Indigenous Knowledge on Development and Management of Shallow Dug Wells of Dodoma Municipality in Tanzania

Total Page:16

File Type:pdf, Size:1020Kb

Indigenous Knowledge on Development and Management of Shallow Dug Wells of Dodoma Municipality in Tanzania Applied Water Science (2018) 8:59 https://doi.org/10.1007/s13201-018-0697-7 ORIGINAL ARTICLE Indigenous knowledge on development and management of shallow dug wells of Dodoma Municipality in Tanzania C. Shemsanga1,3 · A. N. N. Muzuka2 · L. Martz2 · H. Komakech1 · E. Mcharo4 Received: 26 June 2015 / Accepted: 18 October 2017 / Published online: 19 April 2018 © The Author(s) 2018 Abstract Dodoma city, central Tanzania, seats in a semi-arid region of East Africa with limited rains and surface water resources. Consequently, the area largely depends on shallow and deep aquifers for its freshwater needs. Owing to harsh climatic conditions, chronic lack of year-round surface water bodies and, limited development of water distribution infrastructures, over year’s local people have nurtured, developed and, passed on important indigenous knowledge (IK) on exploiting and managing shallow aquifers (SAs). However, there is no clear documented administrative plans for the SAs and the roles of IK, which is widely practised in developing SDWs and managing SAs, are not properly documented. This study intended to assess the extent of shallow dug wells (SDWs) utilization and contribution of IK on management of SAs of indigenous people of Dodoma Municipality. The methods followed include critical feld observations, measurements and, focus group discussions done during both the dry season (Sep.–Oct. 2013) and wet season (Dec. 2013–Feb. 2014). The results show that SDWs occur widely in the city, particularly in the suburbs, where they often serve as the only sources of freshwater and heavily dependent by the populace. It is clear that there is rich IK on management of SAs including on groundwater exploration, digging, water allocation, pricing, and even on water quality and, water treatment skills. The aforementioned IK clearly contribute to water sufciency to the populace and general management of groundwater such as enhancing recharge mechanisms where about 1% of local rainfall is recharged through a network of SDWs compared to ~ 5–10% that is natu- rally being recharged by rainfall through the vadose zone. Thus, as much as the current policy framework and groundwater managers do not recognize the roles of IK and contributions of SDWs as key water sources, it is clear that IK contributes to the groundwater management and SDWs already support large part of the society. While it is globally appreciated that vital skills on SDWs management are vanishing, local people in Dodoma still retain them and should, therefore, be preserved. It is further recommended that IK are strengthened, improved and most importantly, incorporated in the local water resources management plans that already advocate on integrated approaches but which clearly ignores the IK and the local people’s eforts to explore and manage water resource, particularly SAs. Keywords Shallow aquifers · Indigenous knowledge · Management · Dodoma Background information * C. Shemsanga Introduction [email protected] 1 Department of Water and Environmental Sciences Owing to the lack of year-round surface water bodies, low and Engineering, Nelson Mandela African Institution rains, and poor quality of the available surface water bodies, of Science and Technology, Arusha, Tanzania in Dodoma city, reliability of fresh water supplies for various 2 Department of Geography and Planning, University uses has largely been met by groundwater (Salama 1979; of Saskatchewan, Saskatoon, Canada Rwebugisa 2008). In recent years, however, per capita fresh- 3 Department of Environmental Engineering and Management, water availability has further been reduced by population School of Environmental Sciences and Technology, increases and ongoing impacts of climate change (Kashaigili University of Dodoma, Dodoma, Tanzania 2010; Rwebugisa 2008). Yet, the negative climate change 4 Water Resources Division, Ministry of Water, Dodoma, impacts on surface water resources and increasing pressure Tanzania Vol.:(0123456789)1 3 59 Page 2 of 20 Applied Water Science (2018) 8:59 on groundwater for agriculture, construction and, domestic guidelines and collection of the fees (Baumann et al. 2005). use will likely exacerbate the problem of freshwater supply This remains the case while locals have plenty of skills on further (Shemsanga et al. 2016). many of these aforelisted challenges, yet the current water Generally, groundwater is considered less sensitive to management strategy does not recognize/include them. short-term climate variability and even pollution sources Moreover, over generations harsh climatic conditions (Chen et al. 2004). According to Wurzel (2001), ground- coupled with poor water quality and/or lack of surface water water is protected from evaporation and, in many regions; bodies and chronic water shortage have led to nurturing and volumes stored underground are immense, providing water passing on of vital IK on development and general manage- security during drought periods/years. Yet, the capital cost ment of SDWs. For meaningful and sustainable groundwater of groundwater development is also relatively low. Thus, management, therefore, there is a need to integrate these the aforested traits qualify groundwater as a major adapta- rich IK on management of the local water resources’ gov- tion option to the negative impacts of climate change on ernance. However, no proper documentation of IK exists water supplies (Chen et al. 2004). Local people in Dodoma locally and little is known on its roles in management of city have capitalized on these key groundwater traits from water resources. Nonetheless, water management must focus which they have survived ages of chronic water shortages via on total water resource; surface and underground, in various inherent indigenous knowledge (IK) associated with shallow states and places, and the people who live with, impact, use aquifers (SAs) exploration, development and management. and, manage it. This should consider everybody and every However, groundwater dynamics in Dodoma are not fully process that afects its quality and quantity or that is afected understood which undermines eforts for sustainable man- by various water projects. Specifcally, it must include IK as agement of local and regional aquifers. Yet, management of local people have enormous skills from older generations groundwater is generally complex as is viewed and as such, that have enabled them to survive ages of water stress. treated as a common pool resource (Troch 2000; Zealand However, it should be known that water shortage is a 2011), including within the study area (Kashaigili 2010). problem in the wider developing world particularly in semi- Poor understanding of groundwater is even more serious arid regions where more than 1.1 billion people do not have with shallow aquifers that are currently not of interest to reliable access to water for drinking (Nkonya 2011). Meet- local researchers, policy makers and, water resource man- ing regional water needs will thus depend on how water agers (personal communication with Mr. Mihale, Wami- resources are understood, developed and most importantly, Ruvu Basin, WRB). This remains the case when as much as managed (MacDonald et al. 2009, 2010). By 2005, it was 20–30% of Dodoma region is regarded suitable for shallow reported that to meet Millennium Development Goals dug wells (SDWs) development (Baumann et al. 2005) and (MDG) on water, Tanzania needed to drill 14 000 SDWs and where SDWs occur widely in the region. Likewise, local 1 500 boreholes per year (Baumann et al. 2005). For such a SDWs are not properly documented making it difcult to task to be sustainable, an understanding of available water estimate their contributions in the local water sufciency and resources, functional allocation systems and cautious bal- balance as is the case for the role of IK associated with their ancing of surface and groundwater abstractions are required development and utilization. However, deep aquifers par- (Taylor et al. 2012; Shemsanga et al. 2017). Many of these ticularly at Makutupora well feld (MWF), the main source aforelisted aspects are already practised by the local people of water supply of the city, remains strongly interlinked with in Dodoma city but lack proper documentation, coordination shallow aquifers (Shindo 1990) hence poor management of and policing. local SDWs may afect deep wells alike. A SDW in this con- Groundwater exploration is usually carried out using text mean a well that is ≤ 15 m deep (De Louw et al. 2013). lengthy and expensive methods namely geospatial tech- These, are often easy to dig and the wells themselves act as niques (Hammouri et al. 2012; Manap et al. 2014) and geo- own reservoirs hence making storage tanks unneeded (Tay- physical techniques (Muchingami et al. 2012), among many lor et al. 2009; Job 2010) and in many areas there are local others. For a long time, however, local people in Dodoma skills to develop and manage them (Wurzel 2001; Pritchard city have successfully explored for groundwater using tradi- et al. 2008; Hardjoamidjojo et al 2007). tional and locally available means and tools. These, however, The national water management plan advocates on holis- are also not well documented, coordinated and, recognised tic approaches such as integrated water resource manage- by existing water development and management framework ment (IWRM), creation of water user associations and, which undermines local eforts for water sufciency to all. issuing of water development and use permits. However, Classifying water quality is vital
Recommended publications
  • Disaster Risk Management in South Asia: a Regional Overview
    DISASTER RISK & CLIMATE CHANGE UNIT DSouth CAsia Region - World Bank The World Bank Group • South Asia Region Disaster Risk Management and Climate Change Unit • Sustainable Development Network December 2012 DISASTER RISK & CLIMATE CHANGE UNIT DSouth CAsia Region - World Bank Disaster Risk Management in South Asia: A Regional Overview The World Bank, 1818 H Street, N.W. Washington, DC 20433, U.S.A. Internet: www.worldbank.org All Rights Reserved Printed in Washington, DC First Printing: December, 2012 The findings, interpretations, and conclusions expressed in this book are entirely those of the authors and should not be attributed in any manner to the World Bank, to its affiliated organizations, or to members of its Board of Executive Directors or the countries they represent. The World Bank does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. The boundaries, colors, denomina- tions, and other information shown on any map in this volume do not imply on the part of The World Bank Group any judgment on the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. The World Bank encourages dissemination of its work and will promptly grant permission to reproduce portions of the work under normal circumstances. For permission to photocopy or reprint any part of this work, as well as all other queries on rights and licenses, including subsidiary rights, please send a request with complete details to the Office of the Publisher, The World Bank, 1818 H Street NW, Washington, DC 20433, USA; fax: 202-522-2422; e-mail: [email protected].
    [Show full text]
  • International Journal of Scientific Research and Reviews
    V.V. Neethu et al., IJSRR 2018, 7(4), 1812-1829 Research article Available online www.ijsrr.org ISSN: 2279–0543 International Journal of Scientific Research and Reviews A Geographic Study on The Role of Physiography In The Incidence of Illnesses Related To Endosulfan In Kasaragod District, Kerala, India V. V. Neethu1* and R. Miriam2 1*Center for Natural Hazards and Disaster Studies, University of Madras, Chennai, India. 2Department of Geography, Nirmala College for Women, Coimbatore, India. ABSTRACT The excessive use of pesticides in agriculture has an adverse impact on human health and the environment. Environmental health problems vary from region to region, reflecting the geography, climate and the level of economic development. Many health problems are associated with poverty and lack of fundamental resources. The aerial spraying of pesticides leads to suspension of toxic compounds in the environment. The residue of pesticides accumulates over years which lead to gradual occurrence of diseases. Kasaragod, the northern most district of Kerala, is a lush region with large cashew plantations. The use of pesticides in the cashew plantations has resulted in long term negative impacts on the health of the people living in the vicinity of plantations as well as in remote regions. The affect of pesticides on the health of settlements in remote area has to be understood along with the physiography of the region. The role of physiography in the spread of diseases has been systematically studied and analyzed using GIS technique. The result shows that a large number of victims have been identified in the settlements near to the river banks.
    [Show full text]
  • IWA Specialized Conference on Water&Wastewater 22-24 March 2012
    IWA Regional Symposium on Water, Wastewater and Environment: 22-24 March 2014 Traditions and Culture. Patras, Greece MN-XXXX Water Management Structures in Historical Settlements: Towards a Cross-Geographical, Cross-Cultural Categorization Eleni Antonelli1 and Katherine Liapi2 1 Student, Department of Architecture, University of Patras, 26504, Panepistimioupolis, Patras, Greece 2 Associate Professor, Department of Architecture, University of Patras, 26504, Panepistimioupolis, Patras, Greece (E-mail : [email protected], [email protected]) Abstract In almost all the studied historical settlements place and water in its most general, both symbolic and practical definition, appear to be interwoven and interdependent. There are many references regarding the construction methods, shape and usage of water management structures in historical settlements. However, little research has been conducted comparing the findings of water structures to one another. In this paper a categorization of significant existing water management structures in historical settlements is attempted on the basis of their main function and role in the water exploitation process. Collection, Transportation and Storage, as well as combinations of the above, have been identified as the main categories of water management structures in historical settlements. Examples of structures belonging to each category that come from various cultural backgrounds and geographical areas are discussed and a further categorization of structures belonging to the same category, based on ground/structure relationship, is also attempted and presented in the paper. Keywords: water collection; water transportation; water storage; categorization; INTRODUCTION & BACKGROUND Water constitutes a part and parcel of a place’s evolution and cultural history. In all historical settlements, place and water in its many facets appear to be interwoven and interdependent, a fact that explains the strong presence of water in both the cultural customs of every place and the measures that ensured humans’ survival in it.
    [Show full text]
  • Traditional Wisdom in Harvesting Water
    Traditional wisdom in harvesting water G. S. Unnikrishnan Nair Scientific Officer (Asst. Director of Agriculture) Kerala State Biodiversity Board, Jai Nagar L14, Medical College PO Thiruvananthapuram -695011 E-mail : vanchiyurunni@gmail. com, unni_krishnan1@hotmail. com Abstract Traditional Knowledge is being used in various parts of India for harvest of rain water as well as its conservation. This article examines two such traditional water harvest systems in Kerala state of South India. One is the ‘Panam Keni’ well used by Mullu Kuruma tribes of Wayanad, the hilly district of Kerala and the other one is the vertical ‘Suranga’ well dug in the laterite hills of Kasargod district. Unique knowledge and skill are involved in the development of these wells. This has been passed from generation to generation and perfected. But it is sad that the skill and knowledge associated with these wells are fast disappearing from these communities. Keywords: Traditional knowledge, Wells, Wayanad, Mullu Kuruma, Panam Keni, Kasargod, Laterite hills, Suranga. Introduction tribe is a very prominent tribal group of Kerala state Water has been harvested in India since antiquity, with unique culture and ethno botanical practices. A with our ancestors perfecting the art of water group of the kurumas, referred to, as Mullu kurumas management. Many water harvesting structures and is concentrated in the Wayanad district of Kerala. water conveyance systems specific to the ecoregions As early inhabitants of Wynad, Mullukurumans and culture has been developed in India like Zing of are mainly found in the panchayaths of Noolpuzha, Trans-Himalayan Region, Kul, Naula and Khatri of Kidanganad, Muppainad, Muttil, Parakkadi, Tirunelli Western Himalayas, Bamboo drip irrigation of North- and Mananthavadi of the district and also in the eastern Hill Ranges, Korambu in Eastern Ghats, Talab adjoining areas of Gudalur taluk in the Nilgiri district in Central highlands, Virdas in Western coastal plains, of Tamil Nadu.
    [Show full text]
  • Final List of Participants
    Atoms for Peace General Conference GC(53)/INF/7/Rev.1 Date: 16 September 2009 General Distribution Original: English Fifty-third regular session Vienna, 14–18 September 2009 FINAL LIST OF PARTICIPANTS Information received by Wednesday 16 September 2009 Page 1. Member States 1–92 2. Entities Having Received a Standing Invitation to Participate as Observers 93 3. United Nations and Specialized Agencies 94 4. Intergovernmental Organizations (IGOs) other than United Nations 95–98 5. Non-Governmental Organizations (NGOs) 99–103 6. Individual Observers 104–106 The List of Participants contains information as provided by Delegations.
    [Show full text]
  • Endosulfan Contamination in Water : a Review on to an Efficient Method for Its Removal
    Journal of Chemistry and Chemical Sciences, Vol.6(2), 182-191, February 2016 ISSN 2229-760X (Print) (An International Research Journal), www.chemistry-journal.org ISSN 2319-7625 (Online) Endosulfan Contamination in Water : A Review on to an Efficient Method for its Removal Jayaprabha K.N.1 and Suresh K.K.2* 1Kizhakkeveettil (H), Thrikkalathoor P.O., Muvattupuzha, Kerala – 683541 2Assistant Professor, Department of Zoology, NSS College, Pandalam, Kerala - 689501 [email protected] (Received on: February 25, 2016) ABSTRACT Endosulfan is one of the known highly toxic organochlorine pesticides. The global ban on the manufacture and use of endosulfan was recommended by The Stockholm Convention held in April 2011 because of its adverse effects on human health and the environment. This report discusses about the pollution caused by endosulfan in rural areas of Kasargod district in Kerala where Plantation Corporation of Kerala started aerial spraying of the pesticide in the 1970s. Until the year 2000, more than 50,000 villagers of this district have been exposed to endosulfan, and over 3000 were affected by rare diseases like mental retardation, cerebral palsy, cancer etc. The reports from various government authorities and non-government organizations confirm the presence of endosulfan in water and soil in the exposed areas. The exposure and use of endosulfan contaminated food and water is said to cause endocrine disruptions, reproductive system disorders, central nervous system disorders, liver and kidney dysfunctions in animals and human beings. There are literature reports on the removal of endosulfan from water and soil using suitable adsorbents which mainly uses carbon derived from various sources.
    [Show full text]
  • Cpr Environmental Education Centre Eco-Heritage.Com
    ISSN : 0975 - 9387 C.P.R. ENVIRONMENTAL EDUCATION CENTRE ECO-HERITAGE.COM ENVIS Newsletter Thematic Area: Conservation of Ecological Heritage and Sacred Sites of India January - March 2021, Vol. XIX, No. 4 In this issue From the ENVIS Desk ............................................................................................ 02 Kerala Man Digs 1000+ Cave wells in 50 Years, Builds rare ‘Suranga’ Water System........................................................ 03 News - Temple Talk - Vaitheeswaran Koil .......................................................... 05 In-focus ................................................................................................................ 08 Abstracts of Recent Publications ........................................................................... 18 Supported by Ministry of Environment, Forest and Climate Change, Government of India —— News —— KERALA MAN DIGS 1000+ CAVE WELLS IN 50 YEARS, BUILDS RARE ‘SURANGA’ WATER SYSTEM Eco-Heritage Envis Newsletter CPREEC, Chennai From the ENVIS Desk... The ENVIS Centre at CPREEC was established Digging through the ‘suranga’ cave wells, one of in April 2002 by the Environmental Information the oldest water harvesting systems found in the System (ENVIS) of the Ministry of Environment, regions of north Kerala and Karnataka, 67-year old Forest and Climate Change (MoEF&CC), Kunjambu has singlehandedly provided water to Government of India and assigned the the villagers of Kundamjuzhy, a village in Kerala’s responsibility for being the focal point for the Kasargod district for more than 50 years. Kunjambu, thematic area of “Ecological Heritage and Sacred who started digging at the age of 14 is now one Sites of India”. of the very few suranga diggers left in the country and claims that thus far, he has dug out over 1000 Heritage is the cultural, social and spiritual legacy of these cave-like wells. This issue covers an article that we inherit from our past and pass on to the on ‘Kerala man digs 1000 + cave wells in 50 years, future.
    [Show full text]
  • Suranga – a Sustainable Water Resource
    National Seminar on Water & Culture- Hampi,Bellary Dist. June 25-27,2007 Title: SURANGA - A SUSTAINABALE WATER RESOURCE HARISH HALEMANE Kumble 671321 Kasaragod, Kerala. Phone: 04998-245006(R), 09946319992(Cell) Email: [email protected] Paper Farmers, from centuries ago have developed some techniques for finding water. ‘Suranga’ is a man-made cave used for the purpose of water. These `surangas’ can be seen in many parts of Dakshina Kannada district of Karnataka and Kasaragod district of Kerala. In some parts of southern Kasaragod, these are called ‘Surangams’. Surangas are the tunnels bored horizontally on the slopes of hills to get clean drinking quality water. ‘Suranga’ is a system mainly seen in coastal districts which are having the same soil structure (i.e., laterite). On the slopes of laterite soiled hills, surangas are dug horizontally using pickaxes or wedges by the workmen. There were people who were the masters in this craft. They knew the slope of the hill, the soil structure, geo system, rainwater catchments area above the hill and exactly where to dig the suranga. There were also good workmen who had the skill to dig the suranga. Nowadays, digging of suranga has become an obsolete . However, surangas are still being dug and used in some parts of Karnataka. There is another method of digging hills by using galvanized pipes. It is called the ‘horizontal bore’ (Addaboru in Kannada). This has been successful in some parts where the vertical bore wells did not go well. It is only a bore well having small diameter and it acts as a small suranga.
    [Show full text]
  • Read the Magazine
    LEISA India Magazine on Low External Input Sustainable Agriculture March 2020 – Special Edition Celebrating 20 years of knowledge exchange on Agroecology March 2020 Volume 22 no. 1 SPECIAL ISSUE LEISA India is published quarterly by AME Foundation Address: AME Foundation, No. 204, 100 Feet Ring Road, 3rd Phase, Banashankari 2nd Block, 3rd Stage, Bangalore - 560 085, India. Tel: +91-080- 2669 9512, +91-080- 2669 9522, Fax: +91-080- 2669 9410 E-mail: [email protected] Chief Editor: K.V.S. Prasad Managing Editor: T.M. Radha This issue has been compiled by T.M. Radha and K.V.S. Prasad. Admn. Support. G G Rukmini; Layout: S Jayaraj, Chennai; Printer: Bluestream India Printing Ltd., Bangalore LEISA India is a member of the global Agricultures Network. The network organisations provide information on small-scale, sustainable agriculture worldwide, and publish: Farming Matters (in English); LEISA revista de agroecología (Latin America); LEISA India (in English, Kannada, Tamil, Hindi,Telugu, Oriya, Marathi and Punjabi); AGRIDAPE (West Africa, in French);Agriculturas Experiências em Agroecologia (Brazil). The editors have taken every care to ensure that the contents of this magazine are as accurate as possible. The authors have ultimate responsibility, however, for the content of individual articles. The editors encourage readers to photocopy and circulate magazine articles. About the special issue This special issue is brought out to celebrate two decades of knowledge sharing on agroecology. This issue includes some of the best articles published earlier in LEISA India, encompassing various dimensions and perspectives on agroecology. We are forever grateful to those small farmers who have been relentlessly practising ecological agricultural methods inspiring many to follow and to all those authors without whom sharing such experiences would not have been possible.
    [Show full text]
  • International Conference on Ocean, Offshore and Arctic Engineering Glasgow, Scotland June 9–14, 2019
    Glasgow 38th International Conference on Ocean, Offshore and Arctic Engineering Glasgow, Scotland June 9–14, 2019 OFFSHORE MECHANICS AND ARCTIC ENGINEERING Journal of Offshore Mechanics and Arctic Engineering EDITOR: Lance Manuel, PhD The University of Texas at Austin, USA OMAEOMAE 20192019 ConferenceConference Attendees:Attendees: AccessAccess andand DownloadDownload ArticlesArticles ofof InterestInterest FREE!FREE! OMAE 2019 Conference attendees will have access to view and download articles FREE from the Journal of Offshore Mechanics and Arctic Engineering from June 15, 2019 – September 15, 2019. It’s Simple, Get Started! Visit Journal of Offshore Mechanics and Arctic Engineering on The ASME Digital Collection (offshoremechanics.asmedigitalcollection.asme.org) and click on any article. For queries or support, contact Sharon Giordano: [email protected] ® ASME® TABLE OF CONTENTS YOUR HOSTS Program at a Glance ....................... 2 TECHNICAL PROGRAM Technical Tours ............................... 87 Floor Plans ........................................... 4 Honoring Symposia ...................... 21 Outreach for Engineers .............. 88 Welcome Letters ............................... 6 Afternoon Lecture Series .......... 22 OMAE 2020 ........................................ 89 Glasgow Map .................................... 10 Saturday, June 8 ............................. 23 Listing of Committees & Award Winners ................................ 12 Sunday, June 9 ................................ 24 Organizers .........................................
    [Show full text]
  • P>Proceedings of Indian Geotechnical Conference December 15-17, 2011, Kochi (Paper No
    Proceedings of Indian Geotechnical Conference December 15-17, 2011, Kochi (Paper No. P-023) ROCK ENGINEERING IN ANCIENT INDIA A.S. Nene, Professor of Civil Engineering (Retd), VNIT Nagpur, Email: [email protected] ABSTRACT: Sage Bhrugu grouped all ancient engineering and technological subjects into ten Shashtras (Engineering Sciences). These Shashtras, were further sub-divided into 32 techniques (Vidyas) and 64 skills /arts (Kalas). The paper presents status of rock engineering in ancient India. References related to rock engineering are available mainly in three Shashtras such as Surface transport, Dwellings and Forts and Castles. Tunnel construction was an important ancient art. Construction of huge temples, palaces and forts and dams involves use of stones. Information related to sources, classification, selection, and identification of defects in building stones, mortars for stone masonry and protective coats for stone idols etc are discussed in the paper. INTRODUCTION White stones were considered best, followed by red, yellow For ages, stones are used for construction in different forms and black stones [2, 4]. The color of the stone should be for different purposes. During the ancient period in India, uniform. Stones, with different colors or different shades of stones were used in making sculptures and in making same color were considered unsuitable. The color variations blocks for building construction. in a stone are due to weathering of stones to different degree. Hence, such stones were considered unsuitable [2]. The strength and aesthetics of structures depends upon the Age - Based on age, stones were classified as child, young type of stone used in it. The beauty of Tajmahal lies more or old.
    [Show full text]
  • LI SEP 2015.P65
    Photo: Authors A panam keni well Harvesting water-the traditional way G S Unnikrishnan Nair highlands, Virdas in Western coastal plains, Katas in Eastern Kenis or sacred wells and Surangas reveal the ancient highlands, Kunds of Thar desert and Cheruvu of Deccan knowledge and wisdom of tribes of Wayanad in water plateu. In Kerala State, South India two such distinct systems conservation and sustainable utilization of perennial water are there; Panamkeni in Wayanad and Suranga in Kasaragod sources. Neglect of this valuable indigenous knowledge, district. deserves to be protected and passed on to future The sacred wells of “Kurumas” generations. The native tribes of Wayanad, Kerala mainly consist of various sects like Paniyas, Kurumas, Adiyars, Kurichyas, ater has been harvested in India since ages, with Ooralis and Kattunaikkans. Kuruma tribe is a very prominent our ancestors perfecting the art of water tribal group of Kerala state with unique culture and ethno Wmanagement. Many water harvesting structures botanical practices. A group of the kurumas, referred to, as and water conveyance systems specific to the eco-regions Mullu kurumas is concentrated in the Wayanad district of and culture have been developed in India like Zing of Trans- Kerala. As early inhabitants of Wayanad, Mullukurumas are Himalayan Region, Kul, Naula and Khatri of Western mainly found in the panchayaths of Noolpuzha, Kidanganad, Himalayas, Bamboo drip irrigation of North-eastern Hill Muppainad, Muttil, Parakkadi, Tirunelli and Mananthavadi Ranges, Korambu in Eastern Ghats, Talab in Central of the district and also in the adjoining areas of Gudalur taluk 23 LEISA INDIA SEPTEMBER 2015 in the Nilgiri district of Tamil Nadu.
    [Show full text]