Bendix ® ADB22X™, ADB22X-V™ Air Disc Brakes Service Manual
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Typical Brake Disc and Brake Pad Damage Patterns and Their Root Causes
Typical brake disc and brake pad damage patterns and their root causes www.meyle.com Good brakes save lives! The consequences of choosing the wrong or low-grade brake parts can be dramatic. Only use the brake components specified for the given vehicle application. Brake system repairs may only be performed by skilled and trained personnel. Adhere to the vehicle or brake manufacturer‘s specifications at all times. MEYLE Platinum Disc: When installing new brake components, observe the All-new finish. No degreasing. following: Fit and go. > Always replace brake pads along with brake discs. > Always replace all brake discs and pads per axle. All MEYLE brake discs come as ready-to-mount assemblies, most of > Be careful to bed in new brake discs and pads properly. them featuring the locating screw. They do not require degreasing > Avoid unnecessary heavy braking on the first 200 kilometres. and are resistant to rim cleaners. Cutting-edge paint technology > Brake performance may be lower on the first 200 driven made in Germany provides MEYLE Platinum Discs with long-term kilometres. anti-corrosion protection while adding a brilliant appearance. Further refinement of the tried-and-tested MEYLE finish has led to Check for functional reliability after installation: environmentally-friendly production processes. > Pump brake pedal until it becomes stiff. > Pedal travel must not vary at constant pedal load after pedal has MEYLE Platinum Discs – the safety solution engineered by one been depressed several times. of the industry‘s leading experts in coated brake discs. > Check wheels for free rotation. > Check brake fluid level in expansion tank and top up, if required. -
Electric to Hydraulic Disc Brake Conversion Installation and Owner’S Manual (For Aftermarket Application)
Electric to Hydraulic Disc Brake Conversion Installation and Owner’s Manual (For Aftermarket Application) Electric to Hydraulic Disc Brake Conversion Installation and Owner’s Manual (For Aftermarket Applications) Table of Contents Introduction Introduction �������������������������������������������� 1 Document Information ................................. 1 Document Information Trailer Axle Brake Inspection .......................... 1 The hydraulic disc brake assembly and kits are an Safety Information ..................................... 2 additional option for replacement brakes or the installation Resources Required ................................... 2 of current industry standards in braking. Parts List ................................................ 3 Trailer Axle Brake Inspection Installation .............................................. 3 In general, based on normal activity, trailer brakes should Mount Hydraulic Brake Actuator ....................... 3 be checked annually or every 36,000 miles, whichever Electric Brake Hubs Removal .......................... 4 comes first. If above normal trailer activity is experienced, Brake Hub Removal ................................... 4 then more frequent brake component inspections are Hydraulic Disc Brake Preparation ...................... 6 Disc Brake Assembly Installation ...................... 6 recommended. In the event the braking system encounters Inner Bearing Cone and Grease Seal Installation ..... 7 symptoms of improper application or failure, immediate New Seal Installation -
Royal-Enfield-Classic
about seventy on freeways…at least you won’t be getting any speeding tickets. Weighing in at 425 lbs. with a 3.56 gal- lon tank and claimed 75 mpg, the Classic 500 puts others to shame in the mileage depart- ment. Anyone looking for the fastest, most comfortable, best handling, best braking motor- cycle should look elsewhere, that’s not what the Classic or Bullet is about. Riding the wave of ‘new vintage’ motor- cycles, Royal Enfield hits the mark dead center. This is a commuter bike that not only gets the job done respectably, it will steal the attention from motorcycles three times its price. Gawkers commented on the impec- cable restoration job or que- ried its history and lineage. Royal Enfield’s reek retro cool without the stench of costly maintenance and exorbitant prices of actual vintage. At $5,499.00 what’s not to like! I just bought a vintage Bullet on eBay that will be prominently displayed in my living room. Royal Enfield also revealed an all new Interceptor 650 and the Continental GT 650 will be released this year. Both bikes share the same steel tube chassis and an all-new air- cooled 650cc parallel making them more highway-friendly By Koz Mraz malayan Roadrunners. They are the and faster. The 2018 Royal Photos by Koz & Gabrielle Romanello very first company to offer such trips Enfield Interceptor 650 is a ENGINE: thirty years ago. See “Motorcycling standard bike with an upright Type: Single Cylinder, 4-Stroke, Spark Ignition, Air-Cooled, Fuel Injection Rebirthing classic styling is very the Himalayas” in this issue. -
Braking Systems in Railway Vehicles
International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 4 Issue01,January-2015 Braking Systems in Railway Vehicles Rakesh Chandmal Sharma1 , Manish Dhingra2, Rajeev Kumar Pathak3 1Department of Mechanical Engineering, M. M. University, Mullana (Ambala) INDIA, 2Department of Mechanical Engineering, T. M. University, Moradabad INDIA 3Department of Mechanical Engg, Rakshpal Bahahur College of Engg. and Tech., Bareilly INDIA Abstract— Brake is an essential feature in order to retard and Researchers in the past have investigated different stop the railway vehicle within minimum possible time. This aspects of braking of railway vehicle. Bureika & Mikaliunas paper presents a discussion about the different braking [1] provided the calculations for Vehicle Braking Force systems used in railway vehicles. This paper also considers Fitted with UIC Air Brake for Passenger Trains, Wagon electrodynamic and electromagnetic braking of trains, which is Braking Force Fitted with a UIC Air Brake for Freight of particular importance in high-speed trains. The calculation Trains Wagon, Braking Distance. Liudvinavicius & Lingaitis for stopping distance for railway vehicle is provided in this [2] studied different features and related mathematics of study. electrodynamic braking in high‐speed trains. Vernersson [3] developed a dimensional finite element model of block and Keywords— Air brake; Straight air brake system; Automatic air brake system; Braking distance; Brake cylinder; Brake pipe; Vacuum brake; wheel, which was coupled through a contact interface for the Brake delay time purpose of control of heat generation and also the heat partitioning at block-wheel surface through thermal contact I. INTRODUCTION resistances. Influence of temperature in wheels and brake The brakes are used on the coaches of railway trains to block at rail tread braking was analyzed under brake rig enable deceleration, control acceleration (downhill) or to conditions in the later part of study by Vernersson [4]. -
Design and Analysis of the Eddy Current Brake with the Winding Change
ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 Journal of Magnetics 22(1), 23-28 (2017) https://doi.org/10.4283/JMAG.2017.22.1.023 Design and Analysis of the Eddy Current Brake with the Winding Change Sooyoung Cho1, Huai-Cong Liu1, Ju Lee1, Chang-Moo Lee2, Sung-Chul Go3, Sang-Hwan Ham4, Jong-Hyuk Woo1, and Hyung-Woo Lee5* 1Department of Electrical Engineering, Hanyang University, Seoul, 04763, Republic of Korea 2Korea Railroad Research Institute, Uiwang 16105, Republic of Korea 3Samsung Electronics Company, Ltd., Suwon, Gyeongi-do, 16677, Republic of Korea 4School of Electrical Engineering, Kyungil University, Gyeongsan, 38428, Republic of Korea 5Department of Railway Vehicle System Engineering, Korea National University of Transportation, Uiwang, 16106, Republic of Korea (Received 24 January 2017, Received in final form 16 February 2017, Accepted 21 February 2017) This paper is a study of the eddy current brake designed to replace the air brake of railway application. The eddy current brake has the advantage of being able to take a high current density compared to the other application because this brake is used for applying brakes to the rolling stock for a shorter amount of time. Also, this braking system has the merit of being able to take a high current density at low speed rather than at high speed, because the heat generated by the low speed operation is less than that of the high speed operation. This paper also presents a method of improving the output torque of the eddy current brake at low speed operation through a change of the winding as well as the basic design. -
Ceramic Disc Brake Were Developed and Tested by Porsche for Their Model Porsche 911Turbo in 1990
1.1 INTRODUCTION One of the most important control systems of an automobile is Brake system. They are required to stop the vehicle within the smallest possible distance and it is done by converting kinetic energy of the vehicle into heat energy which is dissipated into atmosphere. The main requirements of brakes are given below:- The brakes must be strong enough to stop the vehicle within the minimum possible distance in an emergency. But this should also be consistent with safety. The driver must have a proper control over the vehicle during emergency braking and the vehicle must not skid. The brakes must have good antifade characteristics and their effectiveness should not decrease with constant prolonged application. The actual stopping distance of vehicle while braking depends on the following factors:- 1. Vehicle speed 2. Condition of the road surface 3. Condition of tyre 4. Coefficient of friction between the tyre and the road surface 5. Coefficient of friction between the brake drum/disc and brake lining pad 6. Braking force applied by the driver 1.2 HISTORY Disc-style brakes development and use began in England in the 1890s. The first caliper-type automobile disc brake was patented by Frederick William Lanchester in his Birmingham, UK factory in 1902 and used successfully on Lanchester cars. However, the limited choice of metals in this period meant that it had to use copper as the braking medium acting on the disc. The poor state of the roads at this time, no more than dusty, rough tracks, meant that the copper wore quickly making the disc brake system non- viable. -
Nat'l Highway Traffic Safety Admin., DOT § 570.57
Nat’l Highway Traffic Safety Admin., DOT § 570.57 [(A ¥ B) / A] × 100 (c) Vacuum brake system integrity. (1) The vacuum brake system shall dem- The engine must be operating when onstrate integrity by meeting the fol- power-assisted brakes are checked. lowing requirements: (d) Brake hoses, master cylinder, tubes (i) The vacuum brake system shall and tube assemblies. Hydraulic brake provide vacuum reserve to permit one hoses shall not be mounted so as to service brake application with a brake contact the vehicle body or chassis. pedal force of 50 pounds after the en- Hoses shall not be cracked, chafed, or gine is turned off without actuating flattened. Brake tubes shall not be flat- the low vacuum indicator. tened or restricted. Brake hoses and tubes shall be attached or supported to (ii) Trailer vacuum brakes shall oper- prevent damage by vibration or abra- ate in conjunction with the truck or sion. Master cylinder shall not show truck tractor brake pedal. signs of leakage. Hose or tube protec- (2) Inspection procedure. (i) Check the tive rings or devices shall not be con- trailer vacuum system by coupling sidered part of the hose or tubing. trailer(s) to truck or truck tractor and (1) Inspection procedure. Examine vis- opening trailer shutoff valves. Start ually brake master cylinder, hoses and the engine and after allowing approxi- tubes, including front brake hoses, mately 1 minute to build up the vacu- through all wheel positions from full um, apply and release the brake pedal. left turn to full right turn for condi- In the case of trailer brakes equipped tions indicated. -
Developing Material Requirements for Automotive Brake Disc
ISSN: 2692-5397 DOI: 10.33552/MCMS.2020.02.000531 Modern Concepts in Material Science Mini Review Copyright © All rights are reserved by Samuel A Awe Developing Material Requirements for Automotive Brake Disc Samuel A Awe* R & D Department, Automotive Components Floby AB, Sweden *Corresponding author: Samuel A Awe, R&D Department, Automotive Components Received Date: November 12, 2019 Floby AB, Aspenäsgatan 2, SE-521 51 Floby, Sweden. Published Date: November 15, 2019 Abstract As electric vehicles are becoming more popular in society and several regulations concerning vehicle safety and performance as well as particulate matter emissions reduction are progressively becoming stringent, the author opines that these determinants would shape future automotive brake discs development. This mini-review highlights some of the essential parameters that would contribute to the next brake disc design and development and discusses how these factors will govern the choice of brake disc material in the coming years. Keywords: Automotive vehicle; Brake system; Brake discs; Particle emissions; Lightweight; Regulations; Corrosion; Electric cars Introduction weak corrosion resistance, heavyweight and weak wear resistance The automotive vehicle has transformed and will continue to are some of the drawbacks of grey cast iron as brake disc material. change human’s mobility in the future. To ensure the safety of lives Nonetheless, the functional requirements for automotive brake and properties, the braking system, which is a crucial component discs nowadays are becoming stricter, prompted by the stringent of an automobile plays an essential role in the safe drive of a car. regulations to reduce vehicle emissions, the emergence of electric The primary function of automotive friction brakes is to generate vehicles, demands to improve vehicle safety and performance, and a braking torque that decelerates the vehicle’s wheel and therefore the desire to enhance the driving experience of cars. -
Brakes Andrelated Systems
BRAKES ALL MODELS Air Brake Modifications Certification Procedures For DOT FMVSS-121 The Federal Department of Transportation's Motor Vehicle Safety Standard 121 required that virtually all trucks equipped with air brakes and manufactured on or after March 1, 1975 must comply with a comprehensive set of design and performance parameters concerning the air brakes and related systems. Of the many requirements of FMVSS 121, two are of primary concern between the truck manufacturer and the body and allied equipment manufacturer. The first concern is the center of gravity location on a truck used for compliance testing and the second involves the tubing and air flow design of the brake system. Cautions - FMVSS-121 Air Brake System Modifications CAUTION: If wheelbase alterations are made to International vehicles with FMVSS-121 brakes: • DO NOT make alterations to air lines with hose, piping or fittings of sizes other than those currently in use on the truck. • DO NOT allow sharp bends or other constrictions in hosing. • DO NOT exceed the minimum or maximum wheelbase available from the factory for that model after lengthening or shortening the wheelbase. For wheelbases longer or shorter than those available from the factory, International will provide verbal opinion (through contacting your local International dealer). International will be available to provide certification testing and documentation of compliance or non-compliance with FMVSS-121 for the specific situation at an additional cost. dy Builder Diagrams (CT-471) 2010 October, CAUTION: Air reservoirs may be relocated providing these guidelines are followed: • DO NOT make alterations to air lines with hose, piping or fittings of sizes other than those currently in use on the truck. -
Design and Analysis of Electromagnetic Breaking System
ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 9, Issue 2, February 2020 Design and Analysis of Electromagnetic Breaking System A.Harris1, J.Joseph Ajith Kumar1, Jibin Sam Mathew1, T.Karthikeyan1, J.Y.Arthur Jebaraj2, I.Neethi Manickam2, S.Shiek Sulaiman2 Final year students, Department of Mechanical Engineering, Francis Xavier Engineering College, Tirunelveli, Tamil Nadu, India1. Professor, Department of Mechanical Engineering, Francis Xavier Engineering College, Tirunelveli, Tamil Nadu, India2 ABSTRACT: This project is a new technology in braking system. Electromagnetic braking system is used in light motor and heavy motor vehicle like buses, truck, etc. An Electromagnetic Braking system uses Magnetic force to engage the brake, but the power required for braking is transmitted manually. The electromagnetic braking systems are also called electro-mechanical brake .In Future we can use this braking system to avoid the accidents. An electromagnetic braking system uses a magnetic force to apply brake. The power source used in the electromagnetic break is electric current. The electric power applied to the magnetic coil developes the magnetic field in armature coil and attracts the electromagnet aluminum disc. Applying brake to stop the vehicle. I. INTRODUCTION A brake is a device which inhibits motion. Its opposite component is a clutch. Most commonly brakes use friction to convert kinetic energy into heat, though other methods of energy conversion may be employed. For example regenerative braking converts much of the energy to electrical energy, which may be stored for later use. -
Air Brake & Train Handling Rules
Air Brake & Train Handling Rules Effective March 25, 2019 AIR BRAKE & TRAIN HANDLING RULES TABLE OF CONTENTS 100.0 Train Air Brake Tests and Inspections 5 100.1 Compliance with FRA and Transport Canada Regulations 5 100.2 Safety Inspection of Freight Cars 5 100.3 Coupling and Securing Air Hoses 6 100.4 Operative Brakes - US Only 6 100.5 Person in Charge of Air Brake Test 7 100.6 Standard Brake Pipe Pressures 7 100.7 Charging Air Brake System 7 100.8 Air Brake Tests Using End-of-Train Telemetry Devices (ETD) Continuity Tests 7 100.8.1 Air Brake Tests Using Handheld Gauges 8 100.9 Brake Pipe Leakage Test 8 100.10 Initial Terminal and Road Air Brake Test (Class 1 Air Brake Test) Canadian Class 1 Brake Test and Class 1-A Brake Tests 9 100.11 Transfer Train Movements Test – United States 12 100.12 Transfer Movements – Canada 13 100.13 Running Air Brake Test 13 100.14 Air Brake Test When Cutting Off and Recoupling 14 100.15 Application and Release Test (Class 3 Air Brake Test) United States and Canada 14 100.16 Air Brake Test When Adding Pre-Tested Cars 14 100.17 Inbound Train Inspection 14 100.18 Piston Travel Limits 15 100.19 Dynamic Brake Requirements 15 100.20 Inoperative Dynamic Brake on Lead, Controlling Locomotive 15 101.0 Locomotive Air Brake Tests and Inspections 16 101.1 General Requirements 16 101.2 Locomotive Daily Inspection 16 101.3 Defects Other Than Non-Complying Conditions 20 101.4 Non-Complying Condition Found En Route 21 101.5 Major Internal Defects Found En Route 21 101.6 Locomotive Air Brake Test 22 101.7 Standard Air Pressures -
The 26-L Brake Equipment
INSTRUCTION PAMPHLET No. 74 June 1964 THE 26-L BRAKE EQUIPMENT with 26-C BRAKE VALVE and 26-F CONTROL VALVE arranged for SAFETY CONTROL OVERSPEED CONTROL DYNAMIC INTERLOCK and MULTIPLE-UNIT CONTROL for LOCOMOTIVES THE 26-L BRAKE EQUIPMENT WITH 26-C BRAKE VALVE AND 26-F CONTROL VALVE ARRANGED FOR SAFETY CONTROL OVERSPEED CONTROL DYNAMIC INTERLOCK AND MULTIPLE-UNIT CONTROL FOR LOCOMOTIVES INSTRUCTION PAMPHLET NO. 74 JUNE 1964 (Supersedes Issue of September 1960) CONTENTS Paqe The Equipment .................................................................................................................................. 3 26-C Brake Valve .............................................................................................................................. 5 Automatic Brake Operation .................................................................................................... 9 Independent Brake Operation ................................................................................................. 11 26-F Control Valve ........................................................................................................................... 13 J-1 Relay Valve ................................................................................................................................. 20 MU-2-A Valve ................................................................................................................................... 23 F-1 Selector Valve ...........................................................................................................................