Microbial Metabolic Rates in the Ross Sea: the ABIOCLEAR Project

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Metabolic Rates in the Ross Sea: the ABIOCLEAR Project A peer-reviewed open-access journal Nature Conservation 34:Microbial 441–475 (2019)metabolic rates in the Ross Sea: the ABIOCLEAR Project 441 doi: 10.3897/natureconservation.34.30631 RESEARCH ARTICLE http://natureconservation.pensoft.net Launched to accelerate biodiversity conservation Microbial metabolic rates in the Ross Sea: the ABIOCLEAR Project Maurizio Azzaro1, Theodore T. Packard2, Luis Salvador Monticelli1, Giovanna Maimone1, Alessandro Ciro Rappazzo1,3, Filippo Azzaro1, Federica Grilli4, Ermanno Crisafi1, Rosabruna La Ferla1 1 Institute of Polar Science (ISP-CNR Messina), Spianata S. Raineri 86, 98122 Messina, Italy 2 Marine Ecophysiology Group (EOMAR), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira 35017, Las Palmas de Gran Canaria, Spain 3 National Interuniversity Consortium for Marine Sciences (Co- NISMa), Piazzale Flaminio 9, 00196 Roma, Italy 4 Institute for Biological Resources and Marine Biotechno- logies (IRBIM-CNR Ancona), Largo Fiera della Pesca 2, 60125 Ancona, Italy Corresponding author: Rosabruna La Ferla ([email protected]) Academic editor: A. Lugliè | Received 17 October 2018 | Accepted 25 February 2019 | Published 3 May 2019 http://zoobank.org/83471DD2-4EB3-4F6F-A8FA-B02F7117115 Citation: Azzaro M, Packard TT, Monticelli LS, Maimone G, Rappazzo AC, Azzaro F, Grilli F, Crisafi E, La Ferla R (2019) Microbial metabolic rates in the Ross Sea: the ABIOCLEAR Project. In: Mazzocchi MG, Capotondi L, Freppaz M, Lugliè A, Campanaro A (Eds) Italian Long-Term Ecological Research for understanding ecosystem diversity and functioning. Case studies from aquatic, terrestrial and transitional domains. Nature Conservation 34: 441–475. https:// doi.org/10.3897/natureconservation.34.30631 Abstract The Ross Sea is one of the most productive areas of the Southern Ocean and includes several function- ally different marine ecosystems. With the aim of identifying signs and patterns of microbial response to current climate change, seawater microbial populations were sampled at different depths, from surface to the bottom, at two Ross Sea mooring areas southeast of Victoria Land in Antarctica. This oceano- graphic experiment, the XX Italian Antarctic Expedition, 2004-05, was carried out in the framework of the ABIOCLEAR project as part of LTER-Italy. Here, microbial biogeochemical rates of respiration, carbon dioxide production, total community heterotrophic energy production, prokaryotic heterotrophic activity, production (by 3H-leucine uptake) and prokaryotic biomass (by image analysis) were determined throughout the water column. As ancillary parameters, chlorophyll a, adenosine-triphosphate concentra- tions, temperature and salinity were measured and reported. Microbial metabolism was highly variable amongst stations and depths. In epi- and mesopelagic zones, respiratory rates varied between 52.4–437.0 -1 -1 and 6.3–271.5 nanol O2 l h ; prokaryotic heterotrophic production varied between 0.46–29.5 and 0.3–6.11 nanog C l-1 h-1; and prokaryotic biomass varied between 0.8–24.5 and 1.1–9.0 µg C l-1, re- spectively. The average heterotrophic energy production ranged between 570 and 103 mJ l-1 h-1 in upper Copyright Maurizio Azzaro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 442 Maurizio Azzaro et al. / Nature Conservation 34: 441–475 (2019) and deeper layers, respectively. In the epipelagic layer, the Prokaryotic Carbon Demand and Prokaryotic Growth Efficiency averaged 9 times higher and 2 times lower, respectively, than in the mesopelagic one. The distribution of plankton metabolism and organic matter degradation was mainly related to the differ- ent hydrological and trophic conditions. In comparison with previous research, the Ross Sea results, here, evidenced a relatively impoverished oligotrophic microbial community, throughout the water column. Keywords Microbial respiration, heterotrophic production, heterotrophic energy production, Ross Sea, Antarctica, LTER Introduction The present work aims to explore the carbon fate through microbes in an area of the Ross Sea (RS) and to identify signs and patterns of microbial responses to current climate change. The Southern Ocean (SO) plays an important role in world climate since it is considered the engine of the worldwide oceanic currents. The dramatic seasonal vari- ability in environmental factors in SO generates a significant stress on the biota which must endure constant sunlight, oscillating temperatures and melting ice phenomena in spring-summer time. The annual pelagic primary production is largely confined to this period, when light and nutrient conditions are favourable for the phytoplankton growth. Studies on global change have revealed that the SO is becoming a larger car- bon sink with over 30–40% of total carbon uptake occurring there (Lancelot 2007, Khatiwala et al. 2009). Recently, an early spring retreat of sea ice, along with a decrease in seasonal sea-ice cover, an increase of light availability and a presumed constraint on primary production, has also been reported (Dinasquet et al. 2018, Constable et al. 2014). Furthermore, the low iron-limited primary productivity ensures that SO falls into a high-nutrient low-chlorophyll (HNLC) type of environment (Minas et al. 1986, Dinasquet et al. 2018, Deppler and Davidson 2017). One of the most productive and peculiar area of the SO continental shelf zone is the RS (Nelson et al. 1996). This region (1.55 million km2 of ocean bordering Antarc- tica from ice edge to deep ocean) was established as a Marine Protected Area (MPA) in December 2017. Here, a peculiar and relatively simply trophic web exists. The phy- toplankton, dominated by either diatoms or Phaeocystis sp., depending on whether the euphotic zone is stratified or deeply mixed, is grazed either by krill or silver fish that, in turn, sustain the higher trophic levels (Deppler and Davidson 2017). The RS includes a mosaic of functionally different marine ecosystems mainly linked to sea ice distribution whose variability induces unpredicted cascade effects on trophic dynamics and carbon and nutrient drawdown (Catalano et al. 2006, Smith et al. 2007, Vichi et al. 2009). Accordingly, different fates involve the organic matter transfer, carbon ex- port and depth sequestration. The relevance of high latitude oceans, such as the RS, to models and budgets of global carbon cycling has stimulated recent studies of organic matter degradation in the RS water column (Nelson et al. 1996, Carlson and Hansell 2003, Langone et al. 2003, Azzaro et al. 2006, Misic et al. 2017). Microbial metabolic rates in the Ross Sea: the ABIOCLEAR Project 443 Catalano et al. (2006) confirmed that, in spring-summer periods, about 90% of the total carbon derived from new production was exported via higher trophic levels. Comparing the oxidation and sinking of organic matter through the deep water found that, according to sediment-traps estimates, 63% of organic carbon, remineralized to CO2 by microbial respiration, originated in the particulate organic matter (POC) pool (Azzaro et al. 2006). Such evidence highlighted POC as the main organic fuel in the RS biological pump. The oxidation rate, fuelling the dissolved organic fraction, was not measured by sediment traps (Jiao et al. 2010, Legendre et al. 2015), but it was a smaller fraction, here in the RS, than it was in other oceans (Azzaro et al. 2006). Although microbes constitute the sentinel of ecosystem evolution (Dutta and Du- tta 2016), to date, relatively little is known in the RS about the microbial contribution to the degradation of the carbon pool. Amongst the biological processes and meta- bolic activities, respiration has particularly been neglected despite its great impact on environmental ecology (Packard 2017). Respiration is controlled by the respiratory electron transport system activity (ETS) in all organisms on the planet (Packard 1969, Packard et al. 1971, Lane 2006, Packard et al. 2015). It functions in aerobic and an- aerobic conditions, as well as in extreme or deep marine environments (Koppelmann et al. 2004, Azzaro et al. 2006, Packard and Codispoti 2007, Baltar et al. 2010). The ETS assay was originally designed by Packard (1971). The biochemical relationship amongst the biological energy currency, adenosine triphosphate (ATP) and ETS was completely unknown before the 1940s. In few words, in all living organisms, during cellular respiration, the electron transport system produces the bulk of the cell energy in the form of ATP molecules. However, earlier, the idea of capturing biologically us- able energy from respiration was appreciated by the biophysicist, Alfred Lotka (1925). He felt that Darwinian natural selection was the result of competition between or- ganisms for energy. Those individuals that extracted, stored and used energy most ef- ficiently survived and reproduced more often than their competitors. Building on this concept, Howard Odum described energy flow in freshwater streams (Odum 1956). David Karl recently argued that biological energy production in the ocean should be assessed to understand ocean productivity better (Karl 2014). Still, none of the earlier work calculated energy production from the biochemical processes that produce this energy. They used distantly related proxies such as biomass or, the more related one, heat production (Pamatmat et al. 1981).
Recommended publications
  • Microbial Community Composition and Function Beneath Temperate Trees Exposed to Elevated Atmospheric Carbon Dioxide and Ozone
    Oecologia (2002) 131:236–244 DOI 10.1007/s00442-002-0868-x ECOSYSTEMS ECOLOGY Rebecca L. Phillips · Donald R. Zak William E. Holmes · David C. White Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone Received: 1 August 2001 / Accepted: 13 December 2001 / Published online: 14 February 2002 © Springer-Verlag 2002 Abstract We hypothesized that changes in plant growth activity and microbial metabolism of cellobiose, and that resulting from atmospheric CO2 and O3 enrichment microbial processes under early-successional aspen and would alter the flow of C through soil food webs and birch species were more strongly affected by CO2 and O3 that this effect would vary with tree species. To test this enrichment than those under late-successional maple. idea, we traced the course of C through the soil microbial community using soils from the free-air CO2 and O3 Keywords Soil microorganisms · enrichment site in Rhinelander, Wisconsin. We added Carbon-13-phospholipid fatty acid analysis · either 13C-labeled cellobiose or 13C-labeled N-acetylglu- Elevated carbon dioxide · Elevated ozone · cosamine to soils collected beneath ecologically distinct Soil carbon cycling temperate trees exposed for 3 years to factorial CO2 –1 (ambient and 200 µl l above ambient) and O3 (ambient and 20 µl l–1 above ambient) treatments. For both labeled Introduction substrates, recovery of 13C in microbial respiration increased beneath plants grown under elevated CO2 by Human activity has increased the concentration of CO2 29% compared to ambient; elevated O3 eliminated this and O3 in the earth’s troposphere (Barnola et al.
    [Show full text]
  • Trophic Control Changes with Season and Nutrient Loading in Lakes
    UC Irvine UC Irvine Previously Published Works Title Trophic control changes with season and nutrient loading in lakes. Permalink https://escholarship.org/uc/item/90c25815 Journal Ecology letters, 23(8) ISSN 1461-023X Authors Rogers, Tanya L Munch, Stephan B Stewart, Simon D et al. Publication Date 2020-08-01 DOI 10.1111/ele.13532 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Ecology Letters, (2020) 23: 1287–1297 doi: 10.1111/ele.13532 LETTER Trophic control changes with season and nutrient loading in lakes Abstract Tanya L. Rogers,1 Experiments have revealed much about top-down and bottom-up control in ecosystems, but Stephan B. Munch,1 manipulative experiments are limited in spatial and temporal scale. To obtain a more nuanced Simon D. Stewart,2 understanding of trophic control over large scales, we explored long-term time-series data from 13 Eric P. Palkovacs,3 globally distributed lakes and used empirical dynamic modelling to quantify interaction strengths Alfredo Giron-Nava,4 between zooplankton and phytoplankton over time within and across lakes. Across all lakes, top- Shin-ichiro S. Matsuzaki5 and down effects were associated with nutrients, switching from negative in mesotrophic lakes to posi- 3,6 tive in oligotrophic lakes. This result suggests that zooplankton nutrient recycling exceeds grazing Celia C. Symons * pressure in nutrient-limited systems. Within individual lakes, results were consistent with a ‘sea- The peer review history for this arti- sonal reset’ hypothesis in which top-down and bottom-up interactions varied seasonally and were cle is available at https://publons.c both strongest at the beginning of the growing season.
    [Show full text]
  • Assessing the Water Quality of Lake Hawassa Ethiopia—Trophic State and Suitability for Anthropogenic Uses—Applying Common Water Quality Indices
    International Journal of Environmental Research and Public Health Article Assessing the Water Quality of Lake Hawassa Ethiopia—Trophic State and Suitability for Anthropogenic Uses—Applying Common Water Quality Indices Semaria Moga Lencha 1,2,* , Jens Tränckner 1 and Mihret Dananto 2 1 Faculty of Agriculture and Environmental Sciences, University of Rostock, 18051 Rostock, Germany; [email protected] 2 Faculty of Biosystems and Water Resource Engineering, Institute of Technology, Hawassa University, Hawassa P.O. Box 05, Ethiopia; [email protected] * Correspondence: [email protected]; Tel.: +491-521-121-2094 Abstract: The rapid growth of urbanization, industrialization and poor wastewater management practices have led to an intense water quality impediment in Lake Hawassa Watershed. This study has intended to engage the different water quality indices to categorize the suitability of the water quality of Lake Hawassa Watershed for anthropogenic uses and identify the trophic state of Lake Hawassa. Analysis of physicochemical water quality parameters at selected sites and periods was conducted throughout May 2020 to January 2021 to assess the present status of the Lake Watershed. In total, 19 monitoring sites and 21 physicochemical parameters were selected and analyzed in a laboratory. The Canadian council of ministries of the environment (CCME WQI) and weighted Citation: Lencha, S.M.; Tränckner, J.; arithmetic (WA WQI) water quality indices have been used to cluster the water quality of Lake Dananto, M. Assessing the Water Hawassa Watershed and the Carlson trophic state index (TSI) has been employed to identify the Quality of Lake Hawassa Ethiopia— trophic state of Lake Hawassa. The water quality is generally categorized as unsuitable for drinking, Trophic State and Suitability for aquatic life and recreational purposes and it is excellent to unsuitable for irrigation depending on Anthropogenic Uses—Applying the sampling location and the applied indices.
    [Show full text]
  • Assessing the Chemistry and Bioavailability of Dissolved Organic Matter from Glaciers and Rock Glaciers
    RESEARCH ARTICLE Assessing the Chemistry and Bioavailability of Dissolved 10.1029/2018JG004874 Organic Matter From Glaciers and Rock Glaciers Special Section: Timothy Fegel1,2 , Claudia M. Boot1,3 , Corey D. Broeckling4, Jill S. Baron1,5 , Biogeochemistry of Natural 1,6 Organic Matter and Ed K. Hall 1Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA, 2Rocky Mountain Research 3 Key Points: Station, U.S. Forest Service, Fort Collins, CO, USA, Department of Chemistry, Colorado State University, Fort Collins, • Both glaciers and rock glaciers CO, USA, 4Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA, 5U.S. Geological supply highly bioavailable sources of Survey, Reston, VA, USA, 6Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, organic matter to alpine headwaters CO, USA in Colorado • Bioavailability of organic matter released from glaciers is greater than that of rock glaciers in the Rocky Abstract As glaciers thaw in response to warming, they release dissolved organic matter (DOM) to Mountains alpine lakes and streams. The United States contains an abundance of both alpine glaciers and rock • ‐ The use of GC MS for ecosystem glaciers. Differences in DOM composition and bioavailability between glacier types, like rock and ice metabolomics represents a novel approach for examining complex glaciers, remain undefined. To assess differences in glacier and rock glacier DOM we evaluated organic matter pools bioavailability and molecular composition of DOM from four alpine catchments each with a glacier and a rock glacier at their headwaters. We assessed bioavailability of DOM by incubating each DOM source Supporting Information: with a common microbial community and evaluated chemical characteristics of DOM before and after • Supporting Information S1 • Data Set S1 incubation using untargeted gas chromatography–mass spectrometry‐based metabolomics.
    [Show full text]
  • Trophic State Evaluation for Selected Lakes in Yellowstone National Park, USA
    Water Pollution X 143 Trophic state evaluation for selected lakes in Yellowstone National Park, USA A. W. Miller Department of Civil & Environmental Engineering, Brigham Young University, USA Abstract The purpose of this study is to classify the trophic state for selected lakes in Yellowstone National Park, USA. This paper also documents that monitoring methods and perspectives used in this study meet current acceptable practices. For selected lakes in Yellowstone National Park, phosphorus, nitrogen, chlorophyll-a, and other lake characteristics are studied to identify lake behavior and to classify the annual average trophic state of the lakes. The four main trophic states are oligotrophic, mesotrophic, eutrophic and hyper-eutrophic. The greater the trophic state, the greater the level of eutrophication that has taken place. Eutrophication is the natural aging process of a lake as it progresses from clear and pristine deep water to more shallow, turbid, and nutrient rich water where plant life and algae are more abundant. The trophic state of a lake is a measurement of where the lake is along the eutrophication process. Human interaction tends to speed up eutrophication by introducing accelerated loadings of nitrogen and phosphorus into aquatic systems. As lakes advance in the eutrophication process, water quality generally decreases. Four models are used in this study to classify the trophic state of the lakes: the Carlson Trophic State Index, the Vollenweider Model, the Larsen-Mercier Model, and the Nitrogen-Phosphorus Ratio Model. Simple models are commonly used where steady-state conditions and lake homogeneity are assumed. There is concern that natural processes and human activity on and around the Yellowstone Lakes are causing the water quality to decline.
    [Show full text]
  • Eutrophication Parameters and Carlson-Type Trophic State Indices in Selected Pomeranian Lakes
    LimnologicalEutrophication Review (2011) parameters 11, 1: and 15-23 Carlson-type trophic state indices in selected Pomeranian lakes 15 DOI 10.2478/v10194-011-0023-3 Eutrophication parameters and Carlson-type trophic state indices in selected Pomeranian lakes Anna Jarosiewicz1*, Dariusz Ficek2, Tomasz Zapadka2 1Institute of Biology and Environmental Protection, Pomeranian Academy in Słupsk, Arciszewskiego 22B, 76-200 Słupsk, Poland; *e-mail: [email protected] 2Institute of Physics, Pomeranian Academy in Słupsk, Arciszewskiego 22B, 76-200 Słupsk, Poland Abstract: The objective of the study (2007-09) was to determine the current trophic state of eight selected lakes – Rybiec, Niezabyszewskie, Czarne, Chotkowskie, Obłęże, Jasień Południowy, Jasień Północny, Jeleń – based on Carlson-type indices (TSIs) and, to examine the relationship between the four calculated trophic state indices: TSI(SD), TSI(Chl), TSI(TP) and TSI(TN). Based on these values, it can be claimed that the trophy level of the lakes are within the mesotrophic and eutrophic states. It was observed that the values of the TSI(TP) in the analysed lakes are higher than the values of the indices calculated on the basis of the other variables. Moreover, the differences between the indices for particular lakes, suggest that in none of the analysed lakes is phosphorus a factor which limits algal productivity. Key words: eutrophication, trophic state index, lake, phosphorus, nitrogen Introduction ency extremes (0.06 m to 64 m) observed in nature (Carlson 1977). Each 10 units within this system rep- Determining the trophic condition of a lake is resents a half decrease in Secchi depth, a one-third an important step in the scientific assessment of each increase in chlorophyll concentration and a doubling lake.
    [Show full text]
  • Microbial Metabolism, Chemistry, and Communities Under Study at the UCLA-DOE Institute for Genomics and Proteomics Rachel R
    Microbial Metabolism, Chemistry, and Communities under Study at the UCLA-DOE Institute for Genomics and Proteomics Rachel R. Ogorzalek Loo* ([email protected]), John Muroski, Brendan Mahoney, Orlando Martinez, Janine Fu, Joseph A. Loo, Robert Clubb, Robert Gunsalus, and Todd Yeates 1UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA https://www.doe-mbi.ucla.edu/ Project Goals: Research in the UCLA-DOE Institute for Genomics and Proteomics includes major efforts to elucidate critical microbial processes that decompose and recycle plant, animal and microbial biomass. Towards this end, we seek to decipher the metabolism of syntrophic microbial communities and examine how anaerobic microbes assemble complex cellulosome structures that degrade lignocellulose. Biomass decomposition and recycling occur in essentially all anaerobic habitats on Earth, as well as in industrial/municipal waste treatment applications. Unfortunately, the current understanding of these critical processes is insufficient to enable modeling and prediction of environmental carbon flow. The benefits from increasing our knowledge of anaerobic decomposition include optimizing the attack and release of plant wall-derived molecules destined for biofuel and industrial feedstock production and improving biogas/sewage and waste stream processing plant design and operation. Our DOE sponsored research seeks to advance the understanding of syntrophic-based microbial metabolism at molecular- and systems-levels and its role in biomass recycling/remediation. Exploring the pathways and key enzyme reactions of syntrophy begins by mining the genomes of previously unstudied syntrophic bacteria, such as those that metabolize model aliphatic fatty acid and amino acid substrates. That only minimal experimental data pertaining to these organisms is available severely limits the ability to draw conclusions from genome sequence alone, and even adding transcriptomic data may not suffice.
    [Show full text]
  • Carlson's Trophic State Index
    Carlson's Trophic State Index The cloudiness of lake water and how far down you can see is often related to the amount of nutrients in the water. Nutrients promote growth of microscopic plant cells (phytoplankton) that are fed upon by microscopic animals (zooplankton). The more the nutrients, the more the plants and animals and the cloudier the water is. This is a common, but indirect, way to roughly estimate the condition of the lake. This condition, called eutrophication, is a natural aging process of lakes, but which is unnaturally accelerated by too many nutrients. A Secchi disk is commonly used to measure the depth to which you can easily see through the water, also called its transparency. Secchi disk transparency, chlorophyll a (an indirect measure of phytoplankton), and total phosphorus (an important nutrient and potential pollutant) are often used to define the degree of eutrophication, or trophic status of a lake. The concept of trophic status is based on the fact that changes in nutrient levels (measured by total phosphorus) causes changes in algal biomass (measured by chlorophyll a) which in turn causes changes in lake clarity (measured by Secchi disk transparency). A trophic state index is a convenient way to quantify this relationship. One popular index was developed by Dr. Robert Carlson of Kent State University. Trophic State Index Carlson's index uses a log transformation of Secchi disk values as a measure of algal biomass on a scale from 0 - 110. Each increase of ten units on the scale represents a doubling of algal biomass. Because chlorophyll a and total phosphorus are usually closely correlated to Secchi disk measurements, these parameters can also be assigned trophic state index values.
    [Show full text]
  • Microbial Lithification in Marine Stromatolites and Hypersaline Mats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Published in Trends in Microbiology 13,9 : 429-438, 2005, 1 which should be used for any reference to this work Microbial lithification in marine stromatolites and hypersaline mats Christophe Dupraz1 and Pieter T. Visscher2 1Institut de Ge´ ologie, Universite´ de Neuchaˆ tel, Rue Emile-Argand 11, CP 2, CH-2007 Neuchaˆ tel, Switzerland 2Center for Integrative Geosciences, Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, Connecticut, 06340, USA Lithification in microbial ecosystems occurs when pre- crucial role in regulating sedimentation and global bio- cipitation of minerals outweighs dissolution. Although geochemical cycles. the formation of various minerals can result from After the decline of stromatolites in the late Proterozoic microbial metabolism, carbonate precipitation is pos- (ca. 543 million years before present), microbially induced sibly the most important process that impacts global and/or controlled precipitation continued throughout the carbon cycling. Recent investigations have produced geological record as an active and essential player in most models for stromatolite formation in open marine aquatic ecosystems [9,10]. Although less abundant than in environments and lithification in shallow hypersaline the Precambrian, microbial precipitation is observed in a lakes, which could be highly relevant for interpreting the multitude of semi-confined (physically or chemically)
    [Show full text]
  • A Comparative Study of Four Indexes Based on Zooplankton As Trophic State Indicators in Reservoirs
    Limnetica, 38(1): 291-302 (2019). DOI: 10.23818/limn.38.06 © Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 A comparative study of four indexes based on zooplankton as trophic state indicators in reservoirs Daniel Montagud1,*, Juan M. Soria1, Xavier Soria-Perpiñà2, Teresa Alfonso1 and Eduardo Vicente1 1 Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBIBE). University of Valencia, 46980-Pater- na, Spain. 2 Image Processing Laboratory. University of Valencia, 46980-Paterna, Spain. * Corresponding author: [email protected] Received: 15/02/18 Accepted: 25/06/18 ABSTRACT A comparative study of four indices based on zooplankton as trophic state indicators in reservoirs This study aims to examine four recently conducted trophic state indices that are based on the density of zooplankton and designed for estimating the trophic state of inland waters. These indices include two with formulations based on quotients or ratios, the Rcla and the Rzoo-chla, which were proposed and validated in the European project ECOFRAME (Moss et al., 2003), and two with formulations based on the incorporation of a statistical tool comprising canonical correspondences analysis (CCA), the Wetland Zooplankton Index proposed in 2002 by researchers from McMaster University of Ontario (Lougheed & Chow-Fraser, 2002) and the Zooplankton Reservoir Trophic Index, an index recently designed by the Ebro Basin Authority and on which this manuscript is the first article. These indices were studied and applied in 53 heterogeneous reservoirs of the Ebro Basin. In addition, all were subsequently validated by Carlson’s Trophic State Index based on the amount of chlorophyll a (Carlson, 1977), with significant differences found between them.
    [Show full text]
  • The Role of Bacterioplankton in Lake Erie Ecosystem Processes: Phosphorus Dynamics and Bacterial Bioenergetics
    THE ROLE OF BACTERIOPLANKTON IN LAKE ERIE ECOSYSTEM PROCESSES: PHOSPHORUS DYNAMICS AND BACTERIAL BIOENERGETICS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Tracey Trzebuckowski Meilander December 2006 Dissertation written by Tracey Trzebuckowski Meilander B.S., The Ohio State University, 1994 M.Ed., The Ohio State University, 1997 Ph.D., Kent State University, 2006 Approved by __Robert T. Heath___________________, Chair, Doctoral Dissertation Committee __Mark W, Kershner_________________, Members, Doctoral Dissertation Committee __Laura G. Leff_____________________ __Alison J. Smith____________________ __Frederick Walz____________________ Accepted by __James L. Blank_____________________, Chair, Department of Biological Sciences __John R.D. Stalvey___________________, Dean, College of Arts and Sciences ii TABLE OF CONTENTS Page LIST OF FIGURES ………………………….……………………………………….….xi LIST OF TABLES ……………………………………………………………………...xvi DEDICATION …………………………………………………………………………..xx ACKNOWLEDGEMENTS ………………………………………………………….…xxi CHAPTER I. Introduction ….….………………………………………………………....1 The role of bacteria in aquatic ecosystems ……………………………………………….1 Introduction ……………………………………………………………………….1 The microbial food web …………………………………………………………..2 Bacterial bioenergetics ……………………………………………………………6 Bacterial productivity ……………………………………………………..6 Bacterial respiration ……………………………………………………..10 Bacterial growth efficiency ………...……………………………………11 Phosphorus in aquatic ecosystems ………………………………………………………12
    [Show full text]
  • Trophic State Index Estimation from Remote Sensing of Lake Chapala, México
    REVISTA MEXICANA DE CIENCIAS GEOLÓGICAS Trophic State Index estimation from remote sensingv. of 33, lake núm. Chapala, 2, 2016, p. México 183-191 Trophic State Index estimation from remote sensing of lake Chapala, México Alejandra-Selene Membrillo-Abad1,*, Marco-Antonio Torres-Vera2, Javier Alcocer3, Rosa Ma. Prol-Ledesma4, Luis A. Oseguera3, and Juan Ramón Ruiz-Armenta4 1 Posgrado en Ciencias de la Tierra, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Ciudad de México, Mexico. 2 Asociación para Evitar la Ceguera en México, Vicente García Torres 46, San Lucas Coyoacán, C.P. 04030, Ciudad de México, Mexico. 3 Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, Mexico. 4 Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Ciudad de México, Mexico. * [email protected] ABSTRACT áreas urbanas, agricultura y ganadera. Mediante técnicas de percepción remota se estimó el Índice de Estado Trófico (IET) del lago, como un The Trophic State Index (TSI) was estimated for Lake Chapala índice de calidad de agua. Los parámetros de clorofila_a y Profundidad by remote sensing techniques as an indicator of water quality. Our de disco de Secchi (que están relacionados con el estado trófico), fueron results show that multispectral satellite images can be successfully monitoreados mediante el uso de imágenes satelitales multiespectrales, used to monitor surface water parameters related to trophic state con base en el aumento en los valores de turbidez y concentración de (i.e., chlorophyll-a and Secchi disc depth).
    [Show full text]