Process simulation and assessment of crude oil stabilization unit Item Type Article Authors Rahmanian, Nejat; Aqar, D.Y.; Bin Dainure, M.F.; Mujtaba, Iqbal M. Citation Rahmanian N, Aqar DY, Bin Dainure MF et al (2018) Process simulation and assessment of crude oil stabilization unit. Asia- Pacific Journal of Chemical Engineering. 13(4): e2219. Rights © 2018 Curtin University and John Wiley & Sons, Ltd. This is the peer reviewed version of the following article: Rahmanian N, Aqar DY, Bin Dainure MF et al (2018) Process simulation and assessment of crude oil stabilization unit. Asia-Pacific Journal of Chemical Engineering. 13(4): e2219, which has been published in final form at https://doi.org/10.1002/apj.2219. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Download date 28/09/2021 15:53:08 Link to Item http://hdl.handle.net/10454/16518 Process Simulation and Assessment of Crude Oil Stabilization Unit Nejat Rahmaniana*, Dhia Y. Aqara, Muhammad F. Bin Dainurec, Iqbal M. Mujtabaa a Chemical Engineering Division, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK b Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan *Corresponding author:
[email protected] Abstract Crude oil is an unrefined petroleum composed of wide range of hydrocarbon up to n-C40+. However, there are also a percentage of light hydrocarbon components present in the mixture. Therefore, to avoid their flashing for safe storage and transportation, the live crude needs to be stabilized beforehand. This paper aims to find the suitable operating conditions to stabilize an incoming live crude feed to maximum True Vapor Pressure (TVPs) of 12 psia (82.7 kPa) at Terengganu Crude Oil Terminal (TCOT), Malaysia.