E. Sissa6, A. Vigan14, and L. Weber5 (Affiliations can be found after the references) Received 21 September 2016 / Accepted 10 April 2017 ABSTRACT Context. 51 Eridani b is an exoplanet around a young (20 Myr) nearby (29.4 pc) F0-type star, which was recently discovered by direct imaging. It is one of the closest direct imaging planets in angular and physical separation (∼0.500, ∼13 au) and is well suited for spectroscopic analysis using integral field spectrographs. Aims. We aim to refine the atmospheric properties of the known giant planet and to constrain the architecture of the system further by searching for additional companions. Methods. We used the extreme adaptive optics instrument SPHERE at the Very Large Telescope (VLT) to obtain simultaneous dual-band imaging with IRDIS and integral field spectra with IFS, extending the spectral coverage of the planet to the complete Y- to H-band range and providing ad- ditional photometry in the K12-bands (2.11, 2:25 µm). -
Introduction
Cambridge University Press 978-1-108-41977-2 — The Exoplanet Handbook Michael Perryman Excerpt More Information 1 Introduction 1.1 The challenge lensing provided evidence for a low-mass planet orbit- ing a star near the centre of the Galaxy nearly 30 000 HEREAREHUNDREDSOFBILLIONS of galaxies in the light-years away, with the first confirmed microlensing observable Universe, with each galaxy such as our T planet reported in 2004. In the photometric search for own containing some hundred billion stars. Surrounded transiting exoplanets, the first transit of a previously- by this seemingly limitless ocean of stars, mankind has detected exoplanet was reported in 1999, the first discov- long speculated about the existence of planetary sys- ery by transit photometry in 2003, the first of the wide- tems other than our own, and the possibility of life ex- field bright star survey discoveries in 2004, and the first isting elsewhere in the Universe. discovery from space observations in 2008. Only recently has evidence become available to be- While these manifestations of the existence of exo- gin to distinguish the extremes of thinking that has per- planets are also extremely subtle, advances in Doppler vaded for more than 2000 years, with opinions ranging measurements, photometry, microlensing, timing, from ‘There are infinite worlds both like and unlike this imaging, and astrometry, have since provided the tools world of ours’ (Epicurus, 341–270 BCE) to ‘There cannot for their detection in relatively large numbers. Now, al- be more worlds than one’ (Aristotle, 384–322 BCE). most 25 years after the first observational confirmation, Shining by reflected starlight, exoplanets compa- exoplanet detection and characterisation, and advances rable to solar system planets will be billions of times in the theoretical understanding of their formation and fainter than their host stars and, depending on their dis- evolution, are moving rapidly on many fronts. -
Fundamental Stellar Astrophysics Revealed at Very High Angular Resolution
Fundamental Stellar Astrophysics Revealed at Very High Angular Resolution Contact: Jason Aufdenberg (386) 226-7123 Embry-Riddle Aeronautical University, Physical Sciences Department [email protected] Co-authors: Stephen Ridgway (National Optical Astronomy Observatory) Russel White (Georgia State University) Fundamental Stellar Astrophysics Revealed at Very High Angular Resolution 1 Introduction A detailed understanding of stellar structure and evolution is vital to all areas of astrophysics. In exoplanet studies the age and mass of a planet are known only as well as the age and mass of the hosting star, mass transfer in intermediate mass binary systems lead to type Ia Su- pernova that provide the strictest constraints on the rate of the universe’s acceleration, and massive stars with low metallicity and rapid rotation are a favored progenitor for the most luminous events in the universe, long duration gamma ray bursts. Given this universal role, it is unfortunate that our understanding of stellar astrophysics is severely limited by poorly determined basic stellar properties - effective temperatures are in most cases still assigned by blunt spectral type classifications and luminosities are calculated based on poorly known distances. Moreover, second order effects such as rapid rotation and metallicity are ignored in general. Unless more sophisticated techniques are developed to properly determine funda- mental stellar properties, advances in stellar astrophysics will stagnate and inhibit progress in all areas of astrophysics. Fortunately, over the next decade there are a number of observa- tional initiatives that have the potential to transform stellar astrophysics to a high-precision science. Ultra-precise space-based photometry from CoRoT (2007+) and Kepler (2009+) will provide stellar seismology for the structure and mass determination of single stars.